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Abstract

Climatologists have identified and started to explain a range of different modes of climatic variability which seem to be

essential components of behaviour of the global climatic system. Of potentially high geomorphological importance are

oscillations in climate over interannual to century scales. A range of geomorphological impacts of such climatic oscillations has

been recognised, such as alterations in streamflow and sediment yield, mass movement frequencies and coastal erosion, some

recent findings on which are reviewed here. Geomorphological impacts of interannual, decadal and multidecadal scale climatic

variability vary from place to place and time to time, and are often complexly related to impacts of tectonic and human factors.

The importance of improved understanding of decadal scale climatic variability for the progress of geomorphology in general is

discussed in terms of the development of geomorphic ideas.
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1. Introduction

In recent decades, climatologists have become

increasingly aware of a series of modes of variability

within the global climate system which operate over a

range of temporal and spatial scales. Our understand-

ing of the nature of these modes of variability, their

inter-relationships and links to global climate change

has progressed hugely within recent years, and new

interpretations continue to emerge. As well as identi-

fying various modes of variability within the present-

day climate, studies have also focused on elucidating

their longer term histories, often using evidence from

a range of environmental archives, such as tree rings,

ice cores and geomorphic phenomena. Climate oscil-

lations have been recognised at a whole series of time

scales (Table 1). For example, in the tropics, a sub-

annual, intra-seasonal 40- to 60-day period Madden–

Julian oscillation has been identified (Madden and

Julian, 1971). At a slightly longer time scale, there is a

2- to 2.5-year oscillation in the equatorial jet in the

lower stratosphere, called the Quasi-Biennial Oscilla-

tion (QBO) (Baldwin et al., 2001). The El Niño

Southern Oscillation (ENSO) has a periodicity of

around 4 years (Philander, 1999). Decadal and inter-

decadal variability is evident in the North Atlantic

Oscillation (NAO) and the Pacific Decadal Oscillation
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(PDO). At even longer time scales (not shown in

Table 1), there are such important phenomena as the

Dansgaard–Oeschger Cycles, Bond Cycles and Hein-

rich events, which occur at century to millennial

scales. The three main aims of this paper are briefly

to review current understanding of modes of climatic

variability operating at interannual, decadal and multi-

decadal time scales (i.e. between annual and century

scale), to illustrate their impacts on geomorphic pro-

cesses, and to consider their importance to the devel-

opment of geomorphological ideas.

2. ENSO

ENSO is the primary global mode of climatic

variability in the 2- to 7-year time band. The Southern

Oscillation is a widespread interannual oscillation in

sea-level pressure between Northern Australia and the

central Pacific. Its warm phase is related to the

occurrence of El Niño, an intensive warming of the

upper ocean in the tropical eastern Pacific lasting

more than 5 months, and its cold phase is related to

La Niña (Philander, 1999; Wang et al., 1999). The

system oscillates between warm and cold conditions

on c. 4-year time scales (Fig. 1a and c). The climatic

impacts of ENSO are spatially and temporally com-

plex and may involve considerable time lags (see

Jacobs et al., 1994).

Although each El Niño event is distinctive, precip-

itation and temperature anomaly patterns appear to

characterise all El Niño warm episodes. These can be

summarised as follows:

� The eastward shift of thunderstorm activity from

Indonesia to the central Pacific usually results in

abnormally dry conditions over northern Australia,

Indonesia and the Philippines.
� Drier-than-normal conditions are also usually

observed over southeastern Africa and northern

Brazil.
� During the northern summer season, the Indian

monsoon rainfall tends to be less than normal,

especially in the northwest.
� Wetter-than-normal conditions are usually found

along the West Coast of tropical South America,

and at subtropical latitudes of North America (the

Gulf Coast) and South America (southern Brazil to

central Argentina).
� Over the USA, winter temperatures are warmer

than normal in N Central areas and cooler in the

southeast and southwest.
� El Niño conditions are thought to suppress the

development of tropical storms and hurricanes in

the Atlantic but to increase the numbers of tropical

storms over the eastern and central Pacific Ocean.

La Niña conditions tend to produce the opposite

tendencies to El Niño conditions with, for example,

drier-than-normal conditions over islands in the equa-

torial Pacific ocean, wetter-than-normal conditions in

Southern Africa and the monsoon regions of India,

Indonesia and Northern Australia, drier-than-normal

conditions in East Africa, western equatorial Indian

Ocean, southern South America and southeastern

USA. The most pronounced extratropical temperature

signals produced by La Niña conditions are in the

USA, where winter temperatures are warmer than

usual in the southeast and cooler in the northwest.

The dates of major El Niño and La Niña events in

the twentieth century are shown in Table 2. In all there

were around 25 warm events of differing strengths,

with that of 1997–1998 being seen as especially

strong (Changnon, 2000). ENSO was relatively qui-

escent from the 1920s to the 1940s (Kleeman and

Power, 2000). The frequency and intensity of ENSO

has been unusual since the mid-1970s until 1998, in

comparison with earlier in the century, with relatively

more frequent, persistent and intense warm phases and

Table 1

Examples of climate oscillations at less than century to millennial

scales

Antarctic Circumpolar Wave

Antarctic Oscillation

Arctic Oscillation

Atlantic Multidecadal Oscillation

El Niño

Interdecadal Pacific Oscillation

La Niña

Madden–Julian Oscillation

North Atlantic Oscillation

Pacific Decadal Oscillation

Pacific-North American Teleconnection/Pattern

Quasi-Biennial Oscillation

Southern Oscillation

Southern Annular Mode

Northern Hemisphere Annual Mode
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Fig. 1. Time series for ENSO and the PDO. (a) ENSO and (b) PDO. The superimposed lines represent heavily smoothed versions of the time

series (modified from Barlow et al., 2001, Fig. 3a and b). (c) Reconstructed winter SOI values from 1706 to 1977 using tree rings from

subtropical North America and Indonesia (modified from Stahle et al., 1998, Fig. 5). (d) Reconstructed PDO from 1660 to 1990 using tree rings

from southern and Baja California (modified from Biondi et al., 2001, Fig. 3).
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less frequent La Niña conditions (Houghton et al.,

2001). A persistent La Niña from late 1998 to early

2001 might signal the end of this warm phase.

ENSO has a long history and various methods have

been used to reconstruct the history of the phenom-

enon back into the Holocene and beyond. Archival

materials, tree-ring chronologies and coral isotope

records all give a picture of ENSO history over the

past few centuries (see e.g. Felis et al., 2000; Ortlieb,

2000; Stahle et al., 1998). The Holocene history of El

Niño has been a matter of some controversy (Wells

and Noller, 1999) but it appears that the modern

periodicity of El Niño may have been established

about 5 Ka BP, possibly in response to orbitally driven

changes in solar radiation (Clement et al., 2000; Liu et

al., 2000). Further back in the Holocene, Grosjean et

al. (1997) have discovered more than 30 debris flow

events caused by heavy rainfall events between 6.2

and 3.10 Ka BP in the northern Atacama. The

stratigraphy of debris flows has also been examined

by Rodbell et al. (1999), who have been able to

reconstruct their activity over the last 15 Ka. Between

15 and 7 Ka BP, the periodicity of deposition was

equal to or greater than 15 years and then progres-

sively increased to a periodicity of 2–8.5 years.

Studies of the geochemistry of dated Porites corals

from the last interglacial of Indonesia have shown that

at that time there was an ENSO signal with frequen-

cies nearly identical to the instrumental record from

1856 to 1976 (Hughen et al., 1999). More recent coral

records from c. 5370 years BP on the Great Barrier

Reef in Australia (Gagan et al., 1998) imply a very

different pattern of ENSO, or its teleconnections to

Australia, in the mid-Holocene. Certainly, despite

much uncertainty and apparent regional differences

in records, there is increasing evidence for variations

in the intensity and frequency of ENSO over the

Holocene.

Severe El Niños, like that of 1997/1998, can have a

remarkable effect on rainfall amounts. This was

shown with particular clarity in the context of Peru

(Bendix et al., 2000), where normally dry locations

suffered huge storms. At Paita (mean annual rainfall

15 mm), there was 1845 mm of rainfall while at

Chulucanas (mean annual rainfall 310 mm), there

was 3803 mm. Major floods resulted (Magilligan

and Goldstein, 2001). ENSO also affects tropical

cyclone activity. As Landsea (2000, p. 149) remarked,

‘‘Perhaps the most dramatic effect that El Niño has

upon the climate system is changing tropical cyclone

characteristics around the world.’’ In some regions, an

El Niño phase brings increases in tropical cyclone

formation (e.g. the South Pacific and the North Pacific

between 140jW and 160jE), while others tend to see

Table 2

Twentieth century Pacific warm (El Niño) and cold (La Niña)

episodes

Year Episode Intensity

1902–1903 Warm Weak

1903–1904 Cold Strong

1905–1906 Warm Strong

1906–1908 Cold Strong

1909–1910 Cold Strong

1911–1912 Warm Strong

1913–1914 Warm Moderate

1916–1918 Cold Strong

1918–1919 Warm Strong

1923 Warm Moderate

1924–1925 Cold Moderate

1925–1926 Warm Strong

1928–1929 Cold Weak

1932 Warm Moderate

1938–1939 Cold Strong

1939–1941 Warm Strong

1946–1947 Warm Moderate

1949–1951 Cold Strong

1951 Warm Weak

1953 Warm Weak

1954–1956 Cold Strong

1957–1959 Warm Strong

1963 Warm Weak

1964–1965 Cold Moderate

1965–1966 Warm Moderate

1968–1970 Warm Moderate

1970–1971 Cold Moderate

1972–1973 Warm Strong

1973–1976 Cold Strong

1976–1977 Warm Weak

1977–1978 Warm Weak

1979–1980 Warm Weak

1982–1983 Warm Strong

1983–1984 Cold Weak

1984–1985 Cold Weak

1986–1988 Warm Moderate

1988–1989 Cold Strong

1990–1993 Warm Strong

1994–1995 Warm Moderate

1995–1996 Cold Weak

1997–1998 Warm Strong

1998–1999 Cold Strong

From data in Table 2.1, Kousky and Bell (2000).
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decreases (e.g. the North Atlantic, the Northwest

Pacific and the Australian region). La Niña phases

typically bring opposite conditions. Landsea sees a

variety of reasons why ENSO should relate to cyclone

activity: modulation of the intensity of the local

monsoon trough, repositioning of the location of the

monsoon trough, and alteration of the tropospheric

vertical shear.

The differences in cyclone frequency between El

Niño and La Niña years are considerable (Bove et al.,

1998). For example, the probability of at least two

hurricanes striking the US is 28% during El Niño

years, 48% during neutral years and 66% during La

Niña years. There can be very large differences in

hurricane landfalls from decade to decade. In Florida,

for instance, over the period 1851–1996, the number

of hurricane landfalls ranged from three per decade

(1860s and 1980s) to 17 per decade (1940s) (Elsner

and Kara, 1999). Given the importance of hurricanes

for slope, channel and coastal processes, changes of

this type of magnitude have considerable geomorpho-

logical significance. Mangroves, for example, are

highly susceptible to hurricanes, being damaged by

high winds and surges (Doyle and Girod, 1997).

There has been much recent debate over whether

ENSO is influenced by global warming, with the

severe El Niño of 1997/1998 being seen as perhaps

enhanced by global warming (Trenberth and Hoar,

1997). Houghton et al. (2001, p. 151) draw no clear

conclusions over this, saying that it remains a key

question, especially as El Niño affects global climate

itself.

3. The Pacific Decadal Oscillation and IPO

As well as ENSO, other modes of climatic varia-

bility operating at decadal to multidecadal time scales

have been recognised in the Pacific. These longer

term oscillations are relatively more prominent over

the extra-tropical parts of the Pacific basin, especially

the northwest area. The Pacific Decadal Oscillation is

a long-lived El Niño-like pattern of Pacific climate

(Fig. 1b). According to Houghton et al. (2001, p.

151), the Interdecadal Pacific Oscillation is likely to

be a Pacific-wide manifestation of the PDO and shows

three major phases in the twentieth century. From

1922 to 1946, and again from 1978 to 1998, it was

positive, whilst between 1947 and 1976, it was in a

negative phase. During positive phases, SSTs over

much of the SW Pacific and extra-tropical NW Pacific

are cold, whilst SSTs in the central tropical Pacific are

warm (but not as warm over the equatorial far eastern

Pacific as in ENSO). The IPO and PDO appear to be

important in modulating ENSO variability over a

range of areas (e.g. the South Pacific and teleconnec-

tions across North America) (Salinger et al., 2001).

The PDO and IPO appear to be part of a continuous

spectrum of ENSO variability. Since 1900, El Niño

(La Niña) events have been more prevalent during

positive (negative) phases of the IPO. There is evi-

dence from tree-ring studies that decadal-scale rever-

sals of Pacific climate have occurred throughout the

last four centuries (Biondi et al., 2001) (Fig. 1d). Such

variability in the PDO is important for understanding

changes in precipitation in the western United States

(McCabe and Dettinger, 1999).

4. North Atlantic Oscillation

The North Atlantic Oscillation is one of the dom-

inant modes of Northern Hemisphere climate varia-

bility (Perry, 2000; Wanner et al., 2001). Its positive

phase sees below-normal pressure in the region of the

Icelandic Low and above-normal pressure in the

Azores. This leads to strong south westerlies over

northern Europe and northwestern Asia, with above-

average temperatures in these regions. In its negative

phase, the Icelandic Low and Azores High pressure

weaken and migrate southward, shutting off this

southwesterly surface flow (Ottersen et al., 2001).

This results in more severe winters in northern and

western Europe.

As with ENSO, the NAO has shown variability in

its frequency and intensity over time (Fig. 2). A

quasi-decadal, 6- to 10-year, pattern of variability of

the NAO has been more pronounced over the latter

half of the twentieth century, while a quasi-biennial

pattern dominated the early instrumental record

(Houghton et al., 2001). Changes in the strength of

the North Atlantic Oscillation have been traced back

for over a thousand years by means of the analysis of

a stalagmite from NW Scotland (Proctor et al., 2000).

It may also be possible to reconstruct past NAO

behaviour through tree-ring analysis (Fig. 2a) (Briffa,
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2000) and the Greenland ice core record (Glueck and

Stockton, 2001). The NAO index exhibits consider-

able long-term variability. The 1960s displayed an

extreme negative phase, whereas a prolonged positive

phase occurred in the late 1980s and early 1990s

(Hurrell, 1995). Major negative phases similar to

those of the 1960s occurred in 1759–1777, 1549–

1562, 1528–1539 and 1445–1460 (Glueck and

Stockton, 2001).

Among the responses to changes in the NAO are

the distribution, intensity and prevalence of storms,

wave climate (Wang and Swail, 2001), sea ice volume

and iceberg flux (Dickson et al., 2000). However,

although in recent decades increased storminess in the

North Atlantic has been linked to the strongly positive

state of the NAO index, this was not the case during

the period of exceptional storminess at the close of the

nineteenth century. At that time, many episodes of

exceptional storminess were associated with index

values that were sometimes negative (Dawson et al.,

2002).

5. The Arctic and Antarctic Oscillations

The Arctic Oscillation (AO) is one in which there

is an oscillation in atmospheric pressure at polar and

mid-latitudes in the Northern Hemisphere. In its

negative phase, higher-than-normal pressure occurs

over the polar region and lower-than-normal pressure

at about 45jN. The positive phase brings opposite

conditions that steer ocean storms further north,

bringing wetter conditions to Alaska, Scotland and

Scandinavia, but drier conditions to more southerly

locations, such as California, Spain and the Middle

East.

The NAO may be a manifestation of the AO in the

Atlantic sector. Since the 1960s, the AO has tended

toward a positive index. Recent modelling suggests

that the recent trend in the AO, and the strengthening

of the atmospheric vortex over the Arctic, are quite

possibly a result of greenhouse gas forcing (Shindell

et al., 2001). Its counterpart in the middle and high

latitude of the Southern hemisphere is the Antarctic

Oscillation (AAO). This is a large-scale alternation of

atmospheric mass between mid-latitude and high-

latitude surface pressure (Gong and Wang, 1999). It

is also known as the Southern Annular Mode (Kush-

ner et al., 2001). The Arctic Oscillation is also some-

times referred to as the Northern Hemisphere Annular

Mode.

6. The Atlantic Multidecadal Oscillation

The Atlantic Multidecadal Oscillation (AMO) is a

recently discovered 65- to 80-year cycle with a 0.4 jC
temperature range. During AMO warming, most of

the USA experiences less-than-normal rainfall, and

between AMO warm and cool phases Mississippi

River outflow varies by 10% (Enfield et al., 2000).

7. The Pacific-North American (PNA) pattern

The Pacific-North American pattern develops in

the northern Pacific. The teleconnection between the

PNA and tropical Pacific climate is characterised by

above-normal temperatures in Alaska and western

North America and below-normal temperatures in

the southeastern United States. A negative phase of

the pattern dominated the periods from 1964 to 1967

and 1989 to 1990 while a positive pattern dominated

from 1976 to 1988 and again from 1991 to 1993.

8. Climatic variability: past, present and future

It is clear from the above examples that many

modes of climatic variability have been identified,

and that there are clear interactions between them. In

many places, regional climates are seriously impacted

by combinations of these modes of variability. Barlow

et al. (2001), for example, report on the combined

Fig. 2. The North Atlantic Oscillation (NAO). (a) A 555-year reconstruction of the NAO for 1429–1983 based on tree-ring analyses (modified

from Glueck and Stockton, 2001, Fig. 4). (b) The NAO index for December–March from 1864 to 1996. This is based on the difference in

normalized mean sea-level pressure between Lisbon and Iceland. The anomalies at each station were normalized by division of each seasonal

pressure by the long-term (1864–1983) standard deviation (modified after Hurrell, 1995). (c) NAO index (1950–1999) and mass balance of

Nigardsbreen Glacier (Norway) (1962–1998) (modified after Reichert et al., 2001, Fig. 13).
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influence of ENSO, PDO and NPM on summertime

rainfall, drought and streamflow in the USA, whilst

Felis et al. (2000) find correlations between Red Sea

coral isotope records and NAO, ENSO and North

Pacific climate variability since 1750. The long-term

drought in the USA from 1962 to 1966 related

strongly to the combined impacts of these three modes

of variability. Much recent work has been aimed at

trying to relate decadal scale variability to longer term

changes (such as future climatic change resulting from

anthropogenic activity). Increasingly, evidence shows

that such climatic variability has great antiquity and

has, for example, affected oceanic systems during the

Late Pleistocene (Beaufort et al., 2001). Over the past

1000 years, there is now good evidence for variations

in both ENSO and NAO, with, for example, switches

to more positive NAO values occurring several times

since 1500 (Jones et al., 2001). Thus, although the

climatic oscillations we discuss operate on geomor-

phologically short time spans, their long-term pres-

ence within the climate system and medium-term

changes in their nature may have important geomor-

phic consequences.

9. Selected geomorphological impacts

The potential geomorphological importance of the

modes of climatic variability we have introduced in the

previous sections is a result of the disruption they cause

to biospheric, oceanographic and earth surface pro-

cesses. Most of these climatic oscillations cause all or

some of the following:

These changes occur unevenly over space and

force knock-on alterations in ecological and geo-

morphological systems (often complex and some-

times with a time lag). So, for example, increasing

precipitation levels will produce increased river

flows and may also encourage vegetation growth.

As Plisnier et al. (2000, p. 481) comment in relation

to the influence of ENSO on East African ecosys-

tems ‘‘Not all climate and land surface variables are

teleconnected to ENSO in the same way, which

leads to a complex impact of ENSO on the ecosys-

tem. Moreover, the ENSO impact is highly differ-

entiated in space. . .’’ Some of the changes induced

will also feed back into further climatic changes.

Thus, reduction in precipitation levels may cause

increasing production of dust in susceptible environ-

ments, which may in turn affect the climate. Differ-

ent environments will be affected by different

combinations of atmospheric and oceanographic

fluctuations, and sometimes the impacts may be very

complex indeed. Geomorphic systems are also

affected by other external factors, such as tectonic

events and human impacts, and they also have

important internal thresholds which, when overtop-

ped, can lead to dramatic geomorphic change with-

out any external forcing (Brunsden, 2001). Thus,

identifying the contribution of climatic vs. non-

climatic forcing to geomorphic change can be diffi-

cult, and the importance of climatic factors will vary

from place to place.

In Table 3, we list some of the major geomorpho-

logical impacts that have been recognised as resulting

from decadal to century scale climatic oscillations.
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Many of these are interlinked, with for example

changes in fluvial systems having knock-on effects

on coastal systems in many places. As can be seen in

Table 3, it is difficult to separate purely geomorpho-

logical impacts from ecological and hydrological

impacts.

10. Terrestrial hydrological impacts

10.1. Lake level fluctuations

The levels of lakes can show great variability in

response to changes in rainfall inputs to their catch-

ment areas and outputs from changing amounts of

evapotranspiration. There is an increasing body of

evidence that climate oscillations can cause substantial

changes (Nicholson, 1998). For example, El Niño

warming in 1997 led to an increase in rainfall over

East Africa that caused Lake Victoria to rise by c. 1.7

m and Lake Turkana by c. 2 m (Birkett et al., 1999).

The abrupt change in the level of the Caspian (2.5 m

between 1978 and 1995) has also been attributed to

ENSO phenomena (Arpe et al., 2000). Similarly, the

3.7-m rise in the level of the Great Salt Lake (Utah,

USA) between 1982 and 1986 was at least partly

related to the record rainfall and snowfall in its catch-

ment during the 1982–1983 El Niño (Arnow and

Stephens, 1990). The enormous changes that occur

in the volume of Lake Eyre result from ENSO-related

changes in inflow, with the greatest flooding occurring

during La Niña phases (Kotwicki and Allan, 1998)

(Fig. 3) such as those of 1949–1952 and 1974.

10.2. Glacier mass balance

The mass balance of glaciers is controlled by rates

of ablation (where temperatures are the major factor)

and accumulation (where precipitation inputs are the

major factor). Other things being equal, hot spells

cause glaciers to retreat, whereas snowy spells cause

them to advance. Thus variation in atmospheric cir-

culation, precipitation and temperature associated

with climate oscillations are of considerable impor-

tance (McCabe et al., 2000).

The positive mass balance (and advance) of some

Scandinavian glaciers in recent decades, notwith-

standing rising temperatures, has been attributed to

increased storm activity and precipitation inputs coin-

cident with a high index of the NAO in winter

months since 1980 (Zeeberg and Forman, 2001;

Nesje et al., 2000). In the case of Nigardsbreen

(Norway), there is a strong correlation between mass

balance and the NAO index (Reichert et al., 2001)

(Fig. 2c). A positive mass balance phase in the

Austrian Alps between 1965 and 1981 has been

correlated with a negative NAO index (Schoner et

al., 2000). Indeed, the mass balances of glaciers in the

north and south of Europe are inversely correlated

(Six et al., 2001) (Fig. 4a and b). Conversely, glacier

retreat in the tropical Andes can be attributed to

increased ablation during the warm phases of ENSO

(Francou et al., 2000). However, further south, in the

southern Andean Patagonia of Argentina, El Niño

events have been found by Depetris and Pasquini

(2000) to lead to increased snow accumulation,

causing glaciers to advance so that they create bar-

riers across drainage, forming glacier-dammed lakes.

It may even be possible to relate the mass balance of

glaciers in Svalbard to heat flux exchanges in the

tropical Pacific Ocean (Washington et al., 2000),

while those of northwestern North America can be

related to the PDO (Bitz and Battisti, 1999; Moore

and Demuth, 2001, and Fig. 4c and d). Glacier mass

Table 3

Examples of geomorphological effects of decadal to century-scale

oscillations

Environment affected Impacts upon

Terrestrial hydrology Glacier mass balance

Lake levels

River flows

Snow cover

Permafrost

Terrestrial geomorphology Soil erosion

Floodplain sedimentation

and erosion

Slope instability/

mass movements

Dune movements

Geochemical sediment growth

Effects on fire frequency with

knock-on effects on weathering,

runoff and slope instability

Coastal/marine ecology Coastal erosion

and geomorphology Mangrove defoliation/land loss

Coral bleaching

Coastal dune activation
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Fig. 3. The flooding of Lake Eyre. (a) Extent of flooding in 1949–1952 (after Bonython and Mason in Mabbutt, 1977, Fig. 54). (b) Estimated

annual inflows to Lake Eyre North for the period 1885–1989 (based on Kotwicki and Isdale, 1991, Fig. 2). Both 1949–1952 and 1974 were

strong La Niña events.

H.A. Viles, A.S. Goudie / Earth-Science Reviews 61 (2003) 105–131114



balances on Novaya Zemlaya, by contrast, have been

found to relate to the NAO.

10.3. Streamflows and sediment yields

ENSO events produce streamflow anomalies, the

global distribution of which has been established by

Arnell (2002) (Fig. 5a) and is largely related to

ENSO-influenced precipitation trends (Peel et al.,

2002, and Fig. 5b). One area where there have been

many investigations of the links between ENSO and

streamflow is in the western United States. There is a

tendency for the southwest to be wet and the north-

east to be dry during the El Niño warm phases

(Negative Southern Oscillation Index), and vice

versa for La Niña (Cayan et al., 1999). There is

some evidence that the effect on streamflow is

amplified over that on precipitation. As Fig. 6a

shows, the recurrence interval of discharge events

in Arizona differs greatly between El Niño and La

Niño years.

A study of sediment yields in southern California

showed that during strong El Niño years, severe

storms and extensive runoff occurred, producing sedi-

ment fluxes that exceeded those of dry years by a

factor of about 5. The abrupt transition from a dry

climate to a wet climate in 1969 brought a suspended

sediment flux in the rivers of the Transverse Range of

100 million tons, an amount greater than their total

flux during the preceding 25-year period (Inman and

Jenkins, 1999). The wet period from 1978 to 1983

caused a significant response on alluvial fans and in

channels in desert piedment areas (Kochel et al.,

1997).

The link between ENSO and stream discharges in

the southwest may have a long history. By reconstruct-

ing a palaeoflood history for catchments in Arizona and

Southern Utah, and comparing this to an extended

chronology of strong El Niño events since AD622,

reconstructed from accounts of Nile River discharges

and El Niño conditions in coastal Peru, Ely (1997) was

able to show that (p. 194) ‘‘The highs and lows in the

average frequency of El Niño events over this time

period parallel precisely the sharp decreases and sub-

sequent increase in the southwestern paleofloods over

the same interval’’.

There has been a long debate in the southwest USA

about the causes of channel entrenchment (arroyo

formation) and aggradation. It is likely, however, that

alternations of drought, which reduce vegetation

cover, and subsequent floods, which cause erosion,

have contributed to these changes in valley bottom

morphology (Bull, 1997). Crucial here, may be fluc-

tuations either side of the peak in the sediment yield

curve of Langbein and Schumm (1958). For that

reason, desert regions may be especially sensitive to

change as effective precipitation varies across the 30-

cm threshold (Kochel et al., 1997). Furthermore, the

nature of vegetation cover can be transformed radi-

cally and studies in Southeast Arizona and Southwest

New Mexico (Brown et al., 1997) have shown that

high winter precipitation since the late 1970s has

caused the density of woody shrubs to increase

three-fold and the grass cover to be reduced. This

has implications for erosive processes. Similarly,

D’Odorico et al. (2001) find that winter rainfall

erosivity patterns in the southwest United States are

related (nonlinearly) to ENSO, with El Niño years

having an erosivity much larger than the average.

Likewise, working on the Rio Puerco catchment of

New Mexico, Molnar and Ramirez (2001) have sug-

gested that increasing vegetation cover during recent

wet decades has altered the rainfall–runoff relation-

ship, so that there has been a decreasing trend in

maximum runoff events.

Investigations have also been undertaken in South

America to assess the links between ENSO, stream-

flow and sediment yields. In Chile (Fig. 6b), the

recurrence interval of peak flows is far higher in El

Niño years compared to normal ones. North eastern

South America (including north equatorial Brazil,

Guyana, Venezuela and Northeast Colombia) has

one of the most consistent ENSO–precipitation rela-

tionships found anywhere, with El Niño events result-

ing in relatively dry periods, and La Niña associated

with high rainfall. Regression of the discharge of the

Magdalena River of Columbia on the Southern Oscil-

lation Index (SOI) shows that 68% of the variability of

the Magdalena streamflow is explained by the SOI.

Sediment load is also correlated with SOI with a

coefficient of variation of R2 = 0.54 (Restrepo and

Kjerfve, 2000). The mean daily sediment yields dur-

ing El Niño and La Niña years are 256 and 511 tons

day� 1, respectively.

Overall, many tropical rivers show reduced dis-

charges during the ENSO warm phase (e.g. The Nile,
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Congo, Amazon, Lake Eyre basin). This may be

attributable to global-scale subsidence associated with

the major upwelling in the eastern Pacific Ocean

(Amarasekera et al., 1997). In central Australia, the

flow regime of Cooper Creek has been found to be

associated with ENSO, with a 48-year hydrograph

Fig. 4. The changing mass balance of glaciers in (a) the European Alps and (b) Scandinavia. Note the inverse pattern (from Goudie, 2001,

window 2.6). (c) Time series of measured and reconstructed mass balances for Pace Glacier, British Columbia, Canada, 1892–2000 (after

Moore and Demuth, 2001, Fig. 7). (d) Time series of Winter PDO and SOI from 1900 to 2000 (Moore and Demuth, 2001, Fig. 3).
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record showing floods clustered in La Niña episodes

(Puckridge et al., 2000).

Links have also been established between the

PDO, NAO and streamflow. In southeast Alaska,

for example, Neal et al. (2002) find that monthly

stream discharge changes with PDO modes. Because

the NAO governs the path of Atlantic-derived mid-

latitude storm tracks and precipitation across the

eastern Mediterranean into the Middle East, this has

a marked impact on the flow of the Tigris and

Euphrates rivers (Cullen and DeMenocal, 2000).

Streamflow links with the Atlantic Multidecadal

Oscillation have been established by Enfield et al.

(2000).

Phases of high sediment yield may themselves

have geomorphological consequences. It has been

Fig. 4 (continued).
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Fig. 5. The effect of ENSO on: (a) Global streamflow anomalies (modified from Arnell, 2002, Fig. 4.25). Areas receiving lower streamflows

during El Niño years are shaded. Areas receiving higher streamflow during El Niño years are outlined with a solid line. (b) Precipitation trends.

Map showing locations of stations in El Niño-influenced zones, having at least 10 years of complete precipitation records and 120 months of

mean temperature (modified from Peel et al., 2002, Fig. 2).
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argued, for example, that Holocene beach ridge

sequences along the north coast of Peru may record

El Niño events that have occurred over the last few

thousands of years. The argument (Ortlieb and

Machare, 1993) is that heavy rainfall causes excep-

tional runoff and sediment supply to coastal rivers.

This, combined with rough sea conditions and ele-

vated sea levels, is potentially favourable for the

formation of beach ridge sequences. The high sea

levels caused by El Niño, often amounting to 20–30

cm, can contribute to washover of coastal barriers

(Morton et al., 2000).

11. Terrestrial geomorphological impacts

11.1. Slope instability

Heavy rainfall events associated with ENSO phe-

nomena can cause slope instability, as happened

during the 1997–1998 El Niño event in Kenya

(Ngecu and Mathu, 1999) and indeed widely across

South America, East Asia and East Africa (West-

erberg and Christiansson, 1999). Some of the most

distinctive landslides in the southwest of the USA

have occurred during El Niño events, and they can

be especially serious if the heavy rainfall events

occur on slopes that have been subjected to fires

associated with previous drought episodes (Swetnam

and Betancourt, 1990). Fig. 7 shows the distribution

of damaging landslides resulting from the 1997–

1998 El Niño in the San Francisco Bay area of

California. In the same region, monitoring of the

Penitencia Creek landslide in Santa Clara County

revealed that during four ENSO events (1986–1987,

1993, 1994 and 1997–1998), landslide creep rates

accelerated from a long-term mean of 3–17 to 10–

39 mm per year for periods of 5–11 months (Nelson

and Tepel, 1999).

On the other hand, exceedingly wet years can in

due course cause a great increase in vegetation cover

on slopes that may persist for some years and so create

more stable conditions. On the arid islands of the Gulf

of California, for example, plant cover ranges from

0% to 5% during ‘normal’ years, but during rainy El

Niño periods, it rises to 54–89% of the surface

available for growth (Holmgren et al., 2001). Wet

ENSO events can provide rare windows of opportu-

nity for the recruitment of trees and shrubs. Such

woodland can be resilient and, once established, can

persist.

In the Atacama of South America, Grosjean et al.

(1997) found evidence for more than 30 debris flow

events triggered by heavy rains and suggested a link

with ENSO. Likewise, Vargas et al. (2000) related

twentieth century debris and mudflows (aluviones)

near Antofagasta to El Niño events. Similarly, Trauth

et al. (2000) have suggested that there is an ENSO

Fig. 6. Examples of changing return periods of river flows in

response to ENSO. (a) Flood frequencies of the Salt River, AZ,

USA, 1925–1988 (modified from Caya and Webb, 1992, Fig. 3.11).

(b) Flood frequencies for the Aconcagua River, central Chile

(modified from Waylen and Caviedes, 1990).
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control of landslides in the eastern Argentine cordil-

lera. High rainfall events have caused accelerated

undercutting of valley side slopes along deeply

incised, narrow valleys together with increased pore-

water pressures.

Over time, the relations between climatic varia-

bility and mass movements may change. Trustrum et

al., (1999) have examined over 2000 years of change

within the Tutira catchment, North Island, New

Zealand and found that before European settlement,

Fig. 7. The locations of damaging landslides (black dots) in the San Francisco Bay area of California resulting from the 1997–1998 El Niño

rainstorms (modified from Godt and Savage, 1999, Fig. 1).
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La Niña phases were associated with high rainfall

storms and major landsliding. After European forest

clearance, landsliding increased by an order of mag-

nitude.

11.2. Droughts, dust and dunes

ENSO can be associated with intensified drought

conditions and so can influence the activity of dust

storms and of dunes, particularly in areas which are at a

threshold for dust entrainment or dune activation. Such

areas will be those where in wet years there is just

enough vegetation to stabilise ground surfaces. Moulin

et al. (1997) have shown that the NAO is an important

control of the export of dust from the Sahara to the

North Atlantic and the Mediterranean Sea. This control

is affected both through changes in precipitation and in

atmospheric circulation. In the USA, dust emissions in

the period 1983–1984 were greatly reduced following

the heavy rainfall of the 1982 El Niño (Lancaster,

1997). Likewise, Forman et al. (2001) have recon-

structed the history of dunemovements in theHolocene

in the USA Great Plains. They have found that phases

of dune activity have been associated with a La Niña-

dominated climate state and weakened cyclogenesis

over central North America.

The extent of the Sahara has shown considerable

interannual variability as determined by remote sens-

ing observations since 1980. The greatest annual

north–south latitudinal movement of the southern

Sahara boundary was 110 km between 1984 and

1985 and resulted in a decrease in desert area of

724,000 km2 (Tucker et al., 1991). About 75% of

the interannual variation in the Sahara’s area can be

accounted for by the combined effects of the NAO

and ENSO (Oba et al., 2001).

11.3. Weathering and chemical sedimentation

Recent work using Rb/Sr ratios in lake sediment

from a watershed in northern China has shown dec-

adal and century scale variability in chemical weath-

ering rates since the early sixteenth century which can

be related to changes in air temperature and precip-

itation (Jin et al., 2001). Low rates of chemical

weathering are associated with cold but wet phases.

Similar fluctuations in chemical sediments in the form

of speleothem have also been found to relate to

changes in climate at the decadal scale. Growth of a

stalagmite from Anjohibe Cave, Madagascar, for

example, indicates a good correlation with SOI

(Brook et al., 1999). Fluctuations in tufa deposition

rates in streams and around springs, may also be

related to such climatic variability, although no

detailed studies have yet been made of this. Alter-

ations in both weathering and chemical sedimentation

rates can have huge importance for geomorphology, in

either providing or storing erodible material.

12. Coastal and marine impacts

12.1. Coral reefs

Coral bleaching, which can produce mass mortality

of corals in extreme cases, has been found to be

strongly correlated with elevated water temperatures

and high UV solar irradiance (e.g. Brown, 1997;

Spencer et al., 2000). Although bleaching itself is a

complex phenomenon to which corals can respond in a

variety of ways (Brown et al., 2000; Fitt et al., 2001;

Loya et al., 2001), ENSO-related heating, cooling and

migrations of ocean water masses have been found to

be important controls of mass bleaching episodes

(Spencer et al., 2000). For example, in 1998, sea

surface temperatures in the tropical Indian Ocean were

as much as 3–5 jC above normal, and this led to up to

90% coral mortality in shallow areas (Wilkinson et al.,

1999; Reaser et al., 2000; Edwards et al., 2001).

McClanahan (2000) notes that warm conditions of

between 25 and 29 jC favour coral growth, survival

and species richness, and that somewhere above 30 jC,
there are species-, environment-, or regionally specific

thresholds above which many of the dominant coral

species are lost. As Fig. 8 shows, many previous

bleaching events in the Indian Ocean can be correlated

with El Niño events. As Hoegh-Guldberg (1999),

Souter and Linden (2000) and others have suggested,

continued warming trends superimposed on interan-

nual and decadal patterns of variability are likely to

increase the incidence of bleaching and coral mortality

unless significant adaptation to increased temperatures

occurs.

Individual ENSO-related bleaching events may

have quite different manifestations. For example,

Glynn et al. (2001) report on the different patterns
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of sea surface temperatures and bleaching response

in Panama and Ecuador during the 1982–1983 and

1997–1998 El Niño events, and similar complex

responses were noted from reefs on the Pacific coast

of Colombia by Vargas-Angel et al. (2001). Coral

reefs may take a long time to recover from such

serious episodes of mortality, with Wilkinson et al.

(1999) indicating that fast-growing, shallow-water

corals may take 5–10 years to recover, whereas

slower growing, deeper water corals may take 25–

50 years to recolonise. Several studies indicate that

climatic variability may have long-term impacts on

coral growth rates. Dunbar et al. (1994), for exam-

ple, illustrate from the Galapagos how, over decadal

and centennial scales, coral growth rates may show

considerable variation (from 5 to 22 mm per year).

Such trends can be related to climatic variability, as

Bessat and Buigues (2001) find in records of calci-

fication of massive corals from Moorea (French

Polynesia) over two centuries, which appear to

reflect ENSO dynamics and may also reflect PDO

patterns (see Fig. 9).

12.2. Coastal erosion

ENSO and other manifestations of climatic varia-

bility can produce clusters of storm events which in

turn may lead to periods of intense coastal erosion

(Dingler and Reiss, 2001). California, for example,

experienced severe winter storms during the El Niño

of 1982–1983 which produced high rates of coastal

erosion. Comparisons between the effects of the

1982–1983 and 1997–1998 events show that the

earlier event was more destructive, because of a

combination of oceanographic and human factors. In

1982–1983, large wave events coincided with more

southerly and higher velocity winds, as well as high

tides. In 1997–1998, the largest waves occurred at

lower tides, with lower wind speeds (Storlazzi et al.,

2000). Similar erosive effects were observed in the

1997–1998 El Niño event along many parts of the US

West Coast. Allan and Komar (2002) discuss the

nature and erosive impacts of storms in both the

1997–1998 El Niño and 1998–1998 La Niña epi-

sodes along the Pacific northwest coast of the USA.

Fig. 8. Coral bleaching events from the Indian Ocean and their relation to ENSO intensity by season (modified from NOAA, 1998 and Spencer

et al., 2000, Fig. 13).
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Fig. 9. (a) Time series of calcification (density� extension) in a massive coral head from Moorea Island, French Polynesia (after Bessat and

Buigues, 2001, Fig. 3). Thick line represents data smoothed with a 10-year filter. (b) ENSO (from Fig. 1c) and (c) PDO (from Fig. 1d).
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Extreme high water levels in these ENSO-related

storm episodes led to rapid erosion on the coasts of

Oregon and Washington.

Such episodic change can occur in tandem with

longer term erosive trends as seen, for example, along

the Pacific barrier island coast of Colombia. Here,

beach erosion has been noted since 1970 and was

accelerated by subsidence following an earthquake in

1991. The 1997–1998 El Niño event produced accel-

erated erosion and migration of inlets (Correa and

Gonzalez, 2000). In a very different setting, analysis

of storm surge events in New Zealand over the latter

part of the twentieth century found relations with the

IPO and ENSO. Larger and more frequent storm

surges occurred during the period from 1960 to

1976, with reduced frequency and magnitude after

1976 (De Lange and Gibb, 2000). Although many

studies have shown that periods of increased stormi-

ness cause a large amount of coastal erosion and

change, it is not always possible to relate increases

in coastal storminess to specific modes of climatic

variability. Camuffo et al. (2000), for example, failed

to find any link between storminess in the Adriatic

and Western Mediterranean over the last millennium

and either ENSO or NAO.

13. Climatic variability and geomorphic ideas

As well as impacts on individual geomorphic

processes and landforms, recent developments in

our understanding of modes of interannual, decadal

and multidecadal scale climatic variability and their

geomorphic impacts have considerable importance

for how we understand geomorphic change in gen-

eral. However, at the outset, we have to remember

that climate is not the only control of geomorphol-

ogy, and not leap to construct a new geomorphic

paradigm based on climatic variability at all scales (a

sort of climatogenetic geomorphology for the 2000s).

Many geomorphic systems, such as gullies, change

not only as a result of external (climatic or tectonic)

forcing, but also because of internal adjustments

(Brunsden, 2001). Despite these caveats, the known

impacts of climatic variability have many implica-

tions for geomorphology.

If climatic events (such as droughts and storms)

are sometimes clustered into longer term groups as a

response to ENSO and other modes of variability,

then their impacts may vary not simply in relation to

their size, thus complicating any simple magnitude

and frequency relationship. Instead, storms of similar

magnitude coming immediately after other storms

may have much less geomorphic effect than those

which occur in isolation (as all the geomorphic work

will have been done by the preceding storms).

Alternatively, long clusters of storms may have a

compound, more serious geomorphic effect than

would the same number of events operating in

isolation. Such ideas of the importance of timing

as well as magnitude and frequency have been

employed by Richards (1999) and others for some

time as a critique of the magnitude and frequency

ideas of Wolman and Miller (1960). Indeed, ideas of

persistent periods of wet and dry climatic conditions

date back to the Hurst effect identified in 1950 (as

discussed by Kirkby, 1987). However, our improved

knowledge of the range of modes of climatic varia-

bility and their geomorphic roles improves our

ability to understand the importance of sequence

and position. Starkel (1999) presents a hierarchy of

time units of relevance to geomorphology with

events (days to months), clusterings (years to deca-

des), phases (centuries to millennia) and stages (tens

to hundreds of millennia). Climatic variability is one

key cause of clusterings in this system. Identification

of modes of climatic variability occurring at the

decadal scale way back into the Holocene and earlier

may help to test the effectiveness of different events

within real event histories, and also to test the role of

clusterings within the broader sweep of geomorpho-

logical explanation. However, there is some danger

of circularity here, as geomorphic indicators are

often used as tools to reconstruct the palaeoclimatol-

ogy of ENSO and other modes of variability and so

care needs to be taken in interpretations.

Fig. 10. Representations of the impacts of climatic variability on geomorphic systems. (a) Stress-response sequences including thresholds under

stable and changing climate conditions (adapted from Brunsden, 2001, Fig. 1). (b) A simplified view of the biogeomorphic response model

(adapted from Knox, 1972 and Roberts and Barker, 1993, Fig. 6.1). (c) A model of the possible interactions of different time scales of warming

and their impact on coral bleaching (adapted from Williams and Bunkley-Williams, 1990 and Viles and Spencer, 1995, Fig. 6.11).
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ENSO and other modes of climatic variability, as

has been pointed out by Douglas et al. (1999) in terms

of their effects on geomorphology and ecology in the

Danum Valley, Sabah, can produce a form of punc-

tuated equilibrium in the landscape. Alternating peri-

ods of high geomorphic change (rhexistasie) followed

by periods of stability in ecosystem and geomorphol-

ogy (biostasie) seem to have occurred in the recent

past at Danum Valley as a response to the changing

rhythm of ENSO. Although the concepts of biostasie

and rhexistasie are not new to geomorphology [hav-

ing been introduced by Erhart (1956) and utilised by

Knox (1993, 2001) amongst others], the recent dis-

coveries of yet more modes of climatic variability,

often with complex temporal rhythms, affecting large

areas over long time spans make them ever more

relevant. These ideas can also be linked to notions of

complex response in the landscape (Brunsden, 2001),

if we visualise change as a wave pulsing through a

patchy landscape with different areas possessing var-

ied resistances to change. Thus, decadal climatic

variability may set off a pulse of activity resulting in

a complex landscape response. The impacts of cli-

matic variability on ecological and geomorphic sys-

tems may be nonlinear, as recently found for rainfall

erosivity and ENSO in the SW USA (D’Odorico et

al., 2001) and the NAO and wild and domestic

herbivores (Mysterud et al., 2001).

Several of these ideas on the clustering of events

and complex responses to them can be presented as

conceptual diagrams. Fig. 10a indicates in a general

way how clusters of climatic events can produce

variable overtopping of geomorphic thresholds,

although it represents a simple linear view of geo-

morphic response which may be an oversimplifica-

tion for many geomorphic systems. Fig. 10b

illustrates how complex chains of linkages between

climatic, vegetation and geomorphic processes pro-

duce a complex geomorphic response, and Fig. 10c

provides a simple conceptual model of the syner-

gistic associations between different scales of

warming producing coral bleaching. Such concep-

tual diagrams provide a useful starting point for

analysing the relationships between climatic varia-

bility and geomorphology as a prelude to more

detailed empirical and computational studies.

A number of recent studies have used a combi-

nation of empirical data and computer modelling to

investigate system dynamics, and to try and sepa-

rate the role of climatic and other forcing factors.

The study by Dearing and Zolitschka (1999) of the

behaviour of a catchment–lake system from Ger-

many over a 10,000-year period is a good example.

At different times, the system has behaved differ-

ently, because of changes in system dynamics as well

as in forcing factors (climate change and human

impacts). However, human impacts, such as defores-

tation, seem to have been responsible for major shifts

in sediment delivery during the Holocene. Coulthard

et al. (2000) have developed a cellular automaton

model to investigate the relative impacts of climatic

change and human activity on sedimentation in a

limestone upland catchment. Although climatic insta-

bility was found to have a slightly greater impact

when the factors were treated individually, the two

factors combined to produce a much greater overall

effect. The conclusion is that the river system here is

‘‘. . .climatically driven, but culturally primed’’

(Coulthard et al., 2000, p. 2044). Such methods

may prove useful to geomorphologists in trying to

untangle the effects of decadal climatic variability on

the landscape.

However, geomorphologists have long debated

whether it is possible meaningfully to untangle the

different roles of the various external forcing factors

(climate, tectonics and human activity) and internal

factors (thresholds) in causing geomorphic response.

Increasingly, many geomorphologists have come to

suspect that this is a very difficult task because of

the nonlinear, chaotic and complex behaviour of

geomorphic systems. Recent work on the far-from

equilibrium nature of the global system and its

propensity for abrupt change (see the review by

Lockwood, 2001) comes to similar conclusions

about the climatic system, echoing ideas about

ecological systems (e.g. Pahl-Worstl, 1995). Follow-

ing these lines of argument, climatic variability

acting on different temporal scales (e.g. glacial–

interglacial cycles, the Little Ice Age and ENSO)

cannot simply be disaggregated to different layers

in a hierarchy. So, identification of links between

non-linear climatic, ecological and geomorphologi-

cal systems should lead us to search for increased

understanding of their mutual interactions and

behaviour, not to use parts of them in simple

cause–effect relationships.
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Finally, improved conceptualisation of the

impacts of decadal scale climatic variability on

geomorphology can only help aid the quality of

our predictions of the impacts of future climate

change on geomorphological processes. It is no

longer good enough to conceive of future change

as being smooth and progressive; from all the

evidence presented in this paper, it is clear that

variability and clustering of events in time and

space will be an important part of the geomorphic

future. Furthermore, our increased understanding of

the nature of decadal climatic variability means that

we should be in a better position to understand the

possibilities and limitations of extrapolating short-

term process observations. If, for example, data on

coastal erosion rates is collected during particular

phases of the NAO in northern Europe, it should be

extrapolated with care to longer periods containing

other NAO behaviour.
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Erhart, H., 1956. La genèse des sols en tant que phénomène géo-
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