К ПРОБЛЕМЕ ГРАНИТООБРАЗОВАНИЯ В РАННЕПРОТЕРОЗОЙСКИХ РИФТОГЕННЫХ ПОЯСАХ НА ПРИМЕРЕ ЮЖНО-ПЕЧЕНГСКОЙ ЗОНЫ (КОЛЬСКИЙ ПОЛУОСТРОВ)

© 2003 г. П. К. Скуфьин, Т. Б. Баянова, В. Ф. Смолькин, Е. А. Апанасевич, Н. В. Левкович

> Геологический институт КНЦ РАН 184200 Апатиты Мурманской обл., ул. Ферсмана, 14 Поступила в редакцию 17.05.2001 г.

Одним из ключевых вопросов реконструкции геодинамических режимов Печенгско-Варзугского пояса является вопрос о времени и происхождении гранитоидов, развитых в южном обрамлении пояса, прежде всего в юго-западном обрамлении Печенгской структуры. Здесь широко представлены куполовидные массивы гранитоидов, крупнейшими из которых являются Каскельяврский и Шуонияврский. По геофизическим данным установлено, что они являются бескорневыми куполами, нижняя граница которых расположена на глубине около 3 км. Массивы сложены гранодиоритами и кварцевыми диоритами первой фазы и плагиогранитами второй фазы. Для определения абсолютного возраста плагиогранитов был использован U-Pb метод изотопного датирования акцессорных минералов (циркон, титанит) из плагиогранитов. Выделено два типа цирконов и титанитов магматического и метаморфического генезиса, различающиеся по форме, цвету и составу. Метаморфические цирконы сильно дискордантны, изохрона по ним отвечает возрасту 1735 ± 24 млн. лет, при СКВО = 0.28. Этот возраст соответствует времени поздней стадии карельского этапа или свекофеннскому метаморфизму, широко проявленному в пределах Печенгской структуры и ее фундамента. Изохрона, построенная по фракциям магматических циркона и титанита, имеет значение верхнего пересечения с конкордией, равное 1939 ± 7 млн. лет при СКВО = 0.2, что интерпретируется как время формирования плагиогранитов Шуонияврского массива. Полученные данные свидетельствуют, что формирование гранитоидов в Южно-Печенгской зоне произошло несколько позднее (на 40 млн. лет) времени формирования мощных ферропикрит-базальтовых толщ и внедрения никеленосных интрузий габбро-верлитов в пределах Северо-Печенгской зоны, которые фиксируют этап максимального раздвига палеорифта.

Практически через весь Кольский регион с юго-востока на северо-запад протягивается Печенгско-Варзугский пояс, сложенный преимущественно вулканогенными и, в меньшей мере, осадочными породами раннепротерозойского возраста, метаморфизованными в условиях от зеленосланцевой до амфиболитовой фации [1-5]. Общая мощность сводного разреза достигает 15 км. Пояс развивался в течение значительного периода времени – более 650 млн. лет, и в истории его развития можно выделить до шести циклов эффузивного магматизма, разделенных периодами преимущественного осадконакопления [6]. Помимо вулканитов, характерным для пояса является широкое развитие интрузий, сложенных породами различного состава, в том числе гранитоидами. Гранитоиды, залегая в обрамлении пояса, в архейском фундаменте, имеют различный возраст, генезис и рудную специализацию.

Для Печенгско-Варзугского пояса были предложены разнообразные модели и схемы геодинамического развития, которые условно можно разделить на две основные группы. Одна из них объединяет модели, в основу которых положена популярная в настоящее время теория тектоники плит [5, 7, 8]. В этих моделях предусматривается, что пояс на одном из этапов своего развития представлял океанический бассейн и соответственно имел кору океанического типа. Другая группа моделей базируется на теории рифтогенеза, согласно которой пояс развивался как внутриконтинентальная система без образования коры океанического типа [3, 4, 9]. В то же время большинством исследователей признается, что Печенгско-Варзугский пояс претерпел на заключительном, позднекарельском или свекофеннском, этапе своего развития существенную структурную и тектоническую перестройку, сопровождаемую интенсивными метаморфическими преобразованиями породных комплексов.

Одним из ключевых вопросов реконструкции геодинамических режимов Печенгско-Варзугского пояса является вопрос о времени и происхождении гранитоидов, широко развитых в южных обрамлениях пояса и залегающих в виде четко выраженных куполов или их тектонически нарушенных фрагментов. До 80-х годов они относились к позднеархейской формации диоритов-плагиогранитов, а в последующем, после получения первых результатов Pb—Pb исследований, к раннепротерозойскому комплексу [10]. В данной работе приводятся данные петрологического и геохронологического изучения одного из таких куполов – Шуонияврского (или Шуонинского), залегающего в юго-западной части Печенгского района Мурманской области.

ОБЩАЯ ГЕОЛОГИЯ

Одним из наиболее изученных фрагментов Печенгско-Варзугского пояса является Печенгская структура, занимающая площадь более 2000 км². В ее пределах пробурена Кольская сверхглубокая скважина (СГ-3), а также выполнен большой объем геологических и геофизических работ [6, 11, 12]. Характерным для нее является асимметричное строение. Северная часть, или Северо-Печенгская зона, имеет мульдообразное строение и выполнена относительно слабо метаморфизованными и пологозалегающими на юг и юго-запад осадочно-вулканогенными породами преимущественно основного состава общей мощностью около 11 км, а южная часть, или Южно-Печенгская зона, сложена сильно метаморфизованными, крутопадающими на юго-запад осадочно-вулканогенными породами преимущественно среднего и основного состава общей мощностью около 5 км [11]. Северо- и Южно-Печенгская зоны разделены системой Порьиташских разломов, крутонаклоненных на юго-запад под углами 75-85° и прослеженных геофизическими методами на глубину 7-8 км [12].

Гранитные купола, наиболее крупными из которых являются Шуонияврский, Мауняврский и Каскельяврский, залегают в юго-западной части Южно-Печенгской зоны (рис. 1). Совместно с более мелкими куполами (Руосельский и др.) они занимают площадь более 400 км². По данным вибросейсмических исследований, купола являются бескорневыми, нижняя их граница располагается на глубине около 3.0 км [12]. Ниже куполов располагается зона относительно гомогенного строения архейского фундамента мощностью до 3 км. Внутреннее строение куполов определяется системой пологих надвигов, а также субвертикальными нарушеними, разделяющими их на более мелкие блоки. Северо-западные и северо-восточные границы куполов обусловлены их контактом со сланцеватыми амфиболитами, выходы которых образуют полосу обнажений шириною от 0.5 до 1.0 км. Сланцеватые амфиболиты, судя по их петрохимическим и геохимическим особенностям, формировались преимущественно за счет

ГЕОХИМИЯ № 3 2003

вулканогенных пород основного и ультраосновного состава Южно-Печенгской зоны, а также более ранних архейских образований [11]. Южные границы куполов определены системой тектонических нарушений северо-западного направления, отделяющих их от архейского комплекса гранито-гнейсов, гнейсов и мигматитов. В районе, расположенном на юго-запад от Шуонияврского купола, залегают гранат-амфиболовые гнейсы тальинской толщи, модельные Sm–Nd возраста которых свидетельствуют о раннепротерозойском возрасте исходного для них протолита [13], т.е. первоначально некоторые купола могли иметь на юго-западе границу с раннепротерозойскими супракрустальными образованиями.

Современная структура куполов и межкупольных пространств в значительной степени сложилась, как следует из анализа современных геофизических (вибросейсмических, сейсмических, аэромагнитных и гравиметрических) данных, в результате латерального перемещения в северовосточном направлении тектонического блокапластины, сложенного породами архейского комплекса, из центральной части Центрально-Кольского блока [12]. Эта пластина была надвинута на купола уже после формирования гранитоидов Лицко-Арагубского комплекса. При этом Каскельяврский и Мауняврский купола были деформированы значительно интенсивнее, по сравнению с Шуонияврским.

Купола сложены породами разных интрузивных фаз: кварцевыми диоритами и диоритами первой фазы, слагающими преимущественно Каскельяврский и Мауняврский массивы, и породами более поздней, второй фазы, представленными плагиогранитами Шуонияврского массива [14, 15]. Плагиограниты, по сравнению с гранодиоритами и кварцевыми диоритами, лучше сохранились и не столь затронуты вторичными процессами катаклаза, рассланцевания и метаморфической перекристаллизации, что делает их предпочтительными для геохронологического датирования. В краевой части Каскельяврского купола располагается зона мигматизации мощностью от несколько сот метров до 2 км. Жильная фация представлена пластовыми телами плагиогранитов и гранодиоритов. Они секут как породы самого массива, так и сланцеватые амфиболиты. Помимо этого, описано воздействие жильной фазы на сланцы Южно-Печенгской зоны [14].

ПЕТРОГРАФИЯ И ПЕТРОХИМИЯ

Гранодиориты и кварцевые диориты первой фазы представляют собою гнейсовидные, иногда порфировидные породы серого и розовато-серого цвета. Они обладают трахитоидной текстурой, плоскопараллельная ориентация которой совпадает с элементами залегания вмещающих супракрус-

Рис. 1. Схематическая геологическая карта западной части Печенгской структуры.

Южно-Печенгская зона: 1 – дациты субвулканического комплекса г. Порьиташ; 2 – туфоконгломераты и песчаники кассесйокской свиты; 3 – андезиты каплинской свиты; 4 – пикробазальты и пикриты менельской свиты (а – массивные, б – рассланцованные); 5 – базальты, туфы базальтового состава и туффиты брагинской свиты; 6 – туфы андезитового состава и туффиты каллояурской свиты; 7 – биотитовые и гранат-биотитовые гнейсо-сланцы тальинской свиты; 8 – сланцеватые амфиболиты; 9 – плагиограниты Шуонияврского массива.

Северо-Печенгская зона: 10 – базальты суппваарской свиты; 11 – ферропикриты, базальты и их туфы верхней (a), средней (б) и нижней (в) толщ свиты матерт; 12 – песчаники и углеродистые сланцы ждановской свиты; 13 – базальты заполярнинской свиты; 14 – песчаники и доломиты лучломпольской свиты; 15 – базальты верхней части пирттиярвинской свиты (a), муджиериты, трахиандезиты и трахиты нижней части пирттиярвинской свиты (б); 16 – кварциты и доломиты кувернеринйокской свиты; 17 – базальты, андезибазальты и андезиты маярвинской свиты; 18 – базальные конгломераты и гравелиты телевинской свиты.

Позднеархейский гранито-гнейсовый комплекс: 19 – глиноземистые гнейсы; 20 – биотитовые и биотит-амфиболовые гнейсы, амфиболиты.

21 – тектонические нарушения: долгоживущие конседиментационные (*a*), крутопадающие (б), взбросо-надвиги и сдвиги (*в*), надвиги (*г*). В северной части карты треугольником отмечено положение Кольской сверхглубокой скважины СГ-3. Место отбора пробы показано звездочкой. тальных пород, а также шлировидных обособлений горнблендитов в эндоконтактах массивов. Структура их гипидиоморфнозернистая, бластогранитная и гранобластовая. Средний состав кварцевого диорита следующий (в объем. %): плагиоклаз – 60, кварц – 15, микроклин – 3, амфибол – 15 и биотит – 7. Акцессорные минералы представлены магнетитом, титанитом, апатитом, цирконом и ортитом.

Плагиограниты Шуонияврского массива представлены гнейсовидными (в краевых частях), трахитоидными или массивными среднезернистыми разновидностями розовато-серого цвета. Для них характерной является гипидиоморфнозернистая, иногда бластокатакластическая, структуры. Средний минеральный состав плагиогранита (в объем. %): плагиоклаз – 43, кварц – 35, микроклин – 10, биотит – 12. Второстепенные минералы представлены амфиболом, хлоритом и эпидотом; акцессорные – магнетитом, титанитом, апатитом, цирконом, ортитом и пиритом. Кристаллизация расплава начиналась с образования плагиоклаза, затем кристаллизовались микроклин, биотит и кварц.

В табл. 1 приведен химический состав гранитоидов Шуонияврского и Каскельяврского массивов, а в табл. 2 – состав первично-магматических биотитов и амфиболов из этих пород. Петрохимические особенности плагиогранитов и диоритов свидетельствуют, что они относятся к серии пород нормальной щелочности, пересыщенных глиноземом. При этом плагиограниты относятся к гиперстен-нормативным, а гранодиориты и кварцевые диориты - к гиперстен-диопсид-нормативным разновидностям. По химическим особенностям гранитоиды Южно-Печенгской зоны сходны с породами малокалиевой диорит-трондьемитгранитной формации Урала [15]. Жильная фаза плагиогранитов представлена более основными породами, приближающимися по составу к гранодиоритам. Амфиболы представлены зеленой роговой обманкой, а биотиты – сидерофилитовой разновидностью.

ИЗОТОПНЫЕ ИССЛЕДОВАНИЯ

Предыдущие исследования

Изотопный возраст кварцевых диоритов Каскельяврского массива ранее был установлен на основании Pb–Pb изохронного метода изучения акцессорного циркона, титанита и апатита [10]. Циркон представлен бесцветными и буроватыми кристаллами гиацинтового типа однородного строения при небольшом уменьшении отношения ZrO₂/HfO₂ от центра (61) к периферии (46). Титанит слагает зональные кристаллы, центр которых сложен бурой разновидностью, обогащенной редкими землями и содержащей микровключения рутила, а

ГЕОХИМИЯ № 3 2003

кайма – желтой разновидностью. Первичное отношение 87 Sr/ 86 Sr в титаните равно 0.7031 ± 0.0003, тогда как в апатите оно колеблется от 0.7032 до 0.7077, что указывает на частичное нарушение изотопной системы в апатите, по-видимому, в результате наложенных процессов метаморфизма. Возраст, рассчитанный по всей совокупности изотопных составов указанных акцессорных минералов, составляет 1940 ± 40 (ошибка 2 σ) млн. лет, что принималось за возраст формирования массива.

Для плагиогранитов Шуонияврского массива также был выполнен комплекс Pb–Pb исследования пород и минералов, согласно которым время их формирования колеблется от 2180 до 2140 млн. лет при ошибке определения (2 σ), превышающей 65 млн. лет [16]. На основании вышеприведенных данных предполагалось, что плагиограниты формировались ранее кварцевых диоритов, что было положено в основу геодинамической модели [8].

Необходимо отметить, что по данным изучения керна СГ-3, в фундаменте Северо-Печенгской зоны наряду с жильными гранитоидами архейского возраста были встречены жилы порфировидных гранитов на глубине 9.1–9.7 км с возрастом циркона 1765 ± 2 млн. лет [6]. Они хорошо коррелируются по составу и возрасту с гранитами Лицко-Арагубского комплекса, массивы которых, имея северо-восточную ориентировку, располагаются западнее Печенгской структуры. Этот возраст совпадает также с максимальным пиком метаморфических преобразований вулканогенных и интрузивных пород Северо-Печенгской зоны [11].

Результаты U–Pb изучения циркона и титанита и их обсуждение

Для определения возраста пород Шуонияврского массива была отобрана проба весом 70 км, в районе 9-го километра дороги пос. Никель – пос. Приречный. Дорога пересекает купол в его восточной части в направлении север-юг. Из пробы, представленной среднезернистым гнейсовидным плагиогранитом, были получены концентраты акцессорного циркона и титанита (рис. 2). Вручную было отобрано пять популяций циркона, разделенных по степени удлинения и толщины кристаллов, и две разновидности титанита (табл. 3, точки 1–7). Популяция циркона (точка 1) – это длиннопризматические кристаллы и обломки (точка 2) с коэффициентом удлинения 5-6, все зерна белые, прозрачные, со стеклянным блеском и окатанными поверхностями призмы и дипирамиды, размерами 120-150 мкм. В иммерсионной среде под микроскопом наблюдается сильная трещиноватость и грубая редкая зональность, характерная для цирконов из метаморфических пород (рис. 2а). Популяции циркона (точка 3) – это призматические кристаллы размерами до 100 мкм, с окатанными гранями призмы и дипирамиды, бе-

СКУФЬИН и др.

Компо- ненты	1	2	3	4	5	6	7	8	9
SiO ₂	70.92	73.57	72.17	67.38	68.50	68.87	60.00	63.19	57.76
TiO ₂	0.18	0.16	0.20	0.54	0.34	0.19	1.02	0.78	1.01
Al_2O_3	14.65	13.43	13.80	15.45	14.06	16.55	15.34	14.97	16.80
Fe ₂ O ₃	1.48	0.93	1.40	0.63	0.00	0.75	2.60	2.87	3.78
FeO	0.91	1.64	1.65	2.46	3.44	1.16	4.48	3.52	3.62
MnO	0.03	0.03	0.03	0.05	0.05	0.02	0.11	0.09	0.11
MgO	0.62	0.42	0.45	1.25	1.07	0.89	3.69	2.37	3.72
CaO	2.60	1.70	1.70	3.97	1.68	1.63	6.34	5.14	6.59
Na ₂ O	4.82	5.14	4.81	6.42	5.29	5.85	3.71	4.26	4.84
K ₂ O	2.10	2.30	2.52	0.51	2.67	1.38	1.10	1.14	0.63
H_2O^-	0.28	0.16	0.14	0.04	0.15	0.32	0.16	0.20	0.16
H_2O^+	0.41	0.27	0.49	0.44	1.08	1.24	1.04	1.02	0.85
P_2O_5	0.07	0.08	0.12	0.19	0.12	0.07	н. оп.	0.20	0.23
CO_2	0.15	0.26	0.05	0.50	1.00	0.55	н. оп.	0.10	0.07
Сумма	99.22	100.10	99.52	99.83	99.45	99.47	99.59	99.85	100.20
Li ₂ O	35	28	23	9	32	19	н. оп.	38	29
Rb ₂ O	47	60	59	17	69	33	н. оп.	23	12
Cs ₂ O	0.7	0.2	0.2	0.3	0.5	0.4	н. оп.	0.4	0.2
Cu	8	12	11	92	110	84	н. оп.	18	20
Ni	0	13	11	55	85	11	н. оп.	39	85
Co	0	10	10	0	42	8	н. оп.	20	25
Cr	4	11	10	74	98	12	н. оп.	90	91
V	22	14	15	47	300	9	н. оп.	95	160
Sr	720	530	568	1060	122	144	н. оп.	560	690
Ba	1280	920	1470	330	470	300	н. оп.	480	270
	I.		l I	Нормативн	ый состав	I.			,
Q	28.75	30.52	29.73	18.94	21.56	23.60	15.11	20.13	9.29
Ort	12.39	13.58	14.87	3.01	15.76	8.15	6.49	6.73	3.72
Ab	40.74	43.45	40.66	54.26	44.71	49.45	31.36	36.01	40.91
An	11.48	6.26	7.33	11.84	1.23	4.15	21.95	18.36	22.25
Нур	1.74	3.07	2.69	4.88	8.50	3.44	10.03	6.81	8.09
Di	-	-	-	2.85	-	-	7.66	4.19	6.72
Cal	0.34	0.59	0.11	1.14	2.27	1.25	-	0.23	0.16
Ap	0.17	0.19	0.28	0.45	0.28	0.17	_	0.47	0.54
Ilm	0.34	0.30	0.38	1.03	0.65	0.36	1.94	1.48	1.92
Mag	2.15	1.35	2.03	0.92	-	1.09	3.78	4.17	5.49
Als	0.38	0.31	0.76	_	3.21	6.22	_	-	_

Таблица 1. Химический и нормативный составы гранитоидов Шуонияврского и Каскельяврского массивов (мас. %, ppm)

Примечание. 1-9 - гранитоиды Шуонияврского (1-6) и Каскельяврского (7-9) массивов.

1, 4, 7–9 – из работы [10]; 2, 3, 5, 6 – авторские данные. 1 – биотитовый плагиогранит из краевой зоны; 2, 3, 6 – биотитовый микроклин-плагиоклазовый гранит; 4, 5 – жильный плагиогранит к северу от массива; 7 – амфиболовый кварцевый диорит; 8–9 – амфибол-биотитовый кварцевый диорит.

лые, прозрачные. В иммерсии наблюдается сильная трещиноватость и большое количество газово-жидких бесцветных включений. Цирконы (точка 4) из-за сильной трещиноватости были

подвержены ультразвуковой обработке для уменьшения количества обыкновенного свинца, проникающего по трещинам. Кроме цирконов длиннопризматического габитуса были отобра-

270

К ПРОБЛЕМЕ ГРАНИТООБРАЗОВАНИЯ

Компоненты	1(4)	2(7)	3(8)	4(9)	5(1)	6(7)	7(8)	8(9)
SiO ₂	43.88	42.34	42.35	42.28	36.62	37.19	37.69	36.73
TiO ₂	0.85	3.00	0.78	0.86	2.19	1.88	2.18	2.37
Al_2O_3	11.52	11.71	12.87	12.58	16.46	15.88	15.52	14.79
Fe ₂ O ₃	н. оп.	6.91	н. оп.	4.94	4.66	3.30	4.49	4.29
FeO	17.90	12.33	20.25	12.99	18.12	17.13	15.67	14.49
MnO	0.22	0.37	0.36	0.28	0.34	0.22	0.23	0.13
MgO	8.75	8.98	7.77	9.65	7.78	11.74	10.50	13.21
Na ₂ O	1.37	1.26	1.65	1.63	0.12	0.34	0.19	0.00
K ₂ O	0.91	0.64	1.04	0.69	9.01	8.90	9.77	9.73
H_2O^-	н. оп.	0.11	н. оп.	н. оп.	0.05	0.18	0.15	0.16
H_2O^+	н. оп.	1.62	н. оп.	1.96	3.21	2.29	3.27	3.80
P_2O_5	н. оп.	0.06	н. оп.	0.15	н. оп.	н. оп.	н. оп.	н. оп.
Сумма	96.35	100.30	98.53	99.83	98.96	100.40	99.66	99.73
Li ₂ O	н. оп.	50	н. оп.	29	515	254	300	427
Rb ₂ O	н. оп.	н. оп.	н. оп.	18	552	340	283	197
Cs ₂ O	н. оп.	н. оп.	н. оп.	0	12.5	н. оп.	2.2	5.9

Таблица 2. Химический состав минералов из гранитоидов Шуонияврского и Каскельяврского массивов (мас. %, ppm)

Примечание. 1-4 – амфиболы; 5-8 – биотиты. Н. оп – не определялся.

Номера анализов минералов в скобках соответствуют номерам анализов пород из табл. 1.

Проба] №	Навеска мг	Содержание, ррт		Изотопный состав свинца*			Изотопные отношения		Возраст, млн. лет	
		РЬ общ.	U	$\frac{\frac{206}{Pb}}{\frac{204}{Pb}}$	$\frac{\frac{206}{Pb}}{\frac{207}{Pb}}$	$\frac{\frac{206}{Pb}}{\frac{208}{Pb}}$	$\frac{\frac{207}{Pb}}{\frac{235}{U}}$	$\frac{\frac{206}{Pb}}{\frac{238}{U}}$	$\frac{{}^{207}\text{Pb}}{{}^{206}\text{Pb}}$	Rho
Метаморфический циркон										
1**	0.35	94	484.1	501	7.677	5.712	2.388 (0.8%)	0.1667 (0.7%)	1695 ± 11	0.68
2**	1.10	290	1462	364	7.132	4.448	2.285 (0.9%)	0.1595 (0.8%)	1695 ± 6	0.92
3**	0.90	411	1869	520	7.689	5.479	2.699 (0.7%)	0.1870 (0.7%)	1709 ± 8	0.73
4**	0.55	268	1588	270	6.550	3.896	1.860 (2.0%)	0.1310 (1.0%)	1694 ± 30	0.53
Магматический циркон и титанит										
5***	1.10	408	860	1315	7.972	5.568	3.120 (1.7%)	0.1916 (0.7%)	1928 ± 26	0.61
6***	1.90	118	157	94	3.911	1.406	5.713 (1.5%)	0.3486 (0.7%)	1939 ± 22	0.71
7***	2.90	67	122	185	5.305	1.857	5.548 (2.0%)	0.3385 (2.0%)	1939 ± 7	0.98

Таблица 3. Изотопные U-Pb данные для циркона (1-5) и титанита (6-7) из плагиогранитов Шуонияврского массива

* Отношения скорректированы на холостое загрязнение 0.2 нг по Pb и 0.04 нг по U, и на масс-дискриминацию $0.17 \pm 0.05\%$. ** Введена поправка на изотопный состав легкого плагиоклаза: 206 Pb/ 204 Pb = 19.5 ± 0.02 ; 207 Pb/ 204 Pb = 15.22 ± 0.03 ; 208 Pb/ 204 Pb =

 $= 34.8 \pm 0.02$

*** Введена поправка на изотопный состав тяжелого плагиоклаза: 206 Pb/ 204 Pb = 15.32 ± 0.01; 207 Pb/ 204 Pb = 15.23 ± 0.03; 208 Pb/ 204 Pb = 34.96 ± 0.04.

ны призматические, бесцветные кристаллы с коэффициентом удлинения 1–3 и размерами до 80 мкм (точка 5), в иммерсии видна хорошая магматическая зональность и большое количество газово-жидких включений (рис. 26, 2в). К таким цирконам была применена методика кислотного двухстадийного растворения для снижения количества обыкновенного свинца и уменьшения степени дискордантности. Навеска в 1.1 мг цирконов заливалась HF 48N в термостат в тефлоновой бомбе, погруженной в железный стакан, при температуре 200–210°С. Затем охлаждалась, и пер-

ГЕОХИМИЯ № 3 2003

Рис. 2. Морфология и строение цирконов метаморфического (а) и магматического (б, в) генезиса, а также титанита (г).

а – длиннопризматический циркон, размеры (по длинной оси) 120 мкм; б – призматический зональный циркон, размеры 80 мкм; в – REM-фото призматического циркона, размеры 80–100 мкм; г – титанит, размеры 100 мкм.

Рис. 3. U–Pb диаграмма с конкордией для циркона и титанита из плагиогранита Шуонияврского массива. $T_1 = 1939 \pm 7$ млн. лет, $T_2 = 1735 \pm 24$ млн. лет.

вая порция растворенного циркона (предположительно, его метамиктная фаза) сливалась, затем вторая порция разлагалась по методике Т. Кроу [17]. Кроме цирконов на U-Рb датирование были отобраны вручную две навески титанита. В шлифах наблюдается две разновидности титанита – ранняя и поздняя, которые прекрасно отличаются по цвету и размеру. Ранний титанит (точки 6–7), который был отобран для U-Pb исследований это кристаллы и фрагменты мелких (до 100 мкм) зерен, слабо коричневого цвета, с алмазным блеском на сохранявшихся гранях, которые находятся внутри кристаллов неизмененного, тяжелого плагиоклаза (рис. 2г). Поздний титанит – это крупные (до 250 мкм) кристаллы и обломки темно-коричневого цвета и стеклянного блеска, расположенные в межинтерстиционном пространстве, не анализировался. Химическое растворение двух фракций титанита проводилось по методике [17]. Все аналитические и графические результаты представлены (табл. 3, рис. 3). Всего было проанализировано пять фракций циркона и две титанита. Все изотопные измерения проводились на масс-спектрометре МИ 1201-Т, ошибки воспроизводимости

ГЕОХИМИЯ № 3 2003

U–Pb отношений равны 0.7%, когда они выше, то берутся истинные значения (табл. 3). Использовался силикагель и смешанный ²⁰⁸Pb/²³⁵U трассер. Холостое загрязнение не превышало значений 0.2 нг по Pb и 0.04 по U. Координаты точек и параметры изохрон обсчитывались по программам К. Людвига [18, 19]. В расчет были взяты принятые величины констант распада [20], для поправки большой примеси обыкновенного свинца были проанализированы легкий и тяжелый плагиоклаз, и внесена коррекция на его изотопный состав для изучения популяций циркона и титанита, все ошибки даны на уровне 2*о*.

Цирконы фракций (точки 1-4) сильно дискордантны, U-Pb изохрона по четырем точкам отвечает возрасту 1735 ± 24 млн. лет, при СКВО = 0.28, нижнее пересечение равно 79 ± 47 млн. лет и, очевидно, соответствует времени гипергенеза. Мы интерпретируем этот возраст как время широко проявленного низкотемпературного метаморфизма зеленосланцевой фации в Южно-Печенгском районе. Изохрона, построенная по одной фракции циркона (точка 5) и двух титанита (точки 6-7), имеет U-Pb возраст верхнего пересечения с конкордией равный 1939 \pm 7 млн. лет, СКВО = 0.2, а нижнее пересечение равно нулю и отвечает современным потерям свинца. Координаты двух точек титанита (6-7) имеют близконкордантное значение, U-Pb система в них почти не нарушена, в то время как одна точка (5) циркона сильно дискордантна, но степень дискордантности точки (5) значительно уменьшена за счет методики двухстадийного растворения. Поскольку температура закрытия U-Pb системы в титаните оценивается по петрологическим и экспериментальным исследованиям и равна 650-700°С [21], то возраст 1939 ± 7 млн. лет интерпретируется нами временем кристаллизации Шуонияврских гранитов, который близок возрасту Каскельяврского массива 1940 ± 17 (40) млн. лет [10]. В то же время они не подтверждают результаты исследований, выполненных ранее для Шуонияврского массива [16].

Можно отметить, что подобные случаи, когда U–Pb система сильнее нарушена в цирконе и более сохранна в других акцессорных минералах, таких как титанит и апатит, являются довольно распространенным явлением и достаточно хорошо описаны в мировой литературе. Так, например, в ранних и посттектонических гранитах Зимбабве координата точки апатита на U–Pb диаграмме находится выше, чем циркона [22].

В Кольском регионе такие соотношения, когда положение точки титанита на U–Pb диаграмме менее дискордантно по отношению к циркону, наблюдаются в Лицких гранитах, где титанит и монацит в пределах ошибок находятся на конкордии, а координата точки циркона дискордантна. На U–Pb диаграмме, построенной для циркона и титанита из пород массива Гремяха-Вырмес, точка титанита находится на конкордии, а циркон имеет более дискордантное положение [23].

На основании вышеприведенных результатов U-Рb исследований мы приходим к выводу, что процессы гранитообразования в пределах южной части западного фрагмента Печенгско-Варзугского пояса проходили в короткий промежуток времени с возрастом 1940 млн. лет. В этот же этап произошли два крупных события. Синхронно или немного раньше (1980-1956 млн. лет) в центрально-осевую часть пояса внедрились огромные массы мантийных магм в виде вулканитов толеит-базальтового и ферропикритового составов, многочисленных интрузий офитовых габбро (или габбро-диабазов), никеленосных габбро-верлитов и комплексов даек долеритов, перидотитов и оливиновых габбро [3, 11]. В центральной же части Кольского региона произошло формирование Лапландского гранулитового пояса в результате, судя по геофизическим данным, преимущественно латерального перемещения глубокозалегающих пород нижней коры на более верхний уровень [12, 24], что сопровождалось высокобарным гранулитовым метаморфизмом в период 1943–1926 млн. лет [25]. Таким образом, гранитообразование проходило синхронно с процессами растяжения (в пределах собственно Печенгско-Варзугского пояса) и сжатия (в пределах Лапландского гранулитового пояса).

Необходимо отметить, что в настоящее время нет достоверных геохронологических данных для супракрустальных пород Южно-Печенгской зоны. Имеющиеся Rb–Sr определения валовых проб средне-кислых вулканитов каплинской толщи (1855 ± 55 млн. лет) требуют подтверждения другими методами.

выводы

На основе впервые выполненных U–Pb исследований акцессорных минералов из плагиогранитов Шуонияврского купола установлено, что возраст формирования гранитоидных массивов в пределах Южно-Печенгской зоны составил 1939 ± 7 млн. лет, а их преобразования с частичным раскрытием изотопных систем – 1735 ± 24 млн. лет, что совпадает с основным пиком свекофеннского метаморфизма. Гранитообразование проходило синхронно с интенсивным мантийным магматизмом в пределах осевой части Печенгско-Варзугского пояса и перемещением гранулитовых комплексов Лапландского пояса на верхние горизонты земной коры.

Авторы благодарны Л.М. Федоровой за предоставленные фотографии циркона и титанита в иммерсии, Е.А. Савченко – за фотографии в отраженных электронах. Работа выполнена при частичной финансовой поддержке грантов РФФИ № 00-05-72032 (ЦКП), 01-05-22001, 01-05-64671 и IGCP-408.

СПИСОК ЛИТЕРАТУРЫ

- Загородный В.Г., Радченко А.Т. Тектоника карелид северо-восточной части Балтийского щита. Л.: Наука, 1988. 111 с.
- Скуфьин П.К. Эволюция вулканизма рудоносной печенгской структуры (Кольский полуостров) // Геол. рудн. месторожд. 1993. Т. 35. С. 271–283.
- 3. Смолькин В.Ф. Коматиитовый и пикритовый магматизм раннего докембрия Балтийского щита. СПб.: Наука, 1992. 278 с.
- Смолькин В.Ф. Кольская (Печенга-Варзугская) рифтогенная система // А.Д. Щеглов (отв. ред.). Магматизм и металлогения рифтогенных систем восточной части Балтийского щита. СПб.: Недра, 1993. С. 24–63.
- Melezhik V.A., Sturt B.F. General geology and evolutionary history of the early Proterozoic Polmak-Pasvik-Pechenga-Imandra // Varzuga-Ust'Ponoy Greenstone Belt in the northeastern Baltic Shield // Earth-Science Reviews. V. 36. 1994. P. 205–241.
- Кольская сверхглубокая. Научные результаты и опыт исследований. В.П. Орлов, Н.П. Лаверов (гл. ред.). М.: Технонефтьгаз, 1998. 260с.
- Berthelsen A., Marker M. Tectonics of the Kola collision suture and adjacent Archaean and Early Proterozoic terrains the northeastern region of the Baltic Shield // Tectonophysics. 1986. V. 126. P. 31–55.
- 8. Минц М.В. Палеотектонические реконструкции раннего докембрия восточной части Балтийского щита. 1. Ранний протерозой // Геотектоника. 1993. № 1. С. 39–56.
- 9. *Милановский Е.Е.* Рифтовые зоны континентов. М.: Недра, 1976. 279 с.
- Ветрин В.Р., Пушкарев Ю.Д., Рюнгенен Г.И. и др. Геологическое положение и возраст гранитоидов южного обрамления Печенги // Строение и метаморфическая эволюция главных структурных зон Балтийского щита. Апатиты: Изд. Кольского НЦ СССР, 1987. С. 83–93.
- Магматизм, седиментогенез и геодинамика Печенгской палеорифтогенной структуры. Ф.П. Митрофанов, В.Ф. Смолькин (ред.). Апатиты: Изд. Кольского НЦ РАН, 1995. 236 с.
- Сейсмогеологическая модель литосферы Северной Европы: Лапландско-Печенгский район. Н.В. Шаров (отв. ред.). Апатиты: Изд. Кольского НЦ РАН, 1997. 226 с.
- 13. *Timmerman M.J., Daly S.J.* Sm–Nd evidence for late Archaean crust formation in the Lapland – Kola Mobile

Belt, Kola Peninsula, Russia and Norway // Precambrian Res. 1995. V. 72. P. 97–107.

- 14. Виноградова Г.В. О происхождении гранитных куполов в южной части Печенгской структуры // Проблемы магматизма Балтийского щита. Л.: Наука, 1971. С. 112–117.
- Ветрин В.Р. Петрология гранитоидов южного обрамления Печенги (Кольский полуостров) // Изв. АН СССР. Сер. геол. 1988. № 6. С. 20–33.
- 16. Минц М.В., Цьонь О.В., Соботович Э.В. Время формирования лапландских гранулитов, гранитмигматитовых куполов и зеленокаменного пояса Печенга Имандра-Варзуга (Кольский полуостров) // Изв. АН СССР. Сер. геол. 1989. № 5. С. 83–91.
- 17. *Krogh T.E.* A low-contamination method for hydrothermal dissolution of zircon and extraction of U and Pb for isotopic age determinations // Geochim. et Cosmochim. Acta. 1973. V. 37. P. 485–494.
- Ludwig K.R. ISOPLOT A plotting and regression program for isotope data, version 2.56. USGS Open-File Report 91-445. 1991. 40 p.
- Ludwig K.R. PBDAT A Computer Program for Processing Pb–U–Th isotope data, version 1.22. US Geol. Surv. Open-File Rep. 1991. 38 p.
- Steiger R.H., Jäger E. Subcommission on geochronology: Convention on the use of decay conctants in geo-and cosmochronology // Earth Planet. Sci. Lett. 1977. V. 36. № 3. P. 359–362.
- Бибикова Е.В. Возможности U/Pb системы сфенов и рутилов в установлении тектоно-термальной эволюции коры в раннем докембрии // Труды XV симпоз. по геохимии изотопов им. академика А.П. Виноградова, 24–27 ноября 1998 г. М., 1998. С. 29–30.
- Siegesmund S., Becker J.K., Becker T., Jelsma H.A. U-Pb isotope and rock fabric studies of the Chinamora Batholith (Zimbabwe) // Freiberger Forschungshefte, C 471. Geowissenschaften-Geologie. 1998. P. 212–214.
- Вурсий Г.Л., Баянова Т.Б., Левкович Н.В. Структура и U–Pb возраст гипербазит-базитов плутона Гремяха-Вырмес // Изотопное датирование геологических процессов: новые методы и результаты: Тез. докл. I Российской конференции по изотопной геохронологии. М.: ГЕОС, 15–17 ноября 2000 г.С. 99–100.
- 24. Buyanov A.F., Glaznev V.N., Mitrofanov F.P., Raevsky A.B. Three-dimensional modeling of the Lapland Granulite Belt and adjacent structure of the Baltic Shield from geophysical data // D. Roberts and O. Nordgulen (Eds.). Geology of the eastern Finnmark – western Kola Peninsula region. Norg. geol. under. Spec. Publ. 7. 1995. P. 167–178.
- 25. Бибикова Е.В., Мельников В.Ф., Авакян К.Х. Лапландские гранулиты: петрология, геохимия и изотопный возраст // Петрология. 1993. Т. 1. № 2. С. 215–234.