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Hydrogen isotope exchange kinetics between H2O and H4SiO4 from ab initio calculations
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Abstract—Hydrogen isotope exchange between water and orthosilicic acid (H4SiO4) was modeled using
B3LYP calculations and classical transition-state theory. Configurations of 1, 2, 3 and 7 water molecules and
H4SiO4 were used to investigate energetically viable reaction pathways. An upper-bound of 71 kJ/mol was
assumed for the zero-point energy corrected barrier (ZPECB) because this is the experimentally determined
activation energy for Si-O bond breaking (Rimstidt and Barnes, 1980) and ZPECB is expected to be close to
this value. Long range solvation forces were accounted for using the integral equation formalism polarized
continuum model (IEFPCM; Cance`s et al., 1997). Primary and secondary isotope effects were computed by
exchanging hydrogen atoms with deuterium. Results show that reaction mechanisms involving 3 and 7 water
molecules have ZPECB of 34 to 38 kJ/mol, whereas those involving 1 and 2 water molecules have ZPECB
in excess of the set upper-bound. The lower range of ZPECB with 3 or 7 water molecules is reasonable to
explain rapid hydrogen isotope exchange with silicates. Rate constant calculations accounting for tunneling,
anharmonicity and scaling factors indicate that the reaction is fast and equilibrium can be assumed under most
geologic conditions. Copyright © 2003 Elsevier Science Ltd

1. INTRODUCTION

1Isotope geochemists frequently make either the explicit or
implicit assumption that the species in solution undergo isotope
exchange with water on time scales much shorter than the time
scales of fluid transport or fluid rock exchange. This assump-
tion allows the use of the isotopic composition of precipitates
from water and species bound within the lattice structure of
silicates as proxies for the isotopic fluid phase provided that the
isotopic fractionation between the phase of interest and the
fluid phase is known (e.g., Lasaga and Rye, 1993; Jenkin et al.,
1994; Brandriss, 1998; Cole, 2000; Gotze, 2001; Jia et al.,
2001). We have known for a long time that this assumption
breaks down for a number of geologically relevant systems,
such as isotopes of oxygen in phosphates and sulfates (Lloyd,
1968; Longinelli and Nuti, 1968; Blake et al., 1997; Lecuyer et
al., 1999). We can therefore envision two end member cases
that can exist for isotopes of dissolved species in general. At
one end of the spectrum, the isotopes can reflect the solution
water, and at the other end of the spectrum they can reflect their
source. In between, isotopes can take part in a number of
competing reactions and can contribute to a dynamic process
controlled by the rates of the competing reactions.

Making direct measurements of isotopic species in solution
is difficult at best. As a consequence we have embarked on a
series of ab initio calculations to determine both the magnitude
of isotopic fractionations and the rates of isotopic reactions
between fluids and species in solution. Ab initio numerical
simulations of exchange reactions provide an alternative, direct
and independent means to elucidate the mechanisms of reac-
tions. Results derived from such calculations have gained wider
acceptance recently in different fields of chemistry as well as in
industry due to their proven predictive power (See Cygan and

Kubicki, 2001 for a review). In the first of these papers, we
consider the hydrogen isotopic exchange between silicic acid
and water. We expect the rates to be fast and the acid to reflect
the water directly. Nevertheless, without the carrying out this
“experiment” there can be no certainty that this expectation is
true. This undertaking could have profound implications on our
understanding of any reaction that involves the hydrogen on the
silicic acid directly. It should be emphasized though that hy-
drogen atoms bound within the lattice structure of silicates
possibly have various origins, such as dissolved species, hy-
drogen bearing minerals and water. Thus, finding the rate of
hydrogen isotope exchange between orthosilicic acid and water
mainly tells us about orthosilicic acid composition with time
and not incorporated hydrogen isotopes directly.

The isotopes of hydrogen,1H (protium) and 2H (or D,
deuterium), are used extensively in studies where water either
interacts with rock material or evolves from a source body
(Shieh and Taylor, 1969; Taylor, 1974; Taylor, 1979; Taylor
and Forester, 1979; Campbell et al., 1984; Ohmoto, 1986).
These isotopes, along with isotopes of other elements such as
oxygen and carbon, are used to characterize different types of
water, water-to-rock mass ratios, and fluid travel times (see
Valley, 1986). As a result, there is a wealth of information on
the fractionation of hydrogen isotopes between H-bearing min-
erals and water (Taylor, 1979; Dobson et al., 1989) and new
methods are actively being developed to extract these informa-
tion (Vennemann and ONeil, 1996; Chacko et al., 1999; Xu and
Zheng, 1999). In contrast, geochemical studies regarding the
rates and mechanisms of isotopic (or even simply atomic)
exchange are rare (Gregory et al., 1989; Lecluse and Robert,
1994; Guo and Qian, 1997; Krishnamurthy and Machavaram,
1998; Xu and Stebbins, 1998; Casey et al., 2000; Cole, 2000;
Faiia and Feng, 2000). In fact, we have not been able to find a
single study on the kinetics of H-isotope exchange between
water and aqueous silica. This may be due to the fact that
H-isotope exchange rates are likely to be fast compared to most
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geochemical processes and the fact that silica is sparingly
soluble in water under ambient conditions.

Hydrogen exchange-reaction mechanisms between water
molecules and various compounds have been the subject of
numerous recent ab initio molecular modeling studies. The
transferability of protons in water itself has been the focus of
considerable effort (e.g., Luth and Scheiner, 1992; Lobaugh
and Voth, 1996; Geissler et al., 2001). These are closely related
to studies dealing with water clusters (Khan, 1999; Hodges and
Stone, 1999) and investigations of proton transfer mechanisms
from inorganic acids such as acid halides to water (Ando and
Hynes, 1997). In addition, a series of modeling studies have
been conducted (Casey et al., 1990; Lasaga, 1992; Xiao and
Lasaga, 1994) recently which focus on hydrolysis of T-O-T
linkages and dissolution of silica or aluminosilicates. Proton
transfer between H2O or H3O� is a critical step in each of these
studies. The objective of this study is to investigate the mech-
anism of hydrogen exchange (i.e., proton transfer) between
orthosilicic acid and water and quantify the order of magnitude
of the rates. From the conclusions on the mechanism and
kinetics of isotope exchange in H4SiO4 and H2O, inferences
can also be drawn on the exchange of hydrogen isotopes
between silica surfaces and water because silanols (Si-OH) are
involved in both cases.

2. THEORY

In this study, we make use of the concepts of classical
transition-state theory (TST) and potential energy surfaces cal-
culated with molecular orbital (MO) theory. The method that
makes use of the combination of these two theories will be
referred to as MO-TST. We shall briefly discuss the salient
points of these two theories, especially as they relate to the
reaction kinetics of isotope exchange.

Consider the hypothetical elementary exchange reaction in
the condensed phase

H4SiO4 � DOHN �Transition State� N H3DSiO4 � HOH

(1)

wherein the isotope exchange reaction is treated as a unimo-
lecular structural isomerization event (i.e., no collision or dif-
fusion of the reactants necessary). This assumption is justifiable
for solutes exchanging isotopes with H2O in aqueous solution,
because, in this case, the H4SiO4 solute is at all times sur-
rounded by H2O solvent molecules (e.g., Shmulovich et al.,
2001). Furthermore, experiments and molecular dynamics sim-
ulations show that liquid water consists of hydrogen bonded
clusters of H2O (Stanley and Teixeira, 1980; Gregory et al.,
1997; Mishima and Stanley, 1998) and therefore clusters of
several water molecules are abundantly available. If we approx-
imate the system by a harmonic oscillator treatment, the TST
rate constant for this reaction can be given by (Eyring, 1957 see
Lasaga, 1981; 1998)

kf �
kBT

h

Q‡

QH4SiO4�DOH
exp����o

kBT �
�

kBT

h

�qvibqelec�
‡

�qvibqelec�H4SiO4�DOH
exp����o

kBT � (2)

for the forward direction, where kB is Boltzmann’s constant, T
is the temperature, h is Planck’s constant, Qi are generalized
partition functions (McQuarrie, 1973), the superscript‡ refers to
the transition state, ��o is the difference of zero-point energies
between the reactant and the transition state, qvib and qelec are
partition functions for vibrations and electronic states, respec-
tively. The rate constant for the reverse reaction can analo-
gously be rendered. In general, the TST rate constant is mean-
ingful if the frequency of adsorption of water to silicic acid and
the diffusion and transport of water to orthosilicic acid are not
rate limiting. Studies have shown that there are no potential
energy barriers in the formation of H-bonds in water (Odutola
and Dyke, 1980; Rybak et al., 1991; Rodriguez et al., 1999) and
adsorption of H2O onto H4SiO4 (Lasaga and Gibbs, 1990; Xiao
and Lasaga, 1994; Pelmenschikov et al., 1997). Hence, if the
isotope exchange occurs at a fast enough rate as we expect it to
be, then the rate limiting process is the diffusion and transport
of water.

In our unimolecular treatment, the relative translations and
rotations between the water and orthosilicic acid units are
omitted and instead are accounted for as vibrations (i.e., all
internal degrees are partitioned to vibrations). By invoking the
known values of the classical partition functions (e.g., McQuar-
rie, 1973), the rate constant for Eqn. 2 can be simplified to

kf �
kBT

h �
i

3N�6

�1 � exp��h�i/kBT��

� �
i

3N�7�1 � exp��h�i
‡/kBT���1

exp� � �Eo

kBT � (3)

which we shall refer to as the absolute rate constant (ARC)
equation. We remind the reader that this is not the rate of the
reaction but the rate constant (i.e., where Rate � kf[A] for a first
order reaction). Here, vi are vibrational frequencies and N is the
number of nuclear centers. The ZPECB, which is denoted by
�Eo, are computed using the zero-point energies of the transi-
tion state and the reactant, and their calculated potential ener-
gies

�Eo � �‡ � �o
‡ � �rct � �rcto � �‡ � �rct � ��o. (4)

The potential energies of the transition-state and reactants, �‡

and �rct, are taken from the potential energy surface (PES);
whereas, the zero-point energy corrections, �o

‡ and �rcto, are
obtained by performing summations over the normal-modes
(from frequency calculations; see Foresman and Frisch, 1996)
on the transition-state and reactant configurations, that is,

�o
‡ � �

i

1

2
h�i

‡ �rcto � �
i

1

2
h�rcti (5)

where vi
‡ and vrcti are vibrational frequencies of the transition

state and reactants respectively.
We may therefore evaluate the forward and reverse rate

constants, kf and kr, using Eqn. 3 by considering the forward
and reverse reaction if we know the configurations and energies
of the reactants, products and the transition states. These con-
figurations can be computed using ab initio calculations. In this
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study, a density functional theory (DFT; Hohenberg and Kohn,
1964; Kohn and Sham, 1965) method with a hybrid functional
is utilized to determine the potential energy surfaces (Foresman
and Frisch, 1996). DFT calculations are useful for taking elec-
tron correlation into account without dramatically increasing
the computational time.

The rate constants computed using the unimolecular har-
monic oscillator model assumption, and hence ARC (Eqn. 3),
may be used as a baseline in evaluating the accuracy of the
model. We use this approach by way of necessity: while there
may be spectra for some of the vibrational modes of our
reactants and products, it should be pointed out that transition
states are merely theoretical constructs by definition and there-
fore we do not expect spectra for these to be available. We shall
however address errors in the vibrational modes through scal-
ing factors. We evaluate the accuracy of the reference unimo-
lecular harmonic oscillator model rate constants by comparing
them with rate constants that account for quantum tunneling
effects, scaling factors, and anharmonicity. We explore en-
hancements using an implicit solvation model, which we de-
scribe in the Methodology section below. Furthermore, we
attempt to evaluate the DFT method by comparing it with
results from the second-order Møller-Plesset (MP2) method.

For light atoms such as hydrogen and its isotopes, quantum
tunneling effects may be appreciable. These corrections to the
rate constant are in the form of a correction factor � such that

kf,corr � �kf (6)

where kf,corr is the corrected rate constant. There are various
suggested expressions for �, the simplest and most common
being the first order Wigner treatment (Wigner, 1937)

� � 1 �
1

24
� h�‡

kBT
� 2

(7)

where �‡ is the imaginary vibrational frequency at the saddle
point. This correction assumes a parabolic potential surface at
the saddle point, and is only valid if certain conditions are
satisfied. First, the contributions to tunneling must only come
from the saddle point region of the PES where transverse
modes do not vary appreciably. Second, the PES curvature
should also be that of a concave down parabola (Truhlar et al.,
1985). Third, the calculations should be at reasonably high
temperatures, (e.g., 	 298K) (Truong, 1997). Calculations on
some gas phase systems have shown that Wigner tunneling
corrections underestimate the rate constants at low tempera-
tures (Truong, 1997).

A more sophisticated expression of � assumes an Eckart
potential surface (Eckart, 1930). The tunneling correction is
given by

� � � 1

kBT� �
��Eo,f




P�E�exp��E/kBT�dE (8)

where the tunneling probability P(E) may be given by (Miller,
1979)

P�E� �
sinh�a�sinh�b�

sinh2�a � b

2 � � cosh2�c�

(8a)

and the parameters a, b, and c are given by

a �
4�

hv‡

�E � �Eo,f�
1/ 2

�1/�Eo,f
1/ 2� � �1/�Eo,r

1/ 2�
(8b)

b �
4�

hv‡

�E � �Eo,r�
1/ 2

�1/�Eo,f
1/ 2� � �1/�Eo,r

1/ 2�
(8c)

and

c � 2���Eo,f�Eo,r

�hv‡�2 �
1

16� (8d)

The subscripts “ f” and “r” are used to indicate the forward
and reverse reaction ZPECB and E is a dummy variable for the
energy in the integral. The integral is readily solved by numer-
ical integration. Calculations on some gas phase systems show
that Eckart tunneling corrections overestimate the rate constant
at low temperatures (Truong, 1997). We use the Wigner and
Eckart tunneling corrections as indicators of the order of mag-
nitude that tunneling might contribute to the rate constant.

It has been demonstrated that the vibrational frequencies and
zero-point energies systematically vary with the MO method
and that scaling factors need to be incorporated for frequencies
and zero-point energies to be comparable with empirical data
(Pople et al., 1993; Scott and Radom, 1996). These scaling
factors express themselves as coefficients to the vibrational
frequencies and concomitantly the zero-point energy correc-
tions. We treat these scaling factors as generalized errors of the
harmonic oscillator approximation. This is a convenient way of
accounting for the vibrational errors without individually treat-
ing the vibrational modes.

A critical assumption in the evaluation of rate constants
using Eqn. 2 is that the system can be modeled by a set of
independent harmonic oscillators corresponding to the normal
modes; this simplification is for practical purposes, and whether
this is a valid assumption is debatable. (The true test of its
validity is its agreement with empirical data.) In theory, several
enhancements could be performed but these require parameters
and constants (anharmonicity constants, centrifugal distortion
constants, rotation-vibration coupling constants, etc.; see Mc-
Quarrie, 1973) that are unavailable for our system of interest.
We explore potential errors introduced by the harmonic oscil-
lator treatment by comparing it with results using the anhar-
monic oscillator partition function. Recall that in Eqn. 2

qvib � �
i

3N�S

qvib,i � �
i

3N�S

�1 � exp��h�i/kBT���1 (9)

where S � {6 for a minimum; 7 for a transition state}. The
anharmonic oscillator partition function qanh is similarly given
by (Houston, 2001)

qanh � �
i

3N�S

qvib,i�1 �
h�i	i

kT �1

4
� 2qvib,i

2 �� (10)

where �i�i are the anharmonicity constants. Substituting qanh
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for qvib in Eqn. 2 will yield rate constants within the unimo-
lecular anharmonic oscillator assumption.

In many cases, it is worthwhile to relate computed kinetic
parameters to measured thermodynamic quantities. For exam-
ple, the equilibrium constant for an elementary reaction can be
evaluated using the principle of microscopic reversibility (On-
sager, 1931)

Keq �
kf

kr
(11)

Note that Keq is an entirely thermodynamic entity and the
transition state contributions in the form of partition functions
are cancelled out in Eqn. 11. However, we can deduce an
important aspect of the reaction kinetics by evaluating Keq. If
Keq does agree with experimental data, then this strongly sug-
gests that the elementary reaction determined is indeed a full
reaction. However, if it does not, then either the model system
is incorrect, the data used in computing the partition functions
is inaccurate, or the mechanism found is merely part of a
multi-step equilibrium reaction.

Fractionation factors for isotopic exchange reactions (O’Neil
1986) can be computed as well, using the following relation-
ship between 
 and Keq


 � Keq
1/x �

�D

H�
H2O

�D

H�
H4SiO4

�
�H�H4SiO4

�H�H2O

�D�H2O

�D�H4SiO4

� �kr

kf
�

H

� kf

kr
�

D

� � kf

kr
�

D

(12)

where the square brackets represent concentrations of species
in moles/L, the number of isotopes exchanged x � 1, and the
indices D and H refer to the deuterated and undeuterated
reaction. The ratio (kr/kf)H is unity because this is an equilib-
rium constant for a reaction with no net isotopic exchange.
Note that the kf and kr are functions of T, and thus we are able
to evaluate 
(T). Therefore, we may be able to test our calcu-
lations against the 1000ln(
) vs. 1/T and 1/T2 plots prevalent in
isotope geochemistry (O’Neil, 1986).

3. MATERIAL AND METHODS

The ab initio calculations were primarily carried out using gaussian
94 (Frisch et al., 1995) in a DEC Alpha 600au, and in two DEC Alpha
XP1000’s all running Compaq Tru64 UNIX. We have also utilized
gaussian 98 (Frisch et al., 1998) in an Intel Pentium II running Linux
2.1, an Intel Pentium IV running Linux 2.4, and a 48 cpu HP Super-
Dome 9000/800 running HPUX 11.11. A MO-DFT method, in partic-
ular Becke’s three-parameter method (Becke, 1993) with Lee-Yang-
Parr functionals (Lee et al., 1988) or B3LYP, was mainly used to
account for electron exchange and correlation. The reason for using
DFT over other methods such as pure Hartree-Fock theory (HF) is that
DFT considers electron-correlation and is expected to yield more
accurate energetics than HF, which neglects electron correlation. Fur-
thermore, DFT scales more efficiently with the size of the system than
does HF theory or Møller-Plesset (MP) methods such as MP2 to MP5
(Møller and Plesset, 1934; Frisch et al., 1998 and refs. within). The
B3LYP method is an accepted method for the silica-water system for
determining reaction mechanisms (Hoshino and Nishioka, 1999; Walsh
et al., 2000; Pelmenschikov et al., 2001) and thermochemistry (Cival-
leri et al., 1998; Sefcik and Goddard, 2001). Ground state structures

using this method have been shown to be reliable for small molecules
from hydrogen to argon (Janoschek, 2001).

Extended ((d) or (d,p)) and diffuse (�) basis sets, 3–21G(d),
6–31G(d) and 6–31�G(d,p) (Hehre et al., 1972; Binkley et al., 1980;
Gordon et al., 1982), were used to build the singlet state electron
wavefunctions of the molecular configurations. Optimizations were
performed in each of these levels, sequentially in increasing wavefunc-
tion basis set size, using the optimized result from the lower levels as
input for the next higher level.

Systems of H4SiO4 � nH2O (n � 1, 2, 3, 7) were chosen to represent
dissolved silica in water. Inclusion of an increasing number of water
molecules was chosen as a method of testing system size effects and the
role of H-bonding in these model reactions. Note that these H2O
molecules are not all strictly stoichiometric waters of hydration (i.e., n
is not necessarily the coordination number) as described by Shmulov-
ich et al. (2001) but are chance configurations of water molecules
around the H4SiO4. Once a reaction mechanism with reasonably low
ZPECB was found, the next exploration made was explicit hydration.
Therefore, the choices for n are the result of the progress of the study
rather than predetermined at the onset. Explicit hydration was accom-
plished using the addition of a known conformation of H2O clusters
(Gregory et al., 1997; Rodriguez et al., 1999).

Local energy minima within the vicinity of the purported starting and
ending configurations were then sought using standard methods as
outlined by Peng et al. (1994). These potential energy minima corre-
spond to prospective reactants, products and intermediates of the reac-
tions of interest. Having computed the local minima, the first-order
saddle points that link them were then sought. These first-order saddle
points correspond to the transition states of reaction mechanisms and
are similar to energy minima except a slight change along one partic-
ular direction lowers the energy; this one direction is the reaction
coordinate. A full reaction mechanism is defined by a pair of local
minima (reactants, and products or intermediates), and a first-order
saddle point (transition state) linking the two. The process of finding
these stationary points is often referred to as “ full optimization,” and
leads to a “ fully optimized configuration.”

In these calculations, problems such as basis-set superposition errors
(BSSE; Sauer, 1989) and size consistency (Hehre et al., 1986) are
minimal because all energy differences are computed using reactant,
transition-state and product configurations that have the same stoichi-
ometry and very similar geometries. The reactions are treated unimo-
lecularly and the constituent molecules are never treated as isolated
entities. Therefore, these calculations make use of the same basis set
and the same number of basis functions with minimal basis set super-
position differences. Furthermore, corrections suggested in the litera-
ture such as the counterpoise method (Boys and Benardi, 1970) are
only approximate and may in this case overestimate and eventually lead
to a larger error than not making corrections at all (H. B. Schlegel,
private communication).

Note that in our unimolecular treatment, translations and rotations of
reactants relative to each other are treated as vibrations. In other words,
the 3N-6 internal degrees of freedom for energy minima (because all
configurations considered are nonlinear) and 3N-7 internal degrees of
freedom for transition states are all accounted for as vibrations. Since
we are modeling a condensed phase reaction, there may be hindered
rotations and translations for the entire system. However, these are
approximately cancelled out in the calculation of the rate constants
because the angular momenta (and hence, the rotational partition func-
tion) are not expected to change significantly, and the total masses (and
hence, translational partition function) do not change from reactants to
transition state.

The method used to search for the transition states is a combination
of the “ reaction-coordinate approach” (or “constrained optimization” )
(McIver and Kormonicki, 1972; Foresman and Frisch, 1996) and either
the synchronous-transit quasi-Newton method (STQN) (Peng and
Schlegel, 1994), or a Berny optimization (Frisch et al., 1998). The
“ reaction-coordinate approach” is accomplished by constraining one
degree of freedom stepwise, while optimizing the remaining degrees of
freedom. Whenever successful, the reaction-coordinate approach yields
a locus of “partially optimized” points in potential energy space be-
tween the pairs of local minima. An automated procedure, used in
conjunction with gaussian 94 and gaussian 98, was designed to perform
this task. Searches were aborted when the energy difference between
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the constrained configuration and the nearest local minimum, that is the
uncorrected energy barrier, exceeded 71 kJ/mole, which is within the
empirically determined Si-O bond breaking activation energy range
(Rimstidt and Barnes, 1980; Dove and Crerar, 1990; Dove, 1994;
Icenhower and Dove, 2000). (It is assumed that the energy barrier
would be close in value to the experimentally determined activation
energies because the latter are usually determined by performing linear
regressions of -ln(k) versus 1/T plots and getting the slope. Therefore,
what is actually determined experimentally is an activation energy over
a temperature range.) Above the set threshold, H isotope exchange rates
would correlate with O isotope exchange rates because O exchange for
this system would imply an abstraction of an entire OH group.

After determining the locus of points connecting the pair of minima,
a “ transition-state optimization” is performed using the highest energy
point on the locus as the first guess for the STQN or Berny calculation
leading to a “ transition-state optimized” configuration. The resulting
optimized configuration is then checked (1) whether it is a true first-
order saddle point, and (2) whether it is indeed the first-order saddle
point connecting the reactants and products. We shall refer to these as
the “ reaction coordinate criteria.” The first criterion is met when the
computation of the vibrational frequencies for the transition-state leads
to an imaginary vibrational frequency corresponding to the negative
curvature. The second criterion is met when, after following the normal
mode vector corresponding to the negative curvature in its positive and
negative directions using the transition-state as the starting point,
configurations closer to the products and reactants, respectively, are
approached. In other words, the reaction path, beginning with the
transition state, is followed along the two directions of the maximum
energy decrease to determine if the desired reaction is indeed being
followed.

After calculating the three configurations representing reactant, prod-
uct and transition-state, vibrational analyses were performed to correct
for zero-point energies. These calculations assume that the energy
within the system is in the form of vibrations along normal modes. This
is a reasonable approximation for simulations of condensed state reac-
tions (see Drenth and Kwart, 1980).

System solvation was treated in two ways—explicit and implicit
hydration. Explicit hydration is accomplished by adding discrete num-
bers of water molecules to the system. The intention was to simulate the
solvation surrounding the -OH group. An advantage of explicit hydra-
tion is that it elucidates the nature of the H-bonding of water molecules
near the orthosilicic acid OH. (Note that we did not model the solvation
sphere around the entire H4SiO4 molecule, which would be more
realistic but prohibitively time consuming.)

The second level of solvation is implicit using a polarized continuum
solvation model. The numerical method utilized in this study, the
integral equation formalism polarized continuum model (IEFPCM;
Cancès et al., 1997), is a variation of the self-consistent reaction field
(SCRF) methods that surround a solute with a polarizable continuum
with a selected dielectric constant (see Keith and Frisch, 1994). In the
IEFPCM approach, the overall neutral surface between the solute and
the solvent is divided into a number of tesserae with an electric charge.
Polarization of this continuum then occurs as the electron density from
the solute molecule interacts with the surface charge distribution to
lower the energy of the system as a whole. Generally, this is an iterative
process that determines a solute electron density, then a surface charge
distribution, then the solute electron density is re-calculated according
to the new surface charge distribution. These iterations are continued
until a self-consistent solution is found (hence, the terminology, self-
consistent reaction field). The end result is to allow charge stabilization
of the solute compared to a vacuum due to the ion-dipole and dipole-
dipole interactions of the solute with the continuum similar to those in
a solvent. IEFPCM accounts for long-range interactions and has been
shown to be numerically stable (Cancès et al., 1997). The IEFPCM
model neglects the energetics of forming the surface and the SCRF
models in general do not account for specific H-bonds and short range
dispersive interactions, so inclusion of explicit H2O molecule interac-
tions with the solute is desirable.

With the IEFPCM model, the �Eo is replaced by �Eo,solv(T) in Eqn.
3 where

�Eo,solv�T� � �‡
solv�T� � �rct,solv�T� � ��o (13)

and the solvation corrected energies, �‡
solv(T) and �rct,solv(T) are tran-

sition state and reactant energies taken from the solvation corrected
potential energy surface. It should be emphasized that the ZPECB is
�Eo and not �Eo,solv(T). Also, the experimentally determined activation
energies are temperature dependent by definition and is closer in nature
to �Eo,solv(T).

4. RESULTS AND DISCUSSION

4.1. Mechanism and Implications for Kinetic Data

Given our methodology, particular reaction coordinates must
be preselected that represent reasonable initial guesses for the
reaction mechanism. To test that we were not picking an
incorrect reaction coordinate, various constrained optimization
paths were examined.

Parameters chosen to represent the “ reaction coordinate”
include the following: bond lengthening of O-H in H4SiO4;
shortening of the H2O to orthosilicic acid H—O distance; and
shortening of water to water H—O distance, thereby forcing the
former water molecule to become an acceptor of H� from
H4SiO4. The lattermost constrained optimization path produced
the desired H isotope exchange within the preset 71 kJ/mol
upper bound. The first two pathways were abandoned after
surpassing the upper bound. Successfully computed and com-
plete specific reaction mechanisms for the n � 3 and n � 7
systems are illustrated in Figures 1 and 2. The end-members
shown in Figures 1a, 1e, 2a and 2c are energy minima corre-
sponding to reactants and products; the configurations shown in

Fig. 1. Hydrogen isotope exchange reaction mechanism of the
H4SiO4 � 3H2O system at the B3LYP/6–31�G(d,p) level. The reac-
tion involves one step. Si—black, O—grey, H—white.
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Figures 1c and 2b are first-order saddle points corresponding to
transition states. We emphasize that these mechanisms repre-
sent those that were successfully found to have ZPECB much
lower than the activation energy of silica dissolution (Rimstidt
and Barnes, 1980; Dove and Crerar, 1990; Dove, 1994; Icen-
hower and Dove, 2000) and therefore presumably occur faster.
This is under the reasonable assumption that the temperature
dependent corrections to the activation energy are small. The
computed ZPECB and rate constants are presented later.

The computation of specific reaction mechanisms for the n �
1 and n � 2 systems were all aborted because the reaction
coordinate steps for the transition state searches were yielding
relative energies exceeding the set threshold of 71 kJ/mole.
Because all the possible position permutations had not been
exhausted, this failure does not imply that there are absolutely
no specific reaction mechanisms for the n � 1 and n � 2
systems that would have a barrier lower than the set threshold.
These failed results, however, do suggest that explicit hydration
is necessary to model H atom transfer reactions for aqueous
solutions. The mechanism suggested by Kazansky et al. (1978)
for the n � 1 system, where a transition state is formed by
aligning an OH group from H4SiO4 and an OH group from
H2O side-by-side forming two H-bonds (Fig. 3), was among
those mechanisms ruled out as being energetically unfavorable.
The energy decrease due to the formation of a second H-bond
is smaller than the energy increase due to the O atoms drawn
into proximity of one another. Our results also suggest that
water or orthosilicic acid would more readily transfer a proton
to another hydroxyl group rather than share two H-bonds.

In the n � 3 and n � 7 cases, the H� exchange is facilitated
by a Grötthus-type mechanism (Bernal and Fowler, 1933)
wherein several H� ions concertedly transfer to neighboring
molecules effecting an exchange (e.g., see Lobaugh and Voth,
1996). In both cases, this mechanism of transfer was accom-
plished within chains of eight alternating oxygen and hydrogen
atoms forming a ring; the four oxygen and four hydrogen atoms
come from three water molecules and orthosilicic acid. The
exchange reaction involves one step, and the transition-state is
an aquated hydronium-ion species (Figs. 1c and 2b). In the n �
3 case, the forward and reverse reaction processes are almost
exact mirror images of each other, and the energies of the
products and reactants are almost equal. All the transition state
configurations in the study satisfy the first reaction path crite-
rion (i.e., the transition state has one and only one imaginary
frequency. See the Materials and Methods section). Checks for
the second reaction path criterion (i.e., the transition state leads
to both reactants and products by following the vibrational
mode of the transition state that has the imaginary frequency)
were performed for n � 3 at the B3LYP/6–31G(d) level and n
� 7 at the B3LYP/6–31�G(d,p) level. The success in finding
relatively low energy barrier paths for the n � 3 and n � 7
cases strongly suggest that surrounding water molecules are
active participants in the exchange reaction and are not merely
spectators to the reaction. Note that in both cases, three H2O
molecules participate in the reaction, and therefore only the n �
7 case has a true explicit hydration treatment. The transition
states found have a remarkable similarity with zwitter-ions
found by Smith et al. (1999) for the (H2O)8 system and sug-
gests that a zwitter-ion may be found by changing the torsional
angles of specific hydrogen atoms in our configurations. This
possibility is worth looking into in the future since the exis-
tence of these may pose as alternative reaction paths.

The importance of knowing the reaction mechanism is that it
allows the estimation of the isotope exchange reaction rates.

Fig. 2. Hydrogen isotope exchange reaction mechanism of the
H4SiO4 � 7H2O system at the B3LYP/6–31�G(d,p) level. The reac-
tion involves one step. Si—black, O—grey, H—white.

Fig. 3. Transition state configuration proposed by Kazansky et al.,
1978 for hydrogen isotope exchange. Si—black, O—grey, H—white.
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However, there are numerous position permutations of ortho-
silicic acid and multiple water molecules. Therefore, it is ex-
pected that other paths by which isotope exchange occurs
possibly exist. Hence, it is not claimed that the paths described
here are definitely the rate determining ones. We hypothesize,
however, that any competing path should kinetically be faster
than these paths to be significant contributors to the rate; the
paths that we present are therefore perceived to represent lower
bounds to the rate (i.e., the true kf could only be larger or equal
to what we compute).

The mechanisms depicted in Figures 1 and 2 were used to
compute ZPECB and rate constants. From inspection, one can
see that the reactants and products are similar but are not
exactly the same. To illustrate, Figure 4 shows the exchange
schemes used for the two directions in the n � 3 case. There-
fore, each of the reaction mechanisms represents two isotope
exchange reactions, one each for the forward and reverse di-
rections. The slight differences in the reactant and product
configurations affect ZPECB and partition functions. Thus, for
calculations at the highest levels of theory used, the ZPECB
were taken as the arithmetic mean

�Eo �
1

2
��Eo,f � �Eo,r�� (14)

and the rate constants were taken as the geometric mean

k � �kfkr� (15)

where the prime indicates that the appropriate isotopic substi-
tutions have been made (see Fig. 4). Among all types of
averages, the geometric mean (see e.g., Tierney, 1975) was
chosen because it preserves consistency in the kinetic and

Fig. 4. Isotope exchange scheme for investigating isotope effects.
Mechanisms (a) and (b) are the same reaction but in opposite direc-
tions. Odd numbered hydrogen atoms are primary H while even num-
bered ones are secondary H.

Table 1. Zero point energy corrected energies of geometry-optimized configurations and ZPECB in units of hartrees (1 hartree � 2,625 kJ/mole).
Values at 6-31�G(d,p) are arithmetic means.

Reactions
B3LYP

3-21G(d)
B3LYP

6-31G(d)
B3LYP

6-31�G(d,p)
MP2

6-31�G(d,p)

Si(OH)4 � DOD � 2H2O �807.844331 �822.150299 �822.250627 �820.393565
transition state �817.828250 �822.129930 �822.236817 �820.370472
Si(OH)3OD � HOD � 2H2O �817.843723 �822.150177 �822.250510 �820.393666
�Eo forward 0.016081 0.020369 0.013810 0.023093
�Eo reverse 0.015473 0.020247 0.013692 0.023194
Si(OH)4 � DOH � 2H2O �817.840971 �822.147296 �822.247551 �820.390306
transition state �817.824898 �822.126878 �822.233847 �820.367082
Si(OH)3OD � HOH � 2H2O �817.840381 �822.147204 �822.247473 �820.390297
�Eo forward 0.016073 0.020418 0.013704 0.023224
�Eo reverse 0.015483 0.020326 0.013625 0.023215
Si(OH)4 � HOH � 2H2O �817.837626 �822.129337 �822.244339 �820.386902
transition state �817.821690 �822.110079 �822.231237 �820.362658
�Eo forward 0.015936 0.019258 0.013102 0.024244
Si(OH)4 � DOD � 6H2O — — �1127.973522 —
transition state — — �1127.95917 —
Si(OH)3OD � HOD � 6H2O — — �1127.973438 —
�Eo forward 0.014352
�Eo reverse 0.014268
Si(OH)4 � DOH � 6H2O — — �1127.970547 —
transition state — — �1127.956147 —
Si(OH)3OD � HOH � 6H2O — — �1127.970453 —
�Eo forward 0.014400
�Eo reverse 0.014306
Si(OH)4 � HOH � 6H2O — — �1127.942030 —
transition state — — �1127.928377 —
�Eo forward 0.013653
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equilibrium values (e.g., the geometric mean of the equilibrium
constants can be represented in terms of the geometric mean of
the rate constants).

4.2. Zero-Point Energy Corrected Barriers

The ZPECB at different levels of approximation for the
“simple” system, i.e., no implicit hydration, are shown in Table
1 and 2. First- and second-order kinetic isotope effects (i.e., the
influence of isotopes that are participants and spectators rela-
tive to the reaction, respectively) were examined. First-order
effects were evaluated by comparing two reactions such as
exchanging a hydrogen atom directly involved in the reaction
(i.e., the “primary” hydrogen) with deuterium (e.g., Reaction 3
vs. 2 in Tables 1 and 2),

Si(OH)4 � HOH � 2H2O3 Si(OH)4 � HOH � 2H2O (16)

Si(OH)4 � DOH � 2H2O3 Si(OH)3 OD � HOH � 2H2O

(17)

where Eqn. 17 shows the singly-deuterated reaction. Second-
order effects were evaluated comparing two reactions such as
exchanging a hydrogen atom not directly involved (i.e., the
“spectator” hydrogen) with deuterium (e.g., Reaction 2 vs. 1 in
Tables 1 and 2).

Si(OH)4 � DOH � 2H2O3 Si(OH)3 OD � HOH � 2H2O
Si(OH)4 � DOD � 2H2O3 Si(OH)3 OD � HOD � 2H2O

(18)

where Eqn. 18 shows the doubly-deuterated reaction. Errors in
the ZPECB are introduced in the numerical cutoffs used for
convergence of the solutions, and in the harmonic oscillator
assumption for calculating the zero-point energies. Errors for
the latter will be accounted for by scaling factors. Root mean
square deviations arising from numerical errors for the energies
with zero-point energy corrections are less than 10�8 hartrees
(on the order of 10�2 J/mol) and are negligible compared to
other corrections described later.

Computed ZPECB vary but show no apparent trend with the
level of the chosen basis sets for the n � 3 system (Tables 1 and
2). Values in the B3LYP/6–31�G(d,p) level are considered the
best approximations made and would be primarily used in the
following discussion. (We were able to successfully compute
MP2/6–31 � G(d,p) data for n � 3 but not for n � 7. However,
the direction of the equilibrium for ZPECB MP2 data is oppo-
site that of all our other calculations (Table 1) and, as we shall
see later, that of experiments. Hence, we defer the discussion of
the MP2 results to a latter section.)

The ZPECB at this level slightly increase from the n � 3 to
the n � 7 systems (Fig. 5). This slight increase implies a slight
decrease in the rate of exchange as hydration through explicit
addition of water molecules is increased in the model.

In the n � 3 case, the ZPECB in both forward and reverse
directions increase slightly with the exchange of a primary
hydrogen with deuterium (from Eqn. 16 to Eqn. 17). This
increase in ZPECB implies a decrease in reaction rate in both
directions when D is involved, compared to pure H exchange.
From a ZPECB of 34.4 kJ/mole, the energy is elevated to 36.0
kJ/mole for the forward reaction where deuterium is transferred
from water to the orthosilicic acid and 35.8 kJ/mole for the
reverse reaction.

The ZPECB in both the forward and reverse directions
increase with the exchange of secondary hydrogen with deute-
rium (from Eqn. 17 to Eqn. 18). The reverse reaction is still
slightly favored with the exchange of secondary hydrogen with
deuterium.

In the n � 7 case, the replacement of primary hydrogen with
deuterium (from Reaction 6 to 5 in Table 2)

Si(OH)4 � HOH � 6H2O3 Si(OH)4 � HOH � 6H2O (19)

Si(OH)4 � DOH � 6H2O3 Si(OH)3 OD � HOH � 6H2O

(20)

causes the ZPECB to increase in the forward and reverse
directions. This implies a decrease in reaction rate in both
directions when D is involved compared to pure H exchange.

Table 2. ZPECB in units of kJ/mole.

B3LYP
energies
3-21G(d) 6-31G(d) 6-31�G(d,p)

MP2
6-31�G(d,p)

1) Si(OH)4 � DOD � 2H2O 3 Si(OH)3OD � HOD � 2H2O
�Eo forward 42.2 53.5 36.3 60.6
�Eo reverse 40.6 53.2 36.0 60.9
2) Si(OH)4 � DOH � 2H2O 3 Si(OH)30D � HOH � 2H2O
�Eo forward 42.2 53.6 36.0 61.0
�Eo reverse 40.7 53.4 35.8 61.0
3) Si(OH)4 � HOH � 2H2O (no net change)
�Eo 41.8 50.6 34.4 63.7
4) Si(OH)4 � DOD � 6H2O 3 Si(OH)3OD � HOD � 6H2O
�Eo forward — — 37.7 —
�Eo reverse — — 37.5 —
5) Si(OH)4 � DOH � 6H2O 3 Si(OH)3OD � HOH � 6H2O
�Eo forward — — 37.8 —
�Eo reverse — — 37.6 —
6) Si(OH)4 � HOH � 6H20 3 Si(OH)4 � HOH � 6H20 (no net

change)
�Eo — — 35.8 —

Fig. 5. Schematic diagram of the energy curves for the pure H
reaction showing the location of some configurations in Figures 1 and
2 and the corresponding ZPECB for the n � 3 (hatched line, {) and the
n � 7 (solid line, X) cases. (Note that the difference in the ZPECB is
exaggerated and the energies are not drawn to scale.)
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From a ZPECB of 35.8 kJ/mole, the forward and reverse
reaction ZPECB is elevated to 37.8 kJ/mole and 37.6 kJ/mole,
respectively. Hence the reverse reaction, where the orthosilicic
acid produced is isotopically lighter, is more favored.

The ZPECB in both the forward and reverse reaction slightly
decreases with exchange of secondary hydrogen with deute-
rium (from Reaction 5 to 4 in Table 2)

Si(OH)4 � DOH � 6H2O3 Si(OH)3 OD � HOH � 6H2O
Si(OH)4 � DOD � 6H2O3 Si(OH)3 OD � HOD � 6H2O

(21)

Favor on the reverse reaction is maintained with the exchange
of secondary hydrogen with deuterium.

In summary, the ZPECB of the isotope exchange reaction
fall between 35 kJ/mole and 38 kJ/mole. The ZPECB computed
indicate that the reverse reaction (H4SiO4 made lighter) is
slightly more favored than the forward reaction. This is in
agreement with experimental fractionation factors taken from
water-quartz (Kuroda et al., 1982), water-rhyolitic glass sys-
tems (Dobson et al., 1989; Ihinger, 1991), and water albitic-
glass systems (Dobson et al., 1989) which indicate that the
silicic materials tend to be isotopically lighter than H2O at
equilibrium. This agreement will be more apparent when we
present computed fractionation factors later.

The ZPECB for the n � 7 system are slightly higher than the
n � 3 system by about 1 kJ/mole. We believe that orthosilicic
acid in water at room temperature would resemble the n � 7
system more than the n � 3 system. However at high temper-
atures, it is believed to resemble the n � 3 system more, which
is more gas-like in character because upon increasing the
temperature, the average number of H-bonds per molecule
smoothly decrease (Lokotosh et al., 2000). To our knowledge,
no experimental activation energy values are known for the
particular system under investigation although it is assumed
that the reaction involves fast reaction kinetics (e.g., Kazansky
et al., 1978).

The ZPECB found for both the n � 3 and n � 7 systems are
significantly higher than the activation energy of proton trans-
fer in water determined experimentally by Luz and Meiboom

(1964), that is 10 to 12 kJ/mol, and that calculated using ab
initio methods by Luth and Scheiner (1992), that is 16 kJ/mol.
This can be attributed to the less acidic character of H in
H4SiO4 compared to H in water (pKa � 10 for H4SiO4 and pKa

� 7 for H2O at 298K; see Tossell and Sahai, 2000 and refer-
ences within). This result suggests that H is more mobile in
water and therefore from a purely chemical standpoint (i.e.,
without diffusion and transport) the rate-controlling step for
hydrogen isotope exchange in the H4SiO4-H2O system is in-
deed the breaking of the H-O bond in H4SiO4. (While this fact
may be indirectly explored by comparing bond energies, it
needs to be demonstrated by comparing kinetic parameters
such as energy barriers.) In other words, we can rule out proton
mobility in water as a possible cause of hydrogen isotope
disequilibrium if ever it occurs.

4.3. Solvation Corrections to ZPECB

ZPECB combined with solvation effects, which were eval-
uated using the IEFPCM model, that is �Eo,solv(T), are shown
in Table 3 along with the dielectric constants used. The reac-
tions correspond to Reactions 1, 2, 4 and 5 of Table 2. The
temperatures and pressures for the dielectric constants were
intended to match experimental conditions used in mineral-
water exchange reaction studies (Kuroda et al., 1982; Ihinger,
1991). The results show that the effect of the solvation correc-
tion is to increase �Eo,solv(T) as T is decreased.

Similar to the simple systems, the energy barriers of reac-
tions in the implicitly solvated systems indicate that the reverse
reaction is slightly more favored for both the n � 3 and the n
� 7 systems. The general trend as one decreases the dielectric
constant (increase the T and pressure) is to decrease �Eo,solv(T).
For the entire temperature range, �Eo,solv(T) for the n � 3
system are consistently lower than that for the n � 7 case. In
the n � 3 case, �Eo,solv(T) is higher than �Eo below about
1000K and lower above 1000K, or �Eo,solv(	1000K) � �Eo �
�Eo,solv(�1000K). In the n � 7 case, �Eo,solv(T) is higher than
�Eo below about 1123K and lower above 1123K, or
�Eo,solv(	1123K) � �Eo � �Eo,solv(�1123K). These rela-

Table 3. Combined ZPECB and solvation energies in units of kJ/mole and the dielectric constants used. The dielectric constants were estimated
from the closest reasonable values in the CRC tables (Chemical Rubber Company, 2001).

B3LYP/6-31�G(d,p) energies

298K 373K 673K 973K 1123K 1273K 1573K

1) Si(OH)4 DOD � 2H2O 3 Si(OH)3OD � HOD � 2H2O
�Eo,solv forward 40.9 40.7 39.8 36.5 35.1 35.3 35.3
�Eo,solv reverse 40.6 40.4 39.5 36.2 34.8 35.0 35.0
2) Si(OH)4 � DOH � 2H2O 3 Si(OH)30D � HOH � 2H2O
�Eo,solv forward 40.6 40.5 39.6 39.2 34.8 35.0 35.0
�Eo,solv reverse 40.4 40.3 39.4 36.0 34.6 34.8 34.8
4) Si(OH)4 � DOD � 6H20 3 Si(OH)30D � HOD � 6H2O
�Eo,solv forward 45.5 45.3 44.0 39.8 37.7 36.9 36.9
�Eo,solv reverse 45.2 45.1 43.8 39.6 37.5 36.7 36.7
5) Si(OH)4 � DOH � 6H2O 3 Si(OH)3OD � HOH � 6H2O
�Eo,solv forward 45.6 45.4 44.1 40.0 37.8 37.0 37.0
�Eo,solv reverse 45.3 45.2 43.9 39.7 37.6 36.8 36.8

Dielectric constant 78.54 50.0 15.0 3.2 2.2 2.0 2.0
P (Mpa) 0.1 1.0 100 100 100 100 100
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tionships have significant implications on the computed rate
constants as will be seen in the next section. Since �Eo,solv is
closer in nature to the empirically determined activation en-
ergy, these results show how the dielectric constants influence
the activation energy.

The energy barriers between the simple and implicitly sol-
vated cases significantly differ. As observed previously, the
ZPECB are also distinctly different between the n � 3 and n �
7 cases. These seem to suggest that for activation energy
calculations, the treatment of solvation plays an important role.

4.4. Rates of Exchange from the Absolute Rate Constant
Equation

The predicted temperature-dependent TST rate constants for
the n � 3 and the n � 7 cases at the B3LYP/6 to 31 � G(d,p)
level were calculated for selected temperatures from 298K to
1573K using ARC (Eqn. 3) and are shown in Table 4. Forward
and reverse rate constants were considered for both the singly-
and doubly-deuterated reaction mechanisms (Reactions 1, 2, 4
and 5 of Table 2) for the simple and implicitly solvated sys-
tems.

The calculations show that in the selected temperature range,
the rate constants increase in magnitude from 104 s�1 to 109

s�1 for both the simple case and the solvated case and thus the
reaction occurs appreciably fast in laboratory timescales. As an
illustration, a rate constant of 104 s�1 implies the reaction
occurs at 10000 times per second per molecular complex. To
our knowledge, no experimental rate constant values are known
for the particular system under investigation although it is
frequently assumed that the reaction involves fast reaction
kinetics. The computed rate constants imply that the rate-
limiting step in real aqueous solutions is the transport and
diffusion of water molecules.

The temperature dependence of the rate constants is illus-
trated in Figs. 6 and 7. In general, rate constants are expected
to increase with temperature as observed in many experiments
(Atkins, 1998). Figure 6 shows that kf is a non-linear function
of temperature. Rate constants of the singly-deuterated reaction
mechanisms are consistently greater than the corresponding

Table 4. Temperature dependence of the TST rate constants computed using ARC and B3LYP data. Subscripts r is for the reverse reaction, f is
for the forward reaction, “1” is for the singly-deuterated reaction, “2” is for the doubly-deuterated reaction, and S is for the implicitly solvated reaction.
Units of kf are in s�1. Dielectric constants used for the computation of implicitly solvated reactions are in Table 3.

T(K) kr1 kf1 kr2 kf2 kr1S kf1S kr2S kf2S

n � 3
298 8.20E�04 6.92E�04 7.10E�04 5.75E�04 1.27E�04 1.08E�04 1.10E�04 8.94E�03
373 9.89E�05 8.45E�05 8.70E�05 7.23E�05 2.33E�05 1.99E�05 2.05E�05 1.70E�05
673 5.98E�07 5.37E�07 5.49E�07 4.89E�07 3.16E�07 2.8�E�07 2.90E�07 2.58E�07
973 2.76E�08 2.57E�08 2.59E�08 2.40E�08 2.68E�08 2.49E�08 2.52E�08 2.33E�08
1123 4.45E�08 4.20E�08 4.22E�08 3.97E�08 5.0�E�08 4.76E�08 4.78E�08 4.49E�08
1273 6.51E�08 6.21E�08 6.21E�08 5.90E�08 7.15E�08 6.81E�08 6.81E�08 6.47E�08
1573 1.16E�09 1.12E�09 1.11E�09 1.07E�09 1.25E�09 1.21E�09 1.20E�09 1.16E�09
n � 7
298 3.70E�04 3.07E�04 3.73E�04 3.06E�04 1.61E�03 1.33E�03 1.62E�03 1.33E�03
373 5.48E�05 4.60E�05 5.47E�05 4.55E�05 4.67E�04 3.92E�04 4.66E�04 3.88E�04
673 4.54E�07 4.00E�07 4.49E�07 3.94E�07 1.48E�07 1.30E�07 1.46E�07 1.28E�07
973 2.21E�08 2.02E�08 2.18E�08 2.00E�08 1.69E�08 1.55E�08 1.67E�08 1.53E�08
1123 3.56E�08 3.31E�08 3.52E�08 3.28E�08 3.55E�08 3.31E�08 3.51E�08 3.27E�08
1273 5.17E�08 4.87E�08 5.12E�08 4.82E�08 5.58E�08 5.26E�08 5.52E�08 5.20E�08
1573 9.00E�08 8.62E�08 8.90E�08 8.54E�08 9.57E�08 9.17E�08 9.47E�08 9.08E�08

Fig. 6. Temperature dependence of MO-TST rate constants esti-
mated using ARC with MO data at the B3LYP/6–31�G(d,p) level.
Forward reaction rate constants—f, reverse reaction rate constants—b,
primary isotope effect—1, secondary isotope effect—2, solvation mod-
el—s. Curves are smoothened lines to fit the points. The curves show
that (a) the rate constants the singly-deuterated reactions are consis-
tently greater than their doubly-deuterated counterpart, and (b) the rate
constants for the reverse reaction are consistently lower than their
corresponding forward reaction.
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doubly-deuterated reaction rate constants (Fig. 6a). The effect
of implicit solvation is to yield rate constants lower than simple
systems at low temperatures but higher at high temperatures.
As discussed in the previous section, these effects are predom-
inantly a result of the changes in the magnitude of the expo-
nential term. Distinct groups of rate constant curves can be
recognized for the n � 3 and n � 7 cases and for the simple and
implicitly solvated cases. These seem to suggest that for rate
constant calculations, (similar to ZPECB calculations previ-
ously discussed) the treatment of solvation is an important
factor. Observe that the exponential term for the implicitly
solvated system has increased by approximately 5 kJ/mol for n

� 3, and 9 kJ/mol for n�7 from 298 to 1573K — this change
would be imperceptible experimentally, that is in -ln(kf) vs. 1/T
plots, if the linear regression is over too wide a temperature
range.

Consistent with the ZPECB of the reverse reactions (Tables
2 and 3), the calculated rate constant curves for the reverse
reactions are lower than the corresponding forward reaction
curves for the entire temperature range (Fig. 6b). These would
have implications on the equilibrium values, which will be
discussed in the next section.

In agreement with the Arrhenius relationship (see Lasaga,
1998 or Atkins, 1998 for an explanation), Figure 7 shows that
the ln(kf), vs. 1/T graphs are rather linear for reaction paths
without the implicit solvation treatment. The ln(kf) vs. 1/T
graphs of the implicitly solvated reactions have slight curvature
toward the high-temperature end of the plot (Fig. 7). The slopes
of Arrhenius plots such as these give the negative of the
activation energy. Non-Arrhenius relationships are indicative
of temperature dependence in the preexponential factor and the
activation energy, that is, A and Ea, respectively, in kf �
A(T)exp(�Ea(T)/kBT). Hence, our results show that tempera-
ture dependence of the solvation, as expressed in the dielectric
constant, contributes to the non-Arrhenius behavior of the rate
constants.

Wigner and Eckart quantum tunneling correction coefficients
are shown in Table 5. The Wigner quantum tunneling correc-
tion coefficients range from 1.91 at 298K to 1.02 at 1573K for
the n � 3 case and 1.12 at 298K to 1.00 at 1573K for the n �
7 case. Hence the corrections produce a maximum of 91%
change on the rate constants. It should be remarked that the
correction coefficients are larger for the n � 3 case compared
to the n � 7 case because of the larger imaginary vibrational
mode of the former, which results in a higher frequency of
conversion from reactants to products at the transition-state.

The Eckart quantum tunneling correction coefficients range
from 2.56 at 298K to 1.03 at 1573K for the n � 3 case and 1.12

Fig. 7. 1/T vs. ln(kf) diagram showing general linearity of curves. kf

are estimated using ARC with MO data at the B3LYP/6 to 31 � G(d,p)
level. Forward reaction rate constants—f, reverse reaction rate con-
stants—b, primary isotope effect—1, secondary isotope effect—2,
solvation model—S. Curves are smoothened lines to fit the points.

Table 5. Wigner and Eckart tunneling coefficients, where subscripts r is for the reverse reaction, f is for the forward reaction “1” is for the
singly-deuterated reaction, “2” is for the doubly-deuterated reaction, and H is for the pure H reaction. The imaginary vibrational modes, �‡, for
singly-deuterated, doubly-deuterated and pure H reactions are (1) For n � 3, [�941.93 cm�1, �930.07 cm�1], [�940.04 cm�1, �927.63 cm�1], and
[�968.44 cm�1], and (2) For n � 7, [�335.73 cm�1, �353.35 cm�1], [�331.32 cm�1, �353.15 cm�1] and [�355.75 cm�1], respectively. Wigner
tunneling coefficients are geometric averages and Eckart tunneling coefficients are calculated using the arithmetic mean of the frequencies.

Wigner: Eckart:

T(K) �1 �2 �H �1 �2 �H

n � 3
298 1.851 1.847 1.911 2.416 2.403 2.558
373 1.543 1.541 1.911 1.708 1.703 1.768
673 1.167 1.166 1.179 1.165 1.164 1.176
973 1.080 1.079 1.085 1.072 1.072 1.077
1123 1.060 1.060 1.064 1.053 1.053 1.056
1273 1.047 1.046 1.050 1.040 1.040 1.042
1573 1.016 1.016 1.017 1.025 1.025 1.026
n � 7
298 1.115 1.085 1.122 1.119 1.118 1.127
373 1.074 1.054 1.100 1.073 1.072 1.078
673 1.023 1.016 1.024 1.021 1.021 1.022
973 1.011 1.007 1.011 1.010 1.010 1.010
1123 1.008 1.005 1.009 1.007 1.007 1.008
1273 1.006 1.004 1.007 1.005 1.005 1.006
1573 1.004 1.002 1.004 1.003 1.003 1.004
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at 298K to 1.00 at 1573K for the n � 7 case. This agrees with
the findings of Truong (1997) that the Eckart coefficients are
larger than the Wigner corrections particularly at low temper-
atures. Therefore for quantum tunneling, a reasonable upper
value for the deviation is a factor of 3 for the temperature range.
Note that the correction coefficients for both directions are the
same and thus the direction of the equilibrium remains the same
with or without the tunneling corrections.

4.5. Exchange Equilibria

The predicted temperature-dependent equilibrium constants
are shown in Table 6. All values were calculated using ARC
and Eqn. 11 except for those values in the last two columns,
which are empirical fractionation factors for rock-mineral/wa-
ter interaction obtained by Dobson et al. (1989); Ihinger (1991)
and Kuroda et al. (1982). We compare our equilibrium frac-
tionation curves with the empirical values for two main rea-
sons. The first reason is we have not found any empirical
equilibrium fractionation values for the dissolved-silica/water
system. The second reason is if the computed equilibrium
fractionation factors agree within a reasonable amount of error
with the rock-mineral/water system, then this would suggest
that the mechanisms for equilibration for the dissolved-species
is similar to the rock-mineral/water system. It would also
suggest that we have found a full reaction mechanism. Further-
more, if combined with the previous conclusion that rate con-
stants are in the order of 104 to 109 s�1, then it follows that
there is isotopically little distinction between hydration water
and bulk water (i.e., fractionation between bulk and hydration
water 
bulk-hyd�1). Thus any large fractionations between hy-
dration water and bulk water must be due to other factors such
as transport or diffusion of water or previously trapped H
isotopes in the mineral lattice.

The temperature dependence of the calculated equilibrium
constants is illustrated in Figure 8, Figure 9 and Figure 10. For
the entire selected temperature range, the equilibrium constants
computed using rate constants indicate that the reverse reaction
predominates (Keq � 1; Table 6 and Fig. 8). The equilibrium
constant increases with temperature, asymptotically approach-
ing a value of about 1.0. The doubly-deuterated systems have
consistently lower Keq for the n � 3 and n � 7 cases. The n �
3 system has higher Keq than the n � 7 case in general, except
at lower temperatures (�400K) where the doubly-deuterated

reaction n � 3 case drops lower than both the singly and doubly
deuterated reactions of the n � 7 case.

For all the curves in Figure 8, the implicitly solvated and the
simple systems are essentially the same, even though the rates
were different as seen in Figures 6 and 7 and Table 4. Further-
more, the n � 3 and n � 7 systems yield two distinct curve
trends. (Recall that the n � 7 case is our only true explicitly
hydrated case.) These observations have two implications (1)
the effect of implicit solvation is effectively cancelled out when
equilibrium is evaluated (2) the effect of explicit hydration is
significant when equilibrium is evaluated. Hence, for equilibria,
explicit hydration plays a more important role than implicit
hydration.

At high temperatures (Fig. 8), the calculated equilibrium
constant approaches the empirically determined equilibrium
constant of Kuroda et al. (1982) for quartz. However, the
calculated equilibrium constants at lower temperatures are sig-
nificantly lower than the experimental values for the other
rock-mineral/water data. It should be pointed out though that
Kuroda et al. (1982) used quartz, whereas Ihinger (1991) used

Table 6. Equilibrium constants (fractionation factors) determined computationally and experimentally. Data are from Kuroda et al. (1982), Ihinger
(1991) and Dobson et al. (1989).

T(K)

n � 7 n � 3 Kuroda Ihinger Dobson

K1 K2 K1s K2s K1 K2 K1s K2s K1 K1 K1 rhy K1 fld

298 0.830 0.821 0.831 0.821 0.844 0.811 0.844 0.812
373 0.839 0.831 0.839 0.831 0.854 0.831 0.854 0.832
673 0.881 0.879 0.881 0.879 0.899 0.891 0.899 0.892
803 0.952 0.953
908 0.958
973 0.917 0.916 0.917 0.916 0.932 0.928 0.932 0.928
1023 0.962 0.966
1123 0.930 0.930 0.930 0.930 0.944 0.940 0.944 0.940 0.965 0.960
1273 0.941 0.942 0.942 0.942 0.953 0.950 0.953 0.950
1573 0.958 0.959 0.958 0.959 0.967 0.964 0.967 0.965 0.968

Fig. 8. Temperature dependence of MO-TST equilibrium constants.
Keq are calculated from kf estimated using ARC with MO data at the
B3LYP/6 to 31 � G(d,p) level. Primary isotope effect—1, secondary
isotope effect—2, solvation model—S. Curves are smoothened lines to
fit the points. Experimental data are from Kuroda et al. (1982) ✦ ,
Ihinger (1991) ✧ , and Dobson et al. (1989) rhyolite � and feldspar �.
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rhyolitic and Dobson et al. (1989) used rhyolitic and andesitic
materials. Hence, H isotope exchange is probably not occurring
solely at Si-OH sites in the latter two studies. Furthermore, the
pressure for the experimental results vary; the work of Kuroda
et al. (1982) was at 2000 MPa, that of Ihinger (1991) at 50
MPa, and Dobson et al. (1989) at 0.14 to 0.28 MPa. The
variability of the speciation, or more specifically the configu-
ration of the water molecules in the vicinity of the exchange
site appear to play a significant role in the equilibria. The

equilibria is expected to ultimately result from not only the
reactions depicted in Figures 1 and 2 but also the interconver-
sion between n � 3 and n � 7 as well as other configurations
not yet explored. Nevertheless, the agreement with the direc-
tion of the equilibrium is encouraging, albeit inconclusive as to
the completeness of the reaction mechanism we have obtained.

It is possible that the discrepancy between the fractionations
may be attributed to fractionation between bulk water and
hydration water. For example, if at equilibrium the fraction-
ation between bulk water and hydration water is 
bulk-hyd and
between hydration water and H4SiO4 is 
hyd-H4SiO4, then the
fractionation between bulk water and H4SiO4 is 
bulk-H4SiO4 �

bulk-hyd 
hyd-H4SiO4. So if our computed K1 represents 
hyd-

H4SiO4 (0.958 at 1573K) and if the experimental K1 by Kuroda
et al. (1982) is closer in value to 
bulk-H4SiO4 (0.968 at 1573K),
then this says 
bulk-hyd � (0.968/0.958) � 1.010. This is worth
verifying experimentally in the future, but could explain the
discrepancy between our computations and experiment.

Experimental data are often extrapolated to different temper-
atures using the guidelines of Bigeleisen and Mayer (1947).
Hence, we plotted our calculated ln(Keq) values versus 1/T and
1/T2 to compare with this extrapolation method. Figure 9 shows
the nonlinear nature of the ln(Keq) vs.1/T plots. The results
agree with the general guidelines of Bigeleisen and Mayer
(1947) (see also O’Neil, 1986) designed for diatomics

U �
hv

kBT
(22)

where the ln(Keq) vs.1/T curve is predicted to be linear when U
	 20 (low-temperature), and the ln(Keq) vs.1/T 2 curve is pre-
dicted to be linear when U�5 (high-temperature). The highest
vibrational frequencies in our calculations is �max3800 cm�1

and thus the ln(Keq) vs.1/T curve is predicted to be linear below
280K, and the ln(Keq) vs.1/T2 curve is predicted to be linear
above 1120K. Figure 10 shows ln(Keq) vs. 1/T2 plots; note the
strongly nonlinear nature of the curves except at high temper-
atures (	973K). These results are generally consistent with
theoretical relationship above, which has been generally veri-
fied by experimental data (O’Neil, 1986). Hence, this supports
the validity of our modeling method.

4.6. Accuracy of Estimates: Scaling Factors and
Anharmonicity

In this section we discuss the accuracy of the rate constants
computed previously using the unimolecular harmonic oscilla-
tor approach. So far we have discussed the deviation due to
Wigner and Eckart tunneling. Here we address errors arising
from scaling factors (Scott and Radom, 1996) and anharmo-
nicity.

Table 7 shows the rate constants computed using a vibra-
tional frequency factor of 0.96 and a zero point energy correc-
tion factor of 0.98 (Foresman and Frisch, 1996). In general, the
scaling factors depress the rate constants compared with the
values presented in Table 4. Note that the order of the reaction
is unchanged, and thus, the scaling factors do not change the
previous conclusion that the isotope exchange reaction occurs
at a fast rate. At lower temperatures (298K) where the effects
of the scaling factors are most pronounced, the n � 3 forward

Fig. 9. 1/T vs. ln(Keq) diagram showing general non-linearity of
curves. Keq are calculated from kf estimated using ARC with MO data
at the B3LYP/6 to 31 � G(d,p) level. Primary isotope effect—1,
secondary isotope effect—2, solvation model—S. Curves are smooth-
ened lines to fit the points. Experimental data are from Kuroda et al.
(1982) ✦ , Ihinger (1991) ✧ , and Dobson et al. (1989) rhyolite � and
feldspar �.

Fig. 10. 1/T2 vs. ln(Keq) diagram showing general nonlinearity of
curves. Keq are calculated from kf estimated using ARC with MO data
at the B3LYP/6 to 31 � G(d,p) level. Primary isotope effect—1,
secondary isotope effect—2, solvation model—S. Curves are smooth-
ened lines to fit the points. Experimental data are from Kuroda et al.
(1982) ✦ , Ihinger (1991) ✧ , and Dobson et al. (1989) rhyolite � and
feldspar �.
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reactions with scaling factors are smaller than the calculations
without scaling factors by a factor of 0.59. The n � 3 forward
reaction rate constant is relatively more depressed than that of
the n � 3 reverse reactions. On the other hand, the n � 7
forward and reverse reaction rate constants are approximately
equally smaller by a factor of 0.84. The equilibrium constants
indicate favor on the reverse reaction, similar to the calcula-
tions without scaling factors. The n � 3 equilibrium constants
are depressed by a factor of 0.75 and the n � 7 equilibrium
constants are roughly unchanged.

Table 8 shows the rate constants computed using the unimo-
lecular anharmonic oscillator approach. Because anharmonicity
constants for the system of interest are unavailable, we make a
rough estimate of the errors in the rate constant by assuming for
simplicity reasonable anharmonicity constants of �i�i � 0.02�i.
(See e.g., Martin et al., 1992 for anharmonicities in water.) This
assumes the anharmonicity is uniformly distributed and is
proportional to the vibrational frequencies of the normal
modes. While this is unrealistic and may over-account for

anharmonicity, we choose this to demonstrate that the magni-
tude of the rate constants is not too greatly affected by large
anharmonicities.

Use of the anharmonic partition function of Houston (2001)
for ARC enhances the rate constants at 1573K by as much as a
factor of 4.74 for the n � 3 system and by a factor of 5.39 for
the n � 7 system. The equilibrium constants slightly increase at
298K by a factor of 1.02.

The largest corrections of the rate constants due to tunneling
at 298K (	2.56 � 1	 � 1.56), scaling factors at 298K (	0.59 �
1	 � 0.41) and the use of the anharmonic oscillator model at
1573K (	5.39 � 1	 � 4.39) taken together amount to a relative
error of about (4.68 or 468%). This worst case correction is
systematic, and always results in increasing the rate constants.
Thus, for order-of-magnitude calculations, these corrections do
not change the conclusion that the reaction occurs almost
instantaneously.

Recall that the transition state partition functions are can-
celled out in the evaluation of the equilibrium constants from

Table 7. Temperature dependence of the TST rate constants computed using a scaling factor of 0.96 for the vibrational frequency and 0.98 for the
zero point energy correction and B3LYP data. Subscripts r is for the reverse reaction, f is for the forward reaction, “1” is for the singly-deuterated
reaction, “2” is for the doubly-deuterated reaction. Units of kf are in s�1. Compare with Tables 4 and 6.

T(K) kr1 kf1 kr2 kf2 K1 K2

n � 3
298 6.53E�04 4.09E�04 5.6�E�04 3.43E�04 0.627 0.608
373 8.03E�05 5.42E�05 7.05E�05 4.66E�05 0.674 0.661
673 5.14E�07 4.06E�07 4.72E�07 3.71E�07 0.790 0.787
973 2.47E�08 2.11E�08 2.32E�08 1.98E�08 0.853 0.852
1123 4.04E�08 3.54E�08 3.83E�08 3.35E�08 0.875 0.873
1273 5.98E�08 5.33E�08 5.70E�08 5.08E�08 0.892 0.890
1573 1.08E�09 9.88E�08 1.04E�09 9.49E�08 0.916 0.915
n � 7
298 3.11E�04 2.57E�04 3.13E�04 2.56E�04 0.826 0.818
373 4.64E�05 3.88E�05 4.63E�05 3.84E�05 0.837 0.830
673 3.97E�07 3.50E�07 3.92E�07 3.45E�07 0.882 0.881
973 1.98E�08 1.82E�08 1.96E�08 1.80E�08 0.919 0.919
1123 3.24E�08 3.02E�08 3.20E�08 2.99E�08 0.933 0.933
1273 4.75E�08 4.48E�08 4.70E�08 4.44E�08 0.944 0.944
1573 8.37E�08 8.03E�08 8.28E�08 7.96E�08 0.960 0.961

Table 8. Temperature dependence of the TST rate constants computed using anharmonic oscillator partition functions and B3LYP data. Subscripts
r is for the reverse reaction, f is for the forward reaction, “1” is for the singly-deuterated reaction, “2” is for the doubly-deuterated reaction. Units of
kj are in s�1. Compare with Tables 4 and 6.

T(K) kr1 kf1 kr2 kf2 K1 K2

n � 3
298 1.76E�05 1.51E�05 1.56E�05 1.28E�05 0.858 0.821
373 2.21E�06 1.92E�06 1.98E�06 1.66E�06 0.867 0.841
673 1.47E�08 1.34E�08 1.37E�08 1.23E�08 0.908 0.899
973 8.86E�08 8.31E�08 8.43E�08 7.87E�08 0.938 0.934
1123 1.75E�09 1.66E�09 1.68E�09 1.60E�09 0.952 0.951
1273 2.81E�09 2.70E�09 2.72E�09 2.62E�09 0.964 0.962
1573 5.47E�09 5.34E�09 5.33E�09 5.21E�09 0.977 0.978
n � 7
298 6.95E�04 5.87E�04 7.07E�04 5.91E�04 0.844 0.837
373 1.09E�06 9.27E�05 1.09E�06 9.26E�05 0.853 0.847
673 1.03E�08 9.21E�07 1.03E�08 9.15E�07 0.892 0.890
973 7.26E�08 6.68E�08 7.20E�08 6.67E�08 0.920 0.926
1123 1.51E�09 1.42E�09 1.50E�09 1.42E�09 0.936 0.942
1273 2.45E�09 2.33E�09 2.45E�09 2.33E�09 0.950 0.954
1573 4.74E�09 4.58E�09 4.72E�09 4.60E�09 0.967 0.974
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the rate constants. Therefore, the errors in the rate constants
discussed above overestimate the errors in the equilibrium
constants (a maximum relative error of 284%). We therefore
evaluate corrections in the equilibrium constants independently
from rate constant corrections. The largest corrections of the
equilibrium constants (at 298K) due to scaling factors (	0.821
� 0.608	/0.821 � 0.259) and due to the use of the anharmonic
oscillator model (	0.830 � 0.858	/0.830 � 0.034) taken to-
gether amount to a relative error of about (0.262 or 26.2%). If
however, we take a different approach and assume that the
experimental fractionations are the “ true values,” then the uni-
molecular harmonic oscillator equilibrium constant with the
largest difference from the true value (i.e., at 803K) is within
7% (	0.953 � 0.887	/0.953) of it.

4.7. Accuracy of Estimates: MP2 Calculations

In this section we discuss implications of partial MP2 results
on our B3LYP results. Although we have been successful in
calculating the reaction pathway for the n � 3 system; we were
unable to perform calculations on the n � 7 system due to
limitations in our present computational resources. As was
shown in Table 1 and 2, the ZPECB at the MP2 level are larger
by almost twice as much compared to B3LYP. What is more
troubling, however, is that the direction of the equilibrium is
opposite to that of our B3LYP calculations and rock-mineral/
water data. Table 9 shows the rate constants computed using
ARC. The results show that at the selected temperature range,
the rate constants increase in magnitude from 100 to 108 s�1.
As an illustration, a rate constant of 100 s�1 implies that the
reaction occurs once per second per molecular complex. This is
still relatively fast compared to the timescale of most geologic
processes.

Since the equilibrium constants do not agree with experi-
mental data, then either the model system (and hence the
reaction mechanism) as shown by Fig. 1 is incorrect for the
modeling the system being compared, the MP2/6–31�G(d,p)
level is insufficient in accuracy, or the mechanism found is
merely part of a multi-step equilibrium reaction. Because we
are modeling a system in solution and comparing the results
with rock-mineral/water data, the first scenario is difficult to
resolve through calculations and experiments may answer this
puzzle. The second and third scenario may be resolved by
higher level calculations and following the reaction pathways.
These issues require further investigation and are beyond the
scope of the present study. It is highly possible that the suc-

cessful calculation of MP2 data for the n � 7 system would
resolve these issues. For example, if MP2 calculations on the n
� 7 system yield rate and equilibrium constants closer to our
results for B3LYP data, then we can conclude that the n � 3
data was insufficient to model the system. If however, the n �
7 rate and equilibrium constants are closer to the MP2 n � 3
system, then either the model is inappropriate for the system,
the MP2/6–31�G(d,p) level is insufficient in accuracy, or the
mechanism found is merely part of a multi-step equilibrium
reaction. As in the B3LYP calculations, it is possible that the
discrepancy between the fractionations may be attributed to
fractionation between bulk water and hydration water, although

bulk-hyd would favor the opposite direction that of B3LYP. It
is very ideal therefore that the B3LYP and MP2 calculations be
first reconciled.

It is commonly considered that MP2 calculations always
give more reliable results for energies and frequency calcula-
tions than B3LYP given the same basis set. This notion how-
ever is unfounded as exemplified by the smaller scaling factors
(�1) for MP2 suggested by Halls et al. (2001) and as demon-
strated by the comparable calculated energies of B3LYP to
MP2 (Curtiss et al., 1997). Whether MP2 or B3LYP is more
reliable, both indicate that hydrogen exchange reaction can
occur by the mechanism depicted in Figure 1 and that the
reaction occur sufficiently fast. For most silica precipitation
reactions therefore, equilibrium between orthosilicic acid and
ambient water can be assumed.

5. CONCLUSION

MO-TST calculations indicate that hydrogen isotope ex-
change between water and H4SiO4 may occur through a con-
certed reaction within a chain of eight alternating oxygen and
hydrogen atoms forming a ring. At the B3LYP/6–31�G(d,p)
level, the reaction has low ZPECB consistent with a lower
activation energy when compared with the dissolution of silica.
The reaction furthermore describes the manner by which hy-
drogen ions mobilize in solution. The treatment of solvation,
from the explicit addition of water molecules into the system to
the application of a dielectric continuum model, yields rate
constants that increasingly favor the reverse reaction. This
favor on the reverse reaction is in agreement with data from
rock-mineral/water system experiments.

Our B3LYP calculations yield reasonable rate constant esti-
mates that range from 104 s�1 to 109 s�1 in the temperature
range of 298K to 1573K. This suggests that diffusion and

Table 9. Temperature dependence of the TST rate constants computed using ARC and MP2 data. Subscripts r is for the reverse reaction, f is for
the forward reaction, “1” is for the singly-deuterated reaction, “2” is for the doubly-deuterated reaction. Units of kf are in s�1. Compare with Tables
4 and 6.

T(K) kr1 kf1 kr2 kf2 K1 K2

n � 3
298 3.64E�00 4.10E�00 3.55E�00 4.34E�00 1.127 1.222
373 3.21E�02 3.65E�02 3.13E�02 3.75E�02 1.135 1.198
673 6.41E�05 7.10E�05 6.30E�05 7.09E�05 1.108 1.125
973 1.10E�07 1.19E�07 1.09E�07 1.18E�07 1.075 1.083
1123 2.63E�07 2.80E�07 2.60E�07 2.78E�07 1.062 1.068
1273 5.19E�07 5.45E�07 5.13E�07 5.43E�07 1.052 1.057
1573 1.40E�08 1.46E�08 1.39E�08 1.45E�08 1.037 1.042
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transport of water may be the rate-limiting factor in H4SiO4/
H2O hydrogen isotope exchange. Tunneling corrections, scal-
ing factors, and anharmonicity do not change the order of the
rate constants. Our implicit solvation model demonstrates the
contribution of the dielectric constant to non-Arrhenius behav-
ior of the rate. The equilibrium constants computed are consis-
tent with empirically determined equilibrium constants. Partial
MP2 calculations yield significantly lower rate constants than
the B3LYP results and this discrepancy requires further inves-
tigation.

Implications of fast hydrogen isotope exchange are numer-
ous and include studies on the incorporation of hydrogen into
silicate structures such as quartz or olivine. If the rates of
exchange between silicic acid hydrogen and water are very fast
then we need only to determine the fractionation at a given
temperature to use the hydrogen isotopic composition of the
incorporated hydrogen as a proxy for the hydrogen isotopic
composition of the water. As we work our way through the
important species in solution using the techniques developed in
this paper we expect to find a whole range of exchange rates
between fluids and species in solution.
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