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The Maximum Likelihood Estimator of b-Value for Mainshocks

by Anna Maria Lombardi

Abstract Considering the magnitudes of events in a catalog as independent and
exponentially distributed random variables, in agreement with the Gutenberg–Richter
law, the statistical significance of the difference between the maximum likelihood
estimators of the b-value for mainshocks (bms) and for all events (ball) is discussed.
It is shown that, as a consequence of their definition, the mainshocks do not entirely
satisfy the Gutenberg–Richter law and that bms has been frequently estimated as lower
than ball because of an incorrect use of the maximum likelihood method.

Introduction

One of the most analyzed and discussed topics in sta-
tistical seismology concerns variations of b-value of the
Gutenberg–Richter law. In this context, there are different
research matters: (a) the spatiotemporal variation of b; (b) the
variation of b for events in different kinds of clusters (fore-
shock-mainshock-aftershock clusters, swarms, etc.); and
(c) the variation of b inside a cluster (difference between
two values of b estimated for aftershocks and for foreshocks
or for mainshocks and for secondary events) (see Suyehiro,
1966; Utsu, 1966; Page, 1968; Suyehiro and Sekiya, 1972;
Gibowicz, 1973; Papazachos, 1974; Guha, 1979; Smith,
1981; Knopoff et al., 1982; Pacheco et al., 1992; Wyss and
Wiemer, 2000). The discussion of these problems cannot
leave out of consideration a careful choice of the statistical
method used to estimate b and a careful evaluation of statis-
tical significance of variations pointed out.

Topic c is particularly significant because of its connec-
tion with earthquake prediction. In fact, it is very important
in forecasting to judge, for example, if foreshocks or main-
shocks can be distinguished from ordinary seismic activity.

Many studies concerned, in the more or less recent past,
the statistical significance of the difference between b-values
estimated for foreshocks and for aftershocks inside the same
cluster. They defended very different and sometimes also
contradictory views: in fact, in the opinion of some, the dif-
ference of the b-value for foreshocks and aftershocks is evi-
dent (Suyehiro, 1966; Suyehiro and Sekiya, 1972); others
assert, in contrast, that the hypothesis of different physical
environments in which foreshocks and aftershocks occur
does not have statistical significance (Knopoff et al., 1982;
Shi and Bolt, 1982). The co-existence of such different opin-
ions is ascribed, by supporters of each of the two theses, to
a wrong selection of data or to an incorrect use of statistical
tools by researchers defending the opposite point of view.

In my opinion, a subject not yet rightly discussed and
certainly not yet fully explained is the magnitude distribution
of mainshocks in a catalog and, in particular, the significance

of the difference between the b-value estimated for main-
shocks and for all events.

In connection with these topics, Utsu (1971), in his anal-
ysis of the Japanese catalog during 1926–1968, observed
that mainshocks and aftershocks had a distribution according
with the Gutenberg–Richter law but with different b-values;
in particular, as it had already been observed, the b-value of
mainshocks (b0) was lower than that of aftershocks (ba).
Consequently the b-value of all events depended on b0 and
ba and on the degree of aftershocks activity. In contrast, Pur-
caru (1974), in his statistical analysis of Japanese and Greek
catalogs, inferred that the mainshocks follow the Gutenberg–
Richter law with the same parameter b of general magni-
tude–frequency relation of earthquakes.

More recently, Frohlich and Davis (1993) analyzed the
difference between the b-values estimated for mainshocks or
for secondary events (aftershocks and foreshocks) and the
one estimated for all events, in four teleseismic catalogs of
earthquakes. They concluded that the selection of main-
shocks and of secondary events itself creates a bias, causing
a considerable difference between the values of b mentioned
earlier.

In spite of this, in some recent papers, the difference of
estimated b-values for mainshocks and for all events has
been used as evidence for important physical features of the
seismogenic process. In fact, Öncel and Alpetekin (1999),
estimating by the maximum likelihood method the b-value
for the mainshock catalog and for the raw catalog of the
North Anatolian fault zone, inferred that inclusion of after-
shocks changed the value of b. By this result they concluded
that, for a more realistic hazard estimation, aftershocks
should be removed from the earthquake catalog.

Likewise, Knopoff (2000) used the same distribution
magnitude for the complete and the declustered catalogs of
earthquakes in the southern California region. He used the
difference of estimated b-values for the two catalogs to con-
test the assumption of the self-organized criticality of earth-
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Figure 1. Density functions of mainshocks (M0)
for five different values of N, for � Mc and forM*c
b � 1 (equation 4).

quakes. Finally, in some papers, values of b for mainshocks
are obtained to support theories about different topics (Mol-
chan et al., 1999; Kagan, 1999; Öncel and Wyss, 2000).

In this article, by statistical means and by the analysis
of events that occurred in southern California, I prove that
the difference of observed values of b for declustered and
complete catalogs can be ascribed to a misuse of statistical
estimators of this parameter, explaining why the various au-
thors have obtained such different results.

Statistical Tools and Data Analysis

Let us suppose that the magnitudes of seismic events
that occurred in a region and in a certain time period are
independent and identically distributed random variables in
agreement with the Gutenberg–Richter law, that is,

log N(M) � a � bM, (1)10

where N(M) is the number of events with magnitude larger
than or equal to M. This hypothesis is equivalent to suppos-
ing that the magnitudes of events are exponential variables
with parameter b � b • ln(10) and then that their density
function is

�b(m�M )cf(m) � be , m � M , (2)c

where Mc is the cutoff magnitude (Ranalli, 1969).
In this hypothesis, the best statistical estimator of b is

the maximum likelihood estimator (MLE). It is obtained by
the formula

1
b̂ � , (3)¯ln(10)(M � M )c

where M̄ is the sample mean of events considered (Aki,
1965; Utsu, 1966). It is obvious that equation (3) can be
used only if observed values have distribution (2). It is
known, by the order statistics theory, that the largest member
(M0) of a sample of N events with distribution (2) does not
have an exponential distribution; in fact, if we impose that
M0 be larger than or equal to a constant � Mc, its densityM*c
function is

N �b(m�M ) �b(m�M ) N�1c cf (m) � Nbe (1 � e )M0 , m � M* (4)c�b(M �M ) N* cc1 � (1 � e )

(Feller, 1966; Casella and Berger, 1990; Lombardi, 2002).
Then the distribution ofM0 depends not only on b, but also
on N. Figure 1 shows the plot of density function ofM0 for

� Mc. The distribution ofM0 is very different from theM*c
exponential one.

To verify the reliability of the model, the catalog com-
piled by the Southern California Earthquake Data Center has
been considered. It includes 62,394 events with magnitude

equal to or larger than Mc 1.95, occurring in the time period
1990–2001. This catalog has been declustered using the
Reasenberg algorithm with the standard parameter setting:
Rfact � 10, P � 0.95, smin � 1, smax � 10 (see Reasenberg
[1985] for details). Moreover has been chosen equal toM*c
Mc. There are 2443 clusters identified and 41,022 clustered
events (6907 foreshocks, 2443 mainshocks, and 31,672 af-
tershocks).

Figures 2 shows the cumulative magnitude/log-
frequency relation for all events and for mainshocks of the
California catalog. The Gutenberg–Richter law seems to be
reliable for the whole catalog (Fig. 2a), but not for main-
shocks (Fig. 2b); in fact, for lower values of M, these data
are not perfectly fitted by a straight line. These issues are
confirmed by the histograms of Figure 3; the first (Fig. 3a)
shows that the distribution of all events is very close to an
exponential one, while Figure 3b shows that mainshocks
have a different distribution.

In the following, the b-value for all events and for main-
shocks will be denoted with ball and bms, respectively; more-
over the estimators of ball and bms obtained by equation (3)
will be denoted with all and . For the Southern California1ˆ ˆb bms

catalog, the results are

b̂ � 0.9593 � 0.004 (all events),all

1b̂ � 0.5114 � 0.010 (mainshocks)ms

(the formula of Shi and Bolt [1982] has been used for stan-
dard errors).

The significant difference between and can be1 1ˆ ˆb bms all

ascribed to a misuse of equation (3): in fact, it does not result
from the vague hypothesis that data satisfy an empirical re-
lation, as the Gutenberg–Richter law, but from the definite
hypothesis that data have an exponential distribution. In re-
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Figure 2. (a) Gutenberg–Richter law for all events
(62,394) of the southern California catalog. all is theb̂
maximum likelihood estimator of b (equation 3). (b)
The same as (a) for southern California mainshocks;
for lower values of M, data are not fitted by a line.

Figure 3. (a) Histogram of southern California
events compared with the theoretical density function
(2) (solid line), suitably normalized, so that its inte-
gral is equal to the one of the histogram. (b) The same
as (a) for mainshocks; the theoretical density function
is obtained by equation (5). In both cases it has been
used that b � all. The catalog has been declusteredb̂
by the Reasenberg method with the standard param-
eter setting.

ality, as has been already shown, the mainshocks do not have
an exponential distribution, and then it is incorrect to make
use of equation (3) to estimate bms.

Considering that the cluster size N is not constant in a
catalog, it becomes necessary to consider a density function
ofM0, (m), independent of N. Because a theoretical dis-fM0

tribution of N is not known, let us use the sample distribu-
tion; the result is

��
Nf (m) � f (m)p , (5)M � M N0 0

N�2

where pN � number of observed clusters with N events/total
number of observed clusters.

Figure 3 shows, for complete and declustered southern
California catalogs, the histograms of magnitude compared

with the theoretical density functions (2) and (5), respec-
tively (solid lines). In both cases the b-value used is all.b̂
Figure 3b shows an impressive agreement of the data with
the model, which is fully confirmed by the v2 test with sig-
nificance level � � 0.1: in fact, the hypothesis that main-
shocks have the distribution given in equation (5) cannot be
rejected.

Then, if we denote with ncl the number of clusters iden-
tified, the log-likelihood function of the ncl observed values
ofM0, , . . . , , is1 nclm m0 0

ncl
1 n icllogL(m , . . . , m /b) � log ∏ f(m )0 0 0� �

i�1
��ncl

N i� log ∏ f (m )p . (6)� 0 N� �
i�1 N�2
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Figure 5. Histogram of values of obtained by2bms

simulation of 1000 groups of 2443 clusters of inde-
pendent and exponential random variables with the
same size of California clusters and with b � all �b̂
0.9593. Solid lines delimit values of for which2bms

| � all| � 0.0103.2ˆ ˆb bms

Figure 4 shows the plot of log-likelihood function versus b
for California mainshocks: the point of maximum is about
0.97 (by numerical approximation, the value 0.9696 is ob-
tained, and then its difference with all is about 0.0103). Theb̂
estimator computed as point of maximum of log-likelihood
function (6) will be denoted with .2b̂ms

To judge the agreement with the model of the value
obtained, 1000 groups of 2443 clusters of independent2b̂ms

and exponential random variables, with the same size of
California clusters, have been simulated; the b-value used is

all � 0.9593. Figure 5 shows the histogram of values ofb̂
computed in simulation; more than 38% of values of2b̂ms

| � all| are larger than the one of the real catalog2ˆ ˆb bms

(�0.0103). Then the estimator of bms obtained by equation
(3) is incorrect, and a better estimate shows that there is not
sufficient statistical evidence to say that ball and bms are dif-
ferent.

It is important, in my opinion, to point out that, since
the Gutenberg–Richter relation is not completely applicable
to mainshocks, ms does not represent for them an estimateb̂
of proportion of large and small magnitudes.

To show that the results are not dependent on details of
the declustering algorithm, the analysis of data has been re-
peated by varying some basic parameters (smin, smax, P, Rfact)
used by Reseanberg’s method (see Reasenberg [1985] for
details). Moreover, data have been selected by different val-
ues for the two threshold magnitudes Mc and . Table 1M*c
lists results of this analysis. With increasing � Mc, theM*c
value of approaches all; in fact, as Figure 3b shows, the1ˆ ˆb bms

distribution of M0 converges to the exponential one with
increasing (see also equation A5 and figure A1 in Lom-M*c
bardi [2002]). In all cases the results do not seem to depend
on the values of parameters, and they do not change the
conclusions explained earlier.

Discussion

The main questions that I try to answer in this work are,
(1) Do the magnitudes of mainshocks have the same distri-
bution as the magnitudes of the whole catalog? and (2) Can
mainshocks be considered as the largest members of groups
of events identified in a set of independent and exponentially
distributed random variables? I think my opinion is ex-
plained by the arguments of the previous section: the mag-

Figure 4. Plot of log-likelihood function
(equation 6) for mainshocks of the southern
California catalog versus b. The smaller panel
on the right shows the same plot for a larger
range of b ([0.1, 2]). The point of maximum is
about 0.97.
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Table 1
Results of the Analysis of the Southern California Catalog for Different Values of Parameters used to Select Data

Parameters Mc M*c Nev Ncl (equation 3)1b̂ms (MLE)2b̂ms %

smin � 1 (days) 2.0 2.0 62394 2443 0.5114 � 0.010 0.9696 38
smax � 10 (days) 2.0 2.5 62394 1615 0.6757 � 0.017 0.9597 100
P � 0.95 2.0 3.0 62394 760 0.7199 � 0.026 0.9419 96
Rfact � 10 2.0 4.0 62394 153 0.7925 � 0.064 0.9592 100

3.0 3.5 6069 195 0.5863 � 0.042 0.8784 18
3.0 4.0 6069 109 0.6758 � 0.065 0.9099 55

smin � 1 (days) 2.0 2.0 62394 2169 0.4985 � 0.011 0.9613 88
smax � 15 (days) 2.0 2.5 62394 1452 0.6599 � 0.017 0.9522 99
P � 0.99 2.0 3.0 62394 699 0.7085 � 0.027 0.9413 96
Rfact � 15 2.0 4.0 62394 141 0.7659 � 0.065 0.9479 91

3.0 3.5 6069 192 0.5811 � 0.042 0.8838 23
3.0 4.0 6069 109 0.6767 � 0.065 0.9182 65

smin � 1 (days) 2.0 2.0 62394 2402 0.5129 � 0.010 0.9726 28
smax � 10 (days) 2.0 2.5 62394 1582 0.6823 � 0.017 0.9630 99
P � 0.90 2.0 3.0 62394 738 0.7269 � 0.027 0.9473 97
Rfact � 5 2.0 4.0 62394 146 0.7877 � 0.065 0.9563 98

3.0 3.5 6069 190 0.5886 � 0.043 0.8938 33
3.0 4.0 6069 104 0.6642 � 0.065 0.9146 61

smin, smax, P, and Rfact are the parameters used by the Reasenberg algorithm (see Reasenberg [1985] for details); Mc is the cutoff magnitude; is theM*c
threshold magnitude for mainshocks; Nev is the number of events with magnitude larger than or equal to Mc; Ncl is the number of mainshocks with magnitude
larger than or equal to ; is the estimator of bms obtained by equation (3); is the maximum likelihood estimator of b for mainshocks; and the last* 1 2ˆ ˆM b bc ms ms

column shows the proportion of simulations with | all � | larger than that of the real catalog (see text for details).2ˆ ˆb bms

nitudes of mainshocks do not have the same distribution as
the ones of all events. This result does not have to be as-
cribed to different physical conditions in which they occur,
compared with those of the other events, but to simple sta-
tistical causes: the largest variable in a sample of indepen-
dent and identically distributed random variables does not
have the same distribution as the sample.

In the past, some authors have already dealt with this
topic; their results are very different, but, in my opinion,
explainable. Purcaru (1974), in his statistical analysis of af-
tershocks sequences, inferred that the mainshocks had an
exponential distribution with the same parameter b of all
events. This result can be ascribed to data selection:

• Aftershocks considered by him had a magnitude larger
than or equal to a threshold.

• Mainshocks included in the data had a magnitude larger
than or equal to a second threshold.

• The difference between these two thresholds was larger
than 2.0.

But, as stated in the previous section, in this case the
distribution ofM0 is exponential with a parameter that ap-
proaches ball.

The first authors that ascribed the large observed values
of |bms � ball| to the act of selecting mainshocks itself were
Frohlich and Davis (1993). To prove it, they simulated 5000
clusters of two events according to the Gutenberg–Richter
law and with b � 1.0 and Mc 4.75. Estimating the b-values
for the 5000 mainshocks ( ms) and for the 5000 secondaryb̂
events ( sec) by the same statistical estimator, they obtainedb̂

ms � 0.91 and sec � 2.12, in agreement with the hypoth-ˆ ˆb b
esis of the bias introduced by selecting data. Their result is
absolutely provable by what has been said in the previous
section. In fact, from equation (4), for � Mc andM*c
N � 2, it follows that the density function of simulated
mainshocks (M0) is

�b(m�M ) �b(m�M )c cf (m) � 2be (1 � e ). (7)M0

The density function for secondary events (M1), if isM*c
equal to Mc, is instead

�2b(m�M )cf (m) � N(N � 1)beM1 (8)
�b(m�M ) N�2c(1 � e ) , m � Mc

(see Lombardi [2002] for details).
For N � 2, the result is

�2b(m�M )cf (m) � 2be , m � M . (9)M c1

ThenM1 is an exponential random variable with parameter
c � 2b � cln(10), where c � 2b; so equation (3) provides
the MLE of c(ĉ), and then the MLE of b from the observed
values ofM1 ( sec) isb̂

ĉb̂ � . (10)sec 2

Then the correct value of sec for simulated data by Frohlichb̂
and Davis is 1.06: it is very near the value of b (�1) used
by the two authors to simulate magnitudes.



The Maximum Likelihood Estimator of b-Value for Mainshocks 2087

Figure 6. Plot of log-likelihood function
(equation 11) versus b for 5000 largest values
of simulated exponential samples with two
events and with b � 1. The smaller panel on
the right shows the same plot for a larger range
of b ([0.1, 2]). The point of maximum is about
1.0.

Repeating the same simulation of Frohlich and Davis
(5000 clusters of two exponential independent random vari-
ables with parameter b � 1), by equation (3), the result is

b̂ � 0.9979 � 0.0141, ĉ � 1.9540 � 0.0276,all

in agreement with their result.
Considering the previous discussion, from equation (10)

the results is

ĉb̂ � � 0.9770.sec 2

As far as ms is concerned, from equation (6) it follows thatb̂
the log-likelihood function of 5000 simulated values ofM0

( , . . . , ) is1 5000m m0 0

1 5000log L(m , . . . , m /b) � 5000 log(2)0 0
5000

i� 5000 log(b) � b (m � M ) (11)� 0 c
i�1

5000
i�b(m �M )0 c� log(1 � e ).�

i�1

Figure 6 shows the plot of logL( , . . . , /b) versus b:1 5000m m0 0

it is evident that the point of maximum is very near to 1 (a
numerical approximation provides the value 1.0107).

Conclusions

Considering the magnitudes in a catalog as a set of in-
dependent and exponentially distributed random variables
and the mainshock as the largest variable of samples iden-
tified in this set, the following has been proven:

• The mainshocks have a distribution different from that of
all events and not completely described by the Gutenberg–
Richter law.

• Consequently, it is incorrect to use the same formula to
estimate ball and bms; in fact, equation (3) is valid for ex-
ponential data only.

• This error is the cause of the low values obtained in the
past by estimating bms.

• Considering a more correct log-likelihood function for
mainshocks, the relative maximum likelihood estimator

is found to be very close to all.
2ˆ ˆb bms

Then the difference between bms and ball does not sup-
port the hypothesis that the mainshocks occur in physical
conditions different than those that exist for the other events.
Moreover their different magnitude distribution can be fully
explained by probabilistic analysis.

Acknowledgments

The author is grateful to R. Console (INGV) and two anonymous
reviewers for providing useful comments.

References

Aki, K. (1965). Maximum Likelihood estimate of b in the formula logN �

a � bM and its confidence limits, Bull. Earthquake Res. Inst. 43,
237–239.

Casella, G., and R. L. Berger (1990). Statistical Inference, Wadsworth.
Feller, W. (1966). An Introduction to Probability Theory and its Applica-

tions, Vol. 2, Wiley and Sons, New York.
Frohlich, C., and S. D. Davis (1993). Teleseismic b values: or, much ado

about 1.0, J. Geophys. Res. 98, 631–644.
Gibowicz, S. J. (1973). Variation of the frequency-magnitude relation dur-

ing earthquake sequences in New Zealand, Bull. Seism. Soc. Am. 63,
517–528.



2088 A. M. Lombardi

Guha, S. K. (1979). Premonitory crustal deformations, strains, and seis-
motectonic features (b-values) preceding Koyna earthquakes, Tecton-
ophysics 52, 549–559.

Kagan, Y. Y. (1999). Universality of the seismic moment–frequency rela-
tion, Pure Appl. Geophys. 155, 537–573.

Knopoff, L. (2000). The magnitude distribution of declustered earthquakes
in Southern California, Proc. Natl. Acad. Sci. USA 97, 11,880–11,884.

Knopoff, L., Y. Y. Kagan, and R. Knopoff (1982). b values for foreshocks
and aftershocks in real and simulated earthquake sequences, Bull.
Seism. Soc. Am. 72, 1663–1676.

Lombardi, A. M. (2002). Probabilistic interpretation of the “Bath’s Law,”
Ann. Geophys. 45, 455–472.

Molchan, G. M., T. L. Kronrod, and A. K. Nekrasova (1999). Immediate
foreshocks: time variation of the b-value, Phys. Earth Planet. Inte-
riors 111, 229–240.
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