ИССЛЕДОВАНИЕ ПРИМЕСНЫХ ЦЕНТРОВ Cr³⁺ В КРИСТАЛЛАХ Mg₂SiO₄ : Cr, Li МЕТОДАМИ ЭПР-СПЕКТРОСКОПИИ И СТРУКТУРНОГО КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ

© 2003 г. Р. М. Минеева*, П. Н. Камозин**, А. В. Гайстер***, В. Б. Дудникова**, Е. В. Жариков***, ****, В. С. Урусов**, ****

*Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН 109017 Москва, Старомонетный пер., 35

**Институт геохимии и аналитической химии им. В.И. Вернадского РАН

119991 ГСП-1 Москва, ул. Косыгина, 19

***Институт общей физики РАН

117942 Москва, ул. Вавилова, 38

****Российский химико-технологический университет им. Д.И. Менделеева

125047 Москва, Миусская площадь, 9

*****Московский государственный университет им. М.В. Ломоносова

Геологический факультет

119899 Москва, Воробьевы горы

Поступила в редакцию 06.06.2001 г.

Методом ЭПР-спектроскопии исследованы порошковые образцы кристаллов Mg_2SiO_4 : Cr и Mg_2SiO_4 : Cr, Li. В кристаллах форстерита с хромом обнаружены уже описанные в литературе ок-

таэдрические центры Cr_{M1}^{3+} , Cr_{M2}^{3+} и Cr^{4+} в тетраэдрической позиции. В кристаллах форстерита, ле-

гированных хромом и литием, помимо центров Cr_{M1}^{3+} и Cr_{M2}^{3+} , были выявлены два новых центра с ЭПР-параметрами, близкими соответствующим параметрам этих центров хрома в кристаллах без лития. Проведено сравнение ЭПР-параметров центров Cr^{3+} в кристаллах $Mg_2SiO_4 : Cr$, $Mg_2SiO_4 : Cr$, Li и $Mg_2SiO_4 : Cr$, Al. Выполнено структурное компьютерное моделирование и на основе его результатов показано, что в кристаллах $Mg_2SiO_4 : Cr$, Li наряду с известными центрами Cr_{M1}^{3+} и Cr_{M2}^{3+} присутствуют новые центры, представляющие собой ассоциаты хрома с литием $Cr_{M1}^{3+} - Li_{M1}^{+}$ и $Cr_{M2}^{3+} - Li_{M1}^{+}$.

После получения лазерного эффекта на кристаллах форстерита с хромом [1] основные усилия исследователей были сосредоточены на изучении спектрально-люминесцентных свойств активных лазерных центров на основе ионов Cr^{4+} . Ионам Cr^{3+} в форстерите до настоящего времени отводилась незначительная и, как правило, исключительно негативная роль. Из-за сильного перекрытия полос поглощения с ионами Cr^{4+} , ионы Cr^{3+} поглощают заметную часть энергии излучения накачки и тем самым затрудняют получение генерации на ионах Cr^{4+} . Кроме того, был обнаружен нежелательный перенос энергии с верхних возбужденных уровней иона Cr^{4+} на уровни ионов Cr^{3+} [2].

Вместе с тем потенциал кристаллов форстерита с хромом как лазерного материала не исчерпывается только возможностью получения генерации на ионах Cr⁴⁺ в ближнем ИК диапазоне. В спектрах люминесценции кристаллов Mg_2SiO_4 : Сг и Mg_2SiO_4 : Сг, Li можно выделить интенсивную широкую полосу люминесценции ионов Cr^{3+} с максимумом интенсивности излучения около 1000 нм [3], причем в спектрах Mg_2SiO_4 : Сг, Li интенсивность полосы люминесценции ~1000 нм заметно выше, чем в спектрах Mg_2SiO_4 : Сг. Результаты измерения величины коэффициента усиления на кристаллах форстерита с хромом и литием в диапазоне 700–1300 нм [4] демонстрируют принципиальную возможность получения лазерного эффекта с использованием широкополосного одномикронного излучения.

Кристаллы Mg₂SiO₄ представляют собой довольно сложный объект для исследований из-за относительно низкой симметрии структуры и наличия для ионов хрома трех различных структурных позиций. Примесь хрома может замещать атомы магния, которые находятся в структуре в двух неэквивалентных октаэдрических позициях (М1 и М2) и атомы кремния в изолированных тетраэдрических позициях.

Методом ЭПР-спектроскопии установлено, что в кристаллах форстерита хром в состоянии Cr^{3+} входит в позиции М1 и М2 [5]. При наличии примеси алюминия хром также может образовывать пары Cr^{3+} – Al^{3+} , в которых ионы Cr^{3+} занимают позиции М1 и М2, а ионы Al^{3+} – позиции ионов кремния [6]. Установлено также, что в четырехвалентном состоянии ионы Cr^{4+} занимают тетраэдрические позиции [7]. Данные о вхождении ионов Cr^{2+} и Cr^{4+} в октаэдрические позиции на данном этапе следует считать предварительными и, в известной мере, дискуссионными, поскольку ни для одного из этих центров не определены полностью все параметры ЭПР [2, 7, 8].

Всем изученным центрам Cr³⁺ и Cr⁴⁺ в форстерите присущи большие начальные расщепления и соответствующие им спектры ЭПР состоят из большого числа линий с резкой угловой зависимостью, что практически не дает возможности идентифицировать эти центры без скрупулезного анализа ориентационных характеристик спектра. Эти операции требуют использования специальных приспособлений для ориентации образцов в резонаторе и весьма трудоемки.

Хорошо известно, что ЭПР-анализ материала в форме порошка дает информации меньше, чем исследования монокристаллов. Однако в ряде случаев, особенно, если требуется лишь идентификация уже известных центров, исследования порошков могут оказаться очень эффективными и экспрессными. Многие диагностические и аналитические задачи (например, в ЭПР-дозиметрии) как раз и решаются только на таких объектах.

Ионы с электронной конфигурацией d^3 (в том числе и Cr³⁺) хорошо исследованы и способы анализа их спектров ЭПР детально разработаны и описаны [6]; получены аналитические выражения, позволяющие определить все параметры спин-гамильтониана на основе данных о положении линий в спектре ЭПР для трех главных ориентаций. Именно эти линии и регистрируются в спектре порошка, и, следовательно, этих сведений достаточно для идентификации известных центров, включающих Cr³⁺.

ЭКСПЕРИМЕНТ

Нами изучены спектры ЭПР порошковых образцов кристаллов Mg_2SiO_4 : Сг и Mg_2SiO_4 : Сг, Li. Порошки для исследований приготовлены из монокристаллов, выращенных методом Чохральского на затравки, ориентированные вдоль *а* оси (установка *Pbnm*). Кристаллы выращивались в инертной ростовой атмосфере (100% Ar). Исследованный образец Mg_2SiO_4 : Сг содержал 0.03%

вес. Сг, образец Mg₂SiO₄ : Сг, Li – 0.013% вес. Сг и 0.005% вес. Li.

Спектры ЭПР регистрировались на спектрофотометре "Radiopan" в Х-диапазоне с частотой модуляции 100 кГц при комнатной температуре.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены спектры ЭПР порошковых образцов кристалла Mg_2SiO_4 : Сг. Основываясь на полученных ранее параметрах для центров Cr_{M1}^{3+} и Cr_{M2}^{3+} в монокристаллах форстерита [5], мы убедились, что шесть линий в спектре ЭПР образца Mg_2SiO_4 : Сг, отмеченные на рис. 1 пустыми квадратами, принадлежат центру Cr_{M1}^{3+} , а четыре линии, отмеченные на этом рисунке пустыми кружками, относятся к центру Cr_{M2}^{3+} . Положение двух линий в низких полях в форме пиков излучения и поглощения (крестики на рис. 1) хорошо совпало с ожидаемым положением линий спектра ЭПР в Х-диапазоне для иона Cr^{4+} в тетраэдрической координации [7].

В Li-содержащих образцах спектры ЭПР ионов Cr⁴⁺ в тетраэдрической координации не наблюдались. Но в дополнение к линиям центров Cr_{M1}^{3+} и Cr_{M2}^{3+} появилось еще столько же линий, располагающихся вблизи линий центров Cr_{M1}^{3+} и

 ${\rm Cr}_{\rm M2}^{^{3+}}$ и имеющих подобную форму (рис. 2).

Возникновение дополнительных центров при солегировании кристаллов Mg_2SiO_4 : Сг ионами лития возможно, если ион лития локализуется в структуре форстерита в непосредственной близости от иона хрома, вызывая локальное возмущение кристаллического поля. Тот факт, что к каждому из центров Cr_{M1}^{3+} и Cr_{M2}^{3+} добавляется только по одному дополнительному центру, свидетельствует о том, что ионы лития занимают одну строго определенную позицию вблизи каждого из центров.

В табл. 1 приведены ЭПР-параметры обсуждаемых центров в сравнении с соответствующими параметрами для центров хрома в форстерите и в форстерите, солегированном алюминием, замещающим ионы кремния [5, 9]. Из таблицы видно, что растворение алюминия в форстерите значительно сильнее меняет величину начального расщепления кристаллического поля (*D*), ромбичность (*E*) и характеристику искажения кристаллического поля (*E/D*) центров Cr^{3+} , чем растворение лития. Это объясняется тем, что литий, замещающий ионы магния, более удален от ионов Cr^{3+} , чем алюминий, локализующийся в позиции кремния (рис. 3) и, следовательно, слабее искажает координационный полиэдр Cr^{3+} .

Рис. 1. Спектр ЭПР образца форстерита с хромом, не содержащего Li, в X-диапазоне при комнатной температуре. Линии, принадлежащие центру $\operatorname{Cr}_{M1}^{3+}$, отмечены пустыми квадратами, центру $\operatorname{Cr}_{M2}^{3+}$ – пустыми кружками, а Cr^{4+} в тетраэдрической координации – крестиками.

Рис. 2. Спектр ЭПР образца Li-содержащего форстерита с хромом в X-диапазоне при комнатной температуре. Линии, принадлежащие центру Cr_{M1}^{3+} , отмечены пустыми квадратами, центру Cr_{M2}^{3+} – пустыми кружками, а Cr_{M1}^{3+} –Li⁺ и Cr_{M2}^{3+} –Li⁺ – залитыми квадратами и кружками, соответственно.

ГЕОХИМИЯ № 2 2003

МИНЕЕВА и др.

Параметры	Cr_{M1}^{3+}			Cr _{M2}		
	изолир. Cr	Cr–Al	Cr–Li	изолир. Cr	Cr–Al	Cr–Li
g_x	1.980	1.981	1.980	1.970	1.978	1.970
g_y	1.980	1.978	1.980	1.979	1.981	1.970
g_z	1.974	1.975	1.975	1.970	1.975	1.975
D/Ghz	30.6	23.6	31.1	21.1	25.8	22.0
E/Ghz	8.48	5.28	8.24	2.60	0.30	3.4
E/D	0.277	0.22	0.265	0.123	0.01	0.15

Таблица 1. Параметры спин-гамильтониана для новых и ранее изученных [9] парамагнитных центров с участием Cr³⁺ в форстерите

Таблица 2. Энергии образования примесных изолированных дефектов и их ассоциатов в кристаллах Mg₂SiO₄ : Cr, Li по данным структурного компьютерного моделирования

Дефект	Е _{обр} , эВ	Набор изолиро- ванных дефектов	Σ($E_{oбp}$), эВ	Ассоциаты дефектов	Е _{обр} , эВ
Cr _{M1} ³⁺	-25.8	Cr_{M1}^{3+} ; Li_{M1}^{+}	-14.8	$Cr_{M1}^{3+}-Li_{M1}^{+}$	-15.5
Cr_{M2}^{3+}	-24.5	Cr_{M2}^{3+} ; Li_{M1}^{+}	-13.5	$Cr_{M2}^{3+}-Li_{M1}^{+}$	-14.2
$\mathrm{Li}_{\mathrm{M1}}^+$	+11.0	$Cr_{M1}^{3+}; Li_{M2}^{+}$	-11.8	$Cr_{M1}^{3+}-Li_{M2}^{+}$	-12.7
Li_{M2}^{+}	+14.0	Cr_{M2}^{3+} ; Li_{M2}^{+}	-10.5	$Cr_{M2}^{3+}-Li_{M2}^{+}$	-11.0

Для выяснения структуры дополнительных центров нами было проведено компьютерное моделирование дефектов в кристаллах Mg_2SiO_4 : Cr, Li с использованием программного комплекса GULP (General Utility Lattice Program) [10]. В основу алгоритма программы положена процедура минимизации статической энергии кристаллической решетки. Моделирование структуры прово-

Рис. 3. Фрагмент структуры оливина: полиэдры М1 и М2 и соприкасающиеся с ними тетраэдры SiO₄.

дилось в рамках ионного приближения с частичным учетом эффектов ковалентности. Энергия кристалла определялась на основе полуэмпирических потенциалов взаимодействия отдельных пар или групп ионов. В расчетах использован набор потенциалов, предложенный в [11] специально для описания структуры форстерита. По сравнению с ранее использовавшимися моделями, где трехчастичные взаимодействия учитывались лишь для связи О-Si-O, в модель [11] дополнительно введены трехчастичные потенциалы О-Мg_{M1}-О и О-Мд_{м2}-О для учета существенно различного характера искажений октаэдрических позиций M1 и M2 и частично ковалентного характера связи Mg-О. Необходимость учета этих особенностей при расчете энергетических характеристик форстерита была показана в работе [12].

По данным моделирования структуры нелегированного форстерита по потенциалам [11] минимальные расстояния между кристаллографическими позициями составляют: M1–M1 – 2.99 Å, M1–M2 – 3.20 Å, M1–Si – 2.70 Å, M2–Si – 2.79 Å. По сравнению с M1, кремниевая позиция ближе к соседней позиции M1 на 0.3 Å и к M2 на 0.2 Å.

Результаты расчетов для легированных кристаллов приведены в табл. 2. Из таблицы видно, что ассоциаты, в которых ионы лития занимают позицию М1, энергетически более выгодны. Энер-

212

гия образования ассоциатов $Cr^{3+}-Li^+$ ниже, чем суммарная энергия образования двух изолированных центров Cr^{3+} и Li^+ в кристаллах Mg_2SiO_4 : Cr, Li. Энергетический выигрыш при образовании ассоциата $Cr^{3+}_{M1}-Li^+_{M1}$ из двух изолированных дефектов составляет 0.7 эВ, ассоциата $Cr^{3+}_{M2}-Li^+_{M1}$

Таким образом, результаты расчетов подтверждают предположение о том, что новыми центрами в кристаллах Mg_2SiO_4 : Cr, Li могут быть ассоциаты $Cr_{M1}^{3+}-Li_{M1}^+$ и $Cr_{M2}^{3+}-Li_{M1}^+$. Для получения более детальной информации об обнаруженных центрах необходимо проведение ЭПР-исследования на серии монокристаллических образцов с различным мольным соотношением Cr : Li в кристаллах.

выводы

1. Исследованы спектры ЭПР порошковых образцов кристаллов Mg_2SiO_4 : Сг и Mg_2SiO_4 : Сг, Li. Проведено структурное компьютерное моделирование дефектов.

2. В кристаллах Mg_2SiO_4 : Сг найдены центры Cr_{M1}^{3+} , Cr_{M2}^{3+} и Cr^{4+} . Установлено, что дополнительное легирование литием приводит к исчезновению центров Cr^{4+} .

3. Показано, что в кристаллах Mg_2SiO_4 : Cr, Li наряду с центрами Cr_{M1}^{3+} и Cr_{M2}^{3+} появляются новые центры, представляющие собой ассоциаты Cr_{M1}^{3+} –Li_{M1} и Cr_{M2}^{3+} –Li_{M1}.

Работа выполнена при финансовой поддержке РФФИ (проекты № 99-02-18456, 99-05-65139, 00-02-16103, 00-15-98582).

СПИСОК ЛИТЕРАТУРЫ

 Petricevic V., Gayen S.K., Alfano R.R. et al. Laser action in chromium-doped forsterite // Appl. Phys. Lett. 1988. V. 52. P. 1040–1042.

- Baryshevski V.G., Korzhik M.V., Livshitz M.G. et al. Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping // OSA Proceedings on advanced solid-state lasers / Ed. Dube G., Chase L. Hilton Head: OSA, 1991. V. 10. P. 26–34.
- Gaister A.V., Zharikov E.V., Smirnov V.A. et al. Mg₂SiO₄: Cr(III) single crystals as promising laser material for 1μ spectral range // Proceedings of third international conference "Single crystal growth, strength problems and heat mass transfer". Obninsk: IPPE, 1999. V. 1. P. 106–114.
- Скрипко Г.А., Матросов В.Н., Дворников С.С., Золотарева Л.Е. Спектроскопические характеристики монокристаллов Mg₂SiO₄ : Cr³⁺// Опт. спектр. 1990. Т. 6. С. 228–230.
- 5. *Rager H*. Electron spin resonance of trivalent chromium in forsterite // Phys. Chem. Minerals. 1977. V. 1. № 4. P. 371–378.
- 6. Бершов Л.В., Минеева Р.М., Сперанский А.В., Хафнер С.С. Вхождение хрома и алюминия в структуру форстерита (по данным ЭПР- и ДЭЯРисследований) // Минерал. журнал. 1981. Т. З. № 3. С. 62–70.
- Budil D.E., Park D.G., Freed J.H. et al. 9.6 GHz and 34 GHz electron paramagnetic resonance studies of chromium-doped forsterite // J. Chem. Phys. 1994. V. 101. P. 3538–3548.
- Casas-Gonzalez J., Jacobsen S.M., Hoffman K.R., Yen W.M. Electron paramagnetic resonance spectroscopy of chromium-doped forsterite (Mg₂SiO₄) // OSA Proceedings on Advanced Solid-State Lasers. 1991. V. 10. P. 64–68.
- Bershov L.V., Gaite J.-M., Hafner S.S., Rager H. Electron paramagnetic resonance and ENDOR studies of Cr³⁺-Al³⁺ pairs in forsterite // Phys. Chem. Minerals. 1983. V. 9. P. 95–101.
- Gale J.D. GULP: A computer programm for the symmetry adopted simulation of solids // J. Chem. Soc. Faraday Trans. 1997. V. 93. P. 629–637.
- Pavese A. Thermoelastic and structural properties of forsterite as function of P and T: a computer simulation study, by semi-classical potentials and quasi-harmonic approximation // Phys. Chem. Minerals. 1998. V. 26. P. 44–54.
- Минеева Р.М. Интерпретация упорядочения катионов в оливинах на основе энергетических представлений // Конституция и свойства минералов. Киев: Наукова думка, 1975. Вып. 9. С. 29–37.