РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ В КВАРЦ-МУСКОВИТОВЫХ МЕТАСОМАТИТАХ ПРИМОРСКОГО РАЗЛОМА (ЗАПАДНОЕ ПРИБАЙКАЛЬЕ)

© 2003 г. В. Б. Савельева, А. С. Зырянов, С. В. Пантеева

Институт земной коры СО РАН 664033 Иркутск, ул. Лермонтова, 128 Поступила в редакцию 16.04.2001 г.

Изучено поведение редкоземельных элементов и Y в метаморфических породах сарминской серии PR_1 и развитых по ним кварц-мусковитовых метасоматитах зоны Приморского разлома в Западном Прибайкалье. Рассмотрены метасоматиты по кварц-хлоритоидным, хлоритоид-ставролит-гранатовым сланцам и гранатовым амфиболитам, в процессе преобразования которых выделяются две стадии: калиевого метасоматоза и кислотного выщелачивания. Показано, что при мусковитизации хлоритоид-ставролит-гранатового сланца РЗЭ ведут себя инертно, тогда как образование кварц-гранат-мусковитовых метасоматитов по хлоритоидным сланцам сопровождается увеличением в породах содержаний TR_Y , а образование гранат-мусковитовых метасоматитов по гранатовых метасоматитов по гранатовых метасоматитов по сланце в породах содержаний TR_Y , а образование гранат-мусковитовых метасоматитов по сланцев происходит интенсивный вынос редкоземельных элементов и Y, с уменьшением их суммарного содержания в 3–6 раз по сравнению с субстратом и понижением отношения TR_{Ce}/TR_Y от 4.3–11.8 до 2.2–2.6.

К настоящему времени накоплен большой материал по геохимии редкоземельных элементов в магматических, осадочных и метаморфических породах, позволяющий широко использовать РЗЭ для решения различного рода задач в области магматической петрологии, при анализе процессов корообразования, реконструкциях палеогеодинамических обстановок и др. Значительно слабее изучено поведение редкоземельных элементов в метасоматических процессах, несмотря на важную роль последних в формировании и преобразовании континентальной коры. При этом наибольшее количество публикаций, преимущественно отечественных геологов, направлено на изучение поведения РЗЭ при щелочном метасоматозе и гранитизации [1-4 и др.], в то время как гораздо более ограниченное число работ посвящено анализу распределения РЗЭ в других типах метасоматитов.

В данной статье приводятся данные, характеризующие поведение РЗЭ при образовании кварцмусковитовых метасоматитов, которые в классификациях метасоматических пород [5–7] относятся к среднетемпературным кислотным метасоматитам, формирующимся в обстановке умеренных давлений при повышенных соотношениях a_K/a_{u+}

в растворах. Объектом исследования послужили метасоматиты, широко развитые в Западном Прибайкалье в зоне Приморского разлома. Следует отметить, что в настоящее время в группе кислотных метасоматитов наиболее детально изучено поведение РЗЭ при образовании вторичных кварцитов [8], а также при процессах постмагматического изменения гранитов – серицитизации, турмалинизации, аргиллизации [9], тогда как данные, отражающие подвижность РЗЭ при образовании кварц-мусковитовых метасоматитов, в литературе отсутствуют.

КРАТКИЙ ГЕОЛОГИЧЕСКИЙ ОЧЕРК

Приморский разлом относится к категории глубинных разломов краевого шва, отделяющих Сибирскую платформу от Саяно-Байкальской складчатой области [10] (рис. 1). Тектониты Приморского разлома наложены на метаморфические породы сарминской серии PR₁ и граниты приморского комплекса, которые образуют раннепротерозойский складчатый пояс в составе фундамента Сибирской платформы и слагают в Западном Прибайкалье Приморский хребет и южную часть Байкальского хребта. На западе сарминская серия перекрывается отложениями платформенного чехла – байкальской серией верхнего протерозоя, а на востоке Приморским разломом отделена от ольхонской серии раннепалеозойского метаморфического комплекса Приольхонья. Тектониты Приморского разлома имеют мощность от первых сотен метров до 5-8 км, протягиваются в северо-восточном направлении на расстояние около 150 км [11].

В сарминской серии по одним представлениям выделяются (снизу вверх) хулуртуйская и иликтинская свиты [12], по другим – иликтинская и

Рис. 1. Схема геологического строения региона. *1–3* – Сибирская платформа: *1* – рифейско-палеозойский осадочный чехол, *2–3* – фундамент платформы (*2* – сарминская серия, *3* – граниты (а) и гнейсограниты (б) приморского комплекса), *4* – складчатое обрамление: ольхонская серия раннепалеозойского метаморфического комплекса Приольхонья, *5* – зона максимального динамометаморфизма и мусковитизации (Приморский разлом), *6* – изограды метаморфизма (Gr – граната, St – ставролита, Ab + Ep + Act – альбит-эпидот-актинолитовая, Hrb + Ol – роговообманково-олигоклазовая, Tsch – чермакита), *7* – район работ, *8* – точки отбора и номера проб. Основа по Геологической карте СССР м-ба 1 : 200000, с дополнениями авторов.

анайская [13]. В состав хулуртуйской и иликтинской свит входят хлорит-мусковитовые, хлоритдвуслюдяные и гранат-биотитовые сланцы, метаэффузивы кислого и среднего состава, гнейсы, амфиболиты, кристаллосланцы. Анайская свита представлена кварцитами и высокоглиноземистыми (23–27% Al₂O₃) сланцами [14]: кварц-серицитхлоритоидными, кварц-мусковит-хлоритоидными, кварц-хлорит-хлоритоидными, кварц-мусковитдистен-хлоритоидными, хлоритоид-гранат-ставролитовыми. Среди отложений обоих свит залегают силлы метадиабазов.

Породы сарминской серии претерпели зональный метаморфизм кианит-силлиманитового типа с повышением степени метаморфизма в юго-восточном направлении при приближении к границе с ольхонской серией. В метапелитах выделяются следующие метаморфические зоны: биотитовая, гранатовая и ставролит-хлоритоидная, в метабазитах – альбит-кальцит-эпидот-хлоритовая, альбитэпидот-актинолитовая, олигоклаз-роговообманковая и олигоклаз (андезин)-чермакитовая. Данные термобарометрии отражают неизобарический характер прогрессивного метаморфизма в сарминской серии с увеличением давления на границе с ольхонским блоком, где был сосредоточен также максимальный тепловой поток. Оценки Т-Р-параметров метаморфизма по парагенезисам метабазитов составляют 280–370°С, 2–3.6 кбар вблизи границы с байкальской серией и 625-655°C, 5.0-6.4 кбар в обрамлении гнейсогранитов приморского комплекса на границе с ольхонской серией.

Приморский комплекс представлен биотитовыми гнейсогранитами и гранитами, по химизму сходными с гранитами рапакиви [15]. Контакты

ГЕОХИМИЯ № 1 2003

гранитов с сарминской серией в основном тектонические, однако в поле развития пород зеленосланцевой фации отмечается прорывание гранитами образований иликтинской свиты [15], а в наиболее высокотемпературной зоне метаморфизма – постепенные переходы между гранитами и метаморфическими породами через ореолы порфиробластической микроклинизации [16]. По данным В.С. Федоровского, С.П. Кориковского, А.И. Сезько [13], все граниты, развитые в поле сарминской серии, являются синметаморфическими. Наиболее достоверным возрастом гранитов считается 1910 ± 30 млн. лет [17].

ПЕТРОЛОГО-ГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА МЕТАСОМАТИТОВ

Метасоматоз в зоне разлома тесно связано с динамометаморфизмом. На всем протяжении разлома наложенные деформации в гранитах и породах сарминской серии сопровождаются интенсивным проявлением мусковитизации и окварцевания. Однако наиболее интенсивно эти процессы проявились на границе с ольхонской серией, в полосе шириной до 4-5 км, где накладываются на граниты и метаморфические породы ставролитовой и гранатовой зон метаморфизма (рис. 1). В пределах главной зоны динамометаморфизма также выделяются участки, различающиеся по степени деформации и метасоматической проработки, причем интенсивность метасоматоза усиливается с увеличением степени деформации. Тектонометасоматический комплекс включает кварцполевошпатово-слюдистые бластокатаклазиты и бластомилониты по гранитам, рассланцованные мусковитизированные гнейсы, кварц-гранат-мус-

Рис. 2. Поля составов сланцев сарминской серии и метасоматитов по ним на диаграмме A'KF (A' = $Al_2O_3 + Fe_2O_3 - (K_2O + Na_2O), K = K_2O, F = FeO + MgO + MnO$, все окислы в молекулярных количествах). *1–3* – поля составов: *1* – хлоритоидных и гранат-ставролитовых сланцев, *2* – кварц-гранат-мусковитовых метасоматитов, *3* – кварцитосланцев, *4* – составы рассматриваемых в статье образцов. *Alm* – альмандин, *Ames* – амезит, *Chld* – хлоритоид, *Ms* – мусковит, *St* – ставролит.

ковитовые крупнозернистые метасоматиты с реликтами высокоглиноземистых сланцев, мусковитовые кварцитосланцы и кварциты, которые обычно связаны со слюдистыми бластомилонитами и гранат-мусковитовыми сланцами постепенными переходами, а также пластообразные тела амфибол-плагиоклазовых бластомилонитов, представляющих собой динамометаморфизованные дайки диабазов. Максимально метасоматические изменения проявлены в метапелитах и гранитах, несколько слабее в гнейсах и в значительно меньшей степени в метабазитах, что обусловлено быстрой нейтрализацией растворов при взаимодействии с породами, богатыми основаниями. При этом, независимо от состава субстрата, влияющего на особенности протекания процесса, конечным продуктом метасоматоза являются мусковит-кварцевые и кварцевые метасоматиты, характерные для кислотного выщелачивания.

Наиболее интересными в петрогенетическом отношении являются метасоматиты по высокоглиноземистым сланцам, широко представленные в главной зоне динамометаморфизма. В процессе их образования отчетливо выделяются две стадии. На ранней стадии – калиевого метасоматоза – в хлоритоидных и гранат-ставролитовых сланцах происходит замещение хлоритоида и в меньшей мере ставролита мусковитом (X_{Na} = = 0.17–0.21, $a_{\rm Al}^{\rm VI}$ = 5.9–12.3¹). Одновременно происходит образование граната, который представлен синдеформационными зернами величиной до 1.5 см либо мелкими додекаэдрическими зернами, облекаемыми мусковитом. Мусковит часто содержит вростки мелких зерен турмалина, что свидетельствует о протекании процесса минералообразования в условиях умеренной кислотности [18]. При усилении метасоматоза из темноцветных минералов в мусковитовых метасоматитах остается только гранат, который резко укрупняется, достигая величины 2-2.5 см. Общая направленность изменения минералогического состава высокоглиноземистых сланцев при метасоматозе отображена на диаграмме A'KF (рис. 2). Гранаты из гранат-мусковитовых метасоматитов

 $^{{}^1} a_{\rm Al}^{\rm VI} = 100({\rm Mg}+{\rm Fe}+{\rm Mn}+{\rm Ti})/({\rm Mg}+{\rm Fe}+{\rm Mn}+{\rm Ti}+{\rm Al}^{\rm VI}).$

содержат от 68 до 85% альмандиновой молекулы, до 5% спессартиновой, до 15% гроссуляровой и от 3 до 18% пироповой. Для них характерна высокоградиентная зональность прямого типа. Отметим, что гранат-мусковитовые метасоматиты, подобные развитым в зоне Приморского разлома, довольно широко распространены и в других метаморфических комплексах кианит-силлиманитового типа, для процессов кислотного метасоматоза в которых обычна относительная инертность железа [6].

Вторая стадия метасоматоза выражается в окварцевании, что приводит к образованию мусковитовых кварцитосланцев с реликтами скелетных граната, хлоритоида, ставролита, а затем мономинеральных кварцевых зон. В отличие от гранатов из гранат-мусковитовых метасоматитов, гранаты из кварцитосланцев имеют высокую железистость (f = 90-95%), что, по данным В.С. Самойлова [19], соответствует повышению кислотности метасоматизирующего раствора. Для гранатов характерны умеренные содержания Са (до 10 мол. % гроссуляра) и очень низкие содержания Мп (до 0.3 мол. % спессартина). Гранаты незональны или имеют обратную зональность, что свидетельствует о протекании кислотного выщелачивания на ретроградной стадии.

Метасоматическое преобразование гранитов и биотитовых гнейсов проявляется в замещении мусковитом биотита вплоть до полного исчезновения последнего, раскислении плагиоклаза до альбита, увеличении количества кварца. В гранат-биотитовых гнейсах отмечается перекристаллизация граната, а при замещении биотита мусковитом часто возникает магнетит. По гранитам образуются сначала кварц-альбит-микроклин-мусковитовые с реликтами биотита, а затем кварцмусковитовые бластомилониты – синтектонические метасоматиты, с реликтами альбита или альбита и микроклина, среди которых развиты зоны кварцевого состава.

Мусковитизация проявлена не только в гнейсах и сланцах, но и в гранатовых амфиболитах. Последние сложены амфиболом (80-95%), гранатом (5–15%) и содержат примесь плагиоклаза (до 3%) и кварца (1-3%). В зоне стресс-метаморфизма они преобразуются сначала в сланцеватые крупнозернистые кварц-гранат-биотитовые (с примесью амфибола) метасоматиты, окаймляющие будины амфиболитов, затем в кварц-гранат-мусковитовые метасоматиты с крупночешуйчатым мусковитом и гранатом до 1.5-2 см. Среди последних развиты жилы кварца с гранатом. Метасоматоз сопровождается уменьшением в гранате содержаний гроссулярового и спессартинового компонентов (соответственно, от 20-22 до 4-8 мол. % и от 5-7 до 1-2 мол. %) и увеличением магнезиальности ($X_{Mg} = Mg/(Mg + Fe + Mn)$) от 0.15 до 0.17-0.19. При последующей перекристаллизации (укрупнении) граната в кварц-гранат-мусковитовых метасоматитах его магнезиальность, напротив, снижается до 0.09, в то же время увеличиваются содержания гроссуляра (до 9 мол. %) и спессартина (до 3 мол. %).

В целом, для метасоматитов в зоне Приморского разлома характерны следующие обобщающие колонки:

по гранитам:	по гнейсам:	по сланцам:	по амфиболитам:
I. $Qz + KFs + Pl + Bt$	I. $Qz + Pl + Bt \pm Gr \pm KFs$	I. $Qz + Chld \pm Chl \pm Ms$	I. $Amph + Gr$
II. $Qz + KFs + Ab + Ms$	II. $Qz + Ab + Ms \pm Gr \pm KFs$	Qz + Chld + St + Gr	II. $Qz + Bt + Gr \pm Amph$
III. $Qz + Ab + Ms$	III. $Qz + Ms + Gr$	Qz + Bt + St + Gr + Chl	III. $Qz + Ms + Gr$
Qz + KFs + Ms	Qz + Ms + Mt	II. $Qz + Gr + Ms \pm Chl \pm Tur$	IV. $Qz \pm Gr$
IV. $Qz + Ms$	IV. $Qz + Ms$	$Qz + Ms + St + Gr \pm Tur$	
V. <i>Qz</i>	V. Qz	III. $Qz + Ms + Gr \pm Tur$	
		IV. $Qz + Ms$	
		V. <i>Qz</i>	

Анализ строения зон метасоматических изменений свидетельствует о проявлении в Приморском разломе сопряженной метасоматической системы, включающей калиевый метасоматоз в условиях умеренной кислотности и последующее кислотное выщелачивание [20]. Оценки условий образования метасоматитов передовых зон метасоматических колонок по гранат-биотитовым, гранат-хлоритовым, мусковитовому и амфиболовому геотермометрам и геобарометрам составляют 580–615°С и 4.9–5.3 кбар для зоны ставролита и 530–560°С для зоны граната. По мусковитовому геотермометру для мусковитовых кварцитосланцев с реликтами граната из тыловых зон получены значения T = 490-510°С. Таким образом, если калиевый метасоматоз и образование передовых зон метасоматических колонок протекали при температурах, близких к температурам предшествующего регионального метаморфизма, на фоне некоторого спада давления, то формирование

Рис. 3. Диаграмма соотношений I и II факторов для сланцев сарминской серии и метасоматитов (а – окончания векторов проб, б – вектора окислов). *1* – хлоритоидные и гранат-ставролитовые сланцы, *2* – окварцованные сланцы, *3* – кварц-гранат-мусковитовые метасоматиты, *4* – окварцованные гранат-мусковитовые метасоматиты, *5* – кварцитосланцы, *6*–8 – тренды изменения состава пород: 6–7 – при калиевом метасоматозе (*6* – с инертным поведением Al₂O₃, 7 – с накоплением Al₂O₃), 8 – при кислотном выщелачивании.

тыловых кварцевых зон происходило при понижении температуры и было обусловлено прохождением сквозь породы более низкотемпературной волны кислотных компонентов, возникающей вследствие закономерной эволюции состава высокотемпературных растворов при их охлаждении [21].

Поведение РЗЭ в процессе образования кварцмусковитовых метасоматитов изучено на примере метасоматитов по высокоглиноземистым (хлоритоидным и хлоритоид-ставролит-гранатовым) сланцам и гранатовым амфиболитам, поскольку именно в этих породах наиболее отчетливо проявлена двустадийность метасоматоза, связанная с эволюцией кислотности-щелочности растворов. Полные спектры РЗЭ и содержания Cs, Ba, Sr, Pb, Hf, Ta, Th, U получены методом масс-спектрометрии с индуктивно наведенной плазмой (ICP-MS) на приборе "VG Plasmaquad PQ-2 Plus" в Центре коллективного пользования ИНЦ СО РАН (г. Иркутск) С.В. Пантеевой, определения Li и Rb выполнены методом фотометрии пламени (аналитики Е.И. Юферова, А.И. Курбатова), Be, Sn, Zn, Cu, Co, Ni, Cr, V, Sc - методом оптического спектрального анализа (аналитики Щербань В.В., Володина Н.Н.), Zr, Nb – рентгено-флуоресцентным методом (аналитики Худоногова Е.В., Черкашина Т.Ю.) в Институте земной коры СО РАН. Силикатные анализы выполнены в Институте земной коры СО РАН Е.И. Юферовой и А.И. Курбатовой.

Для хлоритоидных сланцев, содержащих, помимо кварца и хлоритоида, мусковит и хлорит, в основном характерны высокая глиноземистость (Al₂O₃ 23–28%), высокая железистость (90–94%), низкие содержания SiO₂ (44–57%), CaO (до 0.6%) и Na₂O (до 0.3%) и сильно варьирующие содержания К₂О (от 0.2 до 4.9%). Кварц-хлоритоид-гранат-ставролитовые сланцы из более высокотемпературной зоны метаморфизма, образование которых связывается с проградной реакцией разложения хлоритоида (Хлд — Гр + Ставр), имеют сходный химический состав (табл. 1). Встречаются, кроме того, умеренноглиноземистые мусковит-хлорит-хлоритоидные сланцы, с содержанием Al₂O₃ 13–19% и SiO₂ 60–70%. На диаграмме А.А. Предовского как высокоглиноземистые, так и умеренноглиноземистые сланцы попадают в поля гидрослюдистых и монтмориллонитовых глин и, как показано В.А. Макрыгиной с соавторами [22], представляют собой продукты метаморфизма переотложенных латеритных кор выветривания по гранитам [23].

Химизм преобразования хлоритоидных и гранат-ставролитовых сланцев отражен в табл. 1 и иллюстрируется диаграммами факторного анализа (рис. 3). Образование кварц-гранат-мусковитовых метасоматитов связано с привносом в породы калия и в меньшей мере натрия и сопровождается выносом оснований при близком к инертному поведении кремнезема и титана. Что касается Al_2O_3 , то выявляются две ветви процесса (рис. 3): с близким к инертному поведением глинозема (характерно для большей части проб) и с накоплением глинозема вместе с калием, в результате чего образуются метасоматиты с содержанием Al_2O_3 32– 34% и K_2O 4.6–6.0%. При этом устойчивость в метасоматитах альмандинового граната указывает

Komito-	156-1/99	693/97	177/99	159/99	548/97	26/999	601/97	170-9/99	231/98	159-5/98	165/98	159-6/98	26/669	699-1/97	542/97	5426/97	543/97
нент	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17
SiO_2	45.92	48.55	59.63	82.50	56.04	44.65	63.02	54.21	44.39	60.34	70.23	88.65	43.67	48.19	48.03	63.93	69.78
TiO_2	0.92	0.92	0.97	0.58	1.13	0.96	1.50	1.26	0.96	1.02	1.12	0.23	2.21	2.39	2.46	0.70	0.65
Al_2O_3	26.90	26.75	21.90	7.75	24.57	27.58	19.05	25.58	26.30	21.75	13.80	3.60	15.71	13.71	15.20	17.03	15.58
Fe_2O_3	5.89	5.61	2.73	0.82	3.32	7.08	1.76	6.15	5.93	3.13	3.77	0.62	4.46	2.39	6.43	3.23	2.48
FeO	13.29	9.58	5.49	5.41	7.76	10.99	7.52	5.11	8.87	5.41	5.39	2.43	10.89	10.76	12.89	6.30	3.91
MnO	0.42	0.46	0.09	0.07	0.15	0.25	0.07	0.24	0.30	0.06	0.06	0.05	0.21	0.04	0.55	0.23	0.08
MgO	2.02	1.76	1.24	0.63	0.75	2.18	1.19	0.97	1.65	1.05	1.21	0.36	7.86	10.34	7.16	1.45	1.19
CaO	0.62	0.56	0.27	0.48	0.11	0.55	0.24	0.05	1.25	0.37	0.48	1.85	96.99	6.13	2.80	1.07	0.40
Na_2O	0.07	0.34	0.56	0.13	0.19	0.11	0.35	0.2	0.66	0.53	0.20	0.10	1.22	1.06	0.25	0.63	0.59
$ m K_2O$	0.75	2.67	3.11	1.10	2.18	0.58	2.14	2.4	4.53	3.48	1.57	0.57	0.89	2.11	2.42	3.25	3.37
P_2O_5	0.25	0.29	0.18	0.08	0.08	0.16	0.11	0.09	0.22	0.11	0.11	0.03	0.26	0.31	0.25	0.18	0.10
П.п.п.	3.36	3.12	3.51	0.85	4.12	4.96	3.49	3.75	5.17	3.23	2.54	1.49	2.40	1.66	1.78	1.93	1.84
ц	0.03	0.04	0.03	0.03	0.04	0.03	0.02	0.03	0.03	0.03	0.03	0.03	0.13	0.18	0.09	0.07	0.07
Сумма	100.44	100.65	99.71	100.43	100.44	100.07	100.46	100.04	100.26	100.51	100.51	100.01	99.85	99.20	100.27	99.98	100.01
Ŀ	19	12	9	З	1.1	32	32	1	30	14	б	5	38.7	108.8	87.5	34.0	28.1
Rb	48	157	191	66	154	36	143	171	261	211	78	31	34.8	173.9	212.4	188.0	149.3
Cs	не обн.	3.5	не обн.	1.8	3.5	1.3	2.8	4.2	I	5.9	0.7	1.1	3.6	21.1	23.7	O/H	2.6
Ba	158	828	664	267	436	147	509	676	950	707	547	110	95.2	173.7	132.3	800.6	578.1
Sr	16	37	47	18	30	7	34	75	71	79	16	15	84.5	15.1	4.8	34.0	40.8
Be	8.7	6.4	8.4	5	7.6	3.5	I	6.0	11	L	7	1	6.6	3.1	0.4	5.0	3.7
Sn	$\overline{\nabla}$	5.1	7.1	$\overline{\lor}$	6.6	5.8	I	6.1	15	13	8	5	$\overline{\lor}$	$\vec{\nabla}$	$\overline{\vee}$	7.1	5.3
Pb	1	42	27	25	84	22	28	34	31	26	13	6	16	21	3.4	14	12
Zn Z	430	380	120	26	220	410	I		200	$\frac{210}{-0}$	380 _	не обн.	220	270	230	90 1	11 12
u Cu	74	64 1	57	46 0	71	150	Ι	9.7	52	20	ے 76	15	580 č	210	24	74	95 ;
S	4 8 8	28 28	10 20	ۍ د	53	03 7	I	0 0 0 0	9 9 9	71	не оон.	не оон.	6	001	70	19	<u></u> 2 :
z d	84 6	100	87	22	4 8	140	I	6/	7.8	0 1	10	/ 1	68 68	110	110	84 r	41 1 41
יכ	100	150	ربر د د	50	77	120	I	001		1/0	не оон.	110	120	00	000	1/1	011
> ŭ	700	22U 21	06 7		100	040 240	I	100	200	76	00 17	40 	000	450 03	0/0 31	120	\$ 6
7.	070	178	705	560	240	180 180	I	300	1 V C		1+1 761	нс оон.	140	PC -	120	100	77
ц,	147	0/1	2 5	000		100	I		747 7 7 7	2 107	7 1	I	0+1	I	001	170	041
ĒÉ			10.6	60	0 08	0.73	0.73	77.0	21.0 V V		- c ; c	0.1	-	1	7		0.6
Nh L	16.0	. ~	74	13.	8.00	9.17		18.4	ر. ۲	0, 1	i	1.0	 	23. 23		101	0. c 0. c
er H	2.5	ۍ د د	2 6	36	ۍ د د	, 1	26	30	21 C	22	10	59	2 C C) (0 1 0	27	10.0
11		15	01 O	2 7 7	76 8 6	12	ر م 1	ر م	1 1	5 U	2.7	0.0	2 v i -	10		4 U Y	25
) ;		71	4	0 2	0.0	C. /	7.0	0.1	11.1	0.0	1.0	1.0	1.U	0.0		0.7	C.C
Примеча	ание. Здес	ь и далее:	оксиды в	Mac. %, p	едкие эле	менты в г	T. IIpoye	ок – даннь 156	IE OTCYTCI	Byłor. 1–4	- Metaco	матическ	ая колонк	а по хлорі	итоид-гра	нат-ставро	UINTOBBIM
сланцам.	$\frac{17100}{20}$	ютидоцх	идным сла	-ст, трани	1 / — 110 гр	anaroBbIM	амфиоол	OCI .METN	-1/99 – KBi	арц-хлори	гоид-гран	ar-crabpo	UINTOBBIN	сланец, 09 то 548/07	0/W - 16/C		DOBAHHBIM
слансц, . ные спан	пњг 231/98	варцованн Х — кварш-1	тыи мускс гранат-ми	сковитовь	ы метасо	матит 150	77 — муски 1-5/98 — то	WE CDETT	иктами хл	опитоипа с	CDETTA MVC	ставроли ковита 16	га и трана 55/98 — окт	ra, J40/77,	ооо/27, 17 ъгй гранат	го- <i>эгээ</i> – хл г-мисковиг	горитоид- говый ме-
TACOMAT	IT с релик'	TAMM XJIOD	итоипа и (скелетным	I LDAHATO	M. 159-6/98	- MVCKOB	итовый кі	BADITATOCI	atten c ner	чреда	раната. 69	mo 0/9/9	натовый з	амфиболи	т. 699-1/9	7 – биоти-
TN3NDOB6	инный граи	натовый а	мфиболит	r, 542/97 –	гранат-би	AOTATOBLI	i Meracom	атит с рел	иктами an	фибола, 5	426/97, 54	43 <i>/</i> 97 — КВа	арц-грана	г-мускови	TOBLE MET	racomatur	bl.

ГЕОХИМИЯ № 1 2003

РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ

75

на относительно низкую подвижность железа. Расчет коэффициентов парной корреляции для выборки из 48 проб, включающих высокоглиноземистые сланцы и метасоматиты по ним, показал, что наиболее сильную положительную корреляцию с калием, свидетельствующую о сходном поведении при метасоматозе, имеют Rb $(r_{\rm K,O-Rb} = 0.89)$, Sr $(r_{\rm K,O-Sr} = 0.77)$, Ba $(r_{\rm K,O-Ba} =$ = 0.80) и Sn ($r_{\rm K_2O-Sn}$ = 0.51). Кроме того, в гранатмусковитовых метасоматитах по хлоритоидным сланцам возрастают содержания Та (табл. 1). Последующее кислотное выщелачивание сланцев выражается в постепенном увеличении в породах содержания кремнезема (до 82-88%) при одновременном выносе прочих петрогенных компонентов, включая калий и натрий, а также широкого круга редких элементов: Li, Rb, Sr, Be, Sn, Pb, Zn, Ba, Co, Ni, V, Sc, U, Та при меньшей подвижности Cu, Th, Cr, Zr, Hf (табл. 1).

Преобразование гранатовых амфиболитов в гранат-биотитовые метасоматиты сопровождается значительным выносом CaO и Na₂O и увеличением содержания К₂О при практически инертном поведении MgO, TiO₂, Al₂O₃, P₂O₅ (табл. 1). Наряду с калием, возрастают содержания Li, Rb, Cs, Ba, a Sr, напротив, выносится. Кроме того, при биотитизации выносятся Be, Pb, Cu, Sc и U. При мусковитизации происходит увеличение содержаний кремнезема и калия и уменьшение – сильных оснований (CaO, MgO), титана, фосфора, в меньшей мере железа, при близком к инертному поведению глинозема. Мусковитизация сопровождается увеличением содержаний Ba, Sr, Sn, Pb, Th, U, Ta (?) и выносом Li, Cs, Zn, Cu, Ni, V, Sc, Nb. Обращает на себя внимание поведение Sr, содержание которого резко уменьшается при замещении амфибола биотитом и возрастает при последующем замещении биотита мусковитом. Железо, выносимое при мусковитизации, по-видимому, частично переотлагалось в гранат-биотитовой зоне (табл. 1), которая являлась, в таком случае, сопряженной зоной базификации [7].

РЗЭ В МЕТАМОРФИЧЕСКИХ ПОРОДАХ И МЕТАСОМАТИТАХ

Все пробы хлоритоидных сланцев для анализа РЗЭ отобраны за пределами главной зоны динамометаморфизма. Сланцы мелкозернистые, с парагенезисами кварц + хлоритоид (666/97), кварц + + мусковит + хлоритоид (548/97, 170-9/99) и кварц + + хлорит + мусковит + хлоритоид (601/97). Акцессорные минералы представлены цирконом, рутилом, ортитом, монацитом, апатитом. Проба 548/97 относится к биотитовой зоне регионального метаморфизма, остальные к зоне граната. Метасоматическая колонка по хлоритоидным сланцам представлена кварц-гранат-мусковитовым метасоматитом с реликтами хлоритоида среди мусковита (159-5/98), собственно кварц-гранат-мусковитовым метасоматитом (231/98), окварцованным гранат-мусковитовым метасоматитом с реликтами хлоритоида среди мусковита и скелетным гранатом (165/98), мусковитовым кварцитосланцем с реликтами граната (159-6/98). Все пробы содержат примесь хлорита.

Проба кварц-хлоритоид-гранат-ставролитового сланца с небольшой примесью мусковита и хлорита (156-1/99) отобрана в пределах главной зоны динамометаморфизма, где эти сланцы встречаются в виде реликтов среди мусковитовых метасоматитов. Метасоматическая колонка включает мусковитизированный сланец с ассоциацией кварц + гранат + ставролит + мусковит (~10%) + реликты хлоритоида среди мусковита (693/97), окварцованный мусковитизированный сланец с порфиробластами граната до 2 см и реликтами хлоритоида и ставролита среди мусковита (177/99), мусковитовый кварцитосланец с реликтами ставролита и граната (159/99).

Метасоматическая колонка по гранатовым амфиболитам (699/97) представлена биотитизированным амфиболитом (699-1/97), гранат-биотитовым метасоматитом с реликтами амфибола (542/97) и двумя пробами кварц-гранат-мусковитовых метасоматитов (5426/97, 543/97), из которых первая содержит крупный (1.5–2 см) железистый гранат.

Содержания РЗЭ и У в сланцах варьируют в широких пределах – от 191 до 763 г/т, при значительном преобладании цериевых РЗЭ над иттриевыми: TR_{Ce}/TR_Y = 4.3-11.8 (табл. 2). Отметим, что, по сравнению с типичными постархейскими глинистыми сланцами [24], содержания РЗЭ в породах сарминской серии, за исключением пробы 548/97, повышены в 2-4 раза. В то же время достоверность полученных результатов подтверждается независимыми данными В.А. Макрыгиной и др. [22], согласно которым для высокоглиноземистых сланцев сарминской серии характерна обогащенность РЗЭ при весьма неравномерном их распределении. Сланцам свойственны "наклонные" спектры РЗЭ, нормированных относительно хондрита [24] (рис. 4а, 4б), отражающие резкую обогащенность легкими лантаноидами (La_N/Yb_N = = 8.5-42.7), при отчетливом фракционировании легких РЗЭ (La_N/Sm_N = 3.5-5.5) и более слабом фракционировании тяжелых РЗЭ ($Gd_N/Yb_N = 1.2-$ 3.5), с отрицательной европиевой аномалией $(Eu/Eu^* = 0.60 - 0.70).$

Для хлоритоид-гранат-ставролитового сланца характерна наиболее высокая сумма P33 + Y и повышенная, по сравнению с хлоритоидными сланцами, доля иттриевых P33 в составе лантаноидов ($TR_{Ce}/TR_{Y} = 4.3$). В мусковитизированном сланце с реликтами хлоритоида среди мусковита

РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ

D	156-1/99	693/97	177/9	9	159/	/99		8/97	8/97 60			601/97	170-9/99
Элементы	1	2	3	4			5			6		7	8
La	139	117	83		42		36		111		98		113
Ce	313	280	183		90		75		170			149	152
Pr	31	26	19		9.	4	8.7			20		17	19
Nd	112	95	66		38		3.	3		77		71	72
Sm	22	19	13		7.	8	6.4			14		14	13
Eu	4.0	3.4	1.9		1.	1		1.1		2.2		2.6	2.1
Gd	18	15	12		6.	4	4	4.3		9.0		9.0	7.7
Tb	2.8	2.2	1.9		1.	2	(0.7		1.2		1.1	0.9
Dy	15	12	11		7.	2	-	3.6		5.2		4.3	3.8
Но	3.3	2.7	2.8		2.	2		1.0		1.1		1.1	0.8
Er	8.3	6.6	6.6		4.	8	,	2.0		2.3		2.1	1.6
Yb	8.0	6.2	6.8		5.	1	,	2.9		2.5		2.5	1.8
Lu	1.2	0.9	1.0		0.	8	(0.5		0.4		0.4	0.3
Y	86	67	63		45		1′	7		19		19	15
$\Sigma P33 + Y$	763.6	653	471		261		192	2.2	4	34.9		391.1	403
TR _{Ce} /TR _Y	4.3	4.8	3.5		2.	6	-	5.0		9.6		9.0	11.8
Eu/Eu*	0.61	0.61	0.43	8	0.	47	(0.66		0.60		0.70	0.64
Элементи	231/98	159-5/98	165/98	159	9-6/98	699	/97	699-1/	97	542/97		5426/97	543/97
Элементы	9	10	11		12	1	3	14		15		16	17
La	58	52	11	1	2	21		20		18		46	41
Ce	148	125	19	2	5	46		46		39		113	90
Pr	18	13	1.8		2.7	6	.0	5.8		5.0		11	9.5
Nd	64	47	5.4		9.4	26		26		21		40	35
Sm	13	9.0	1.4		1.8	6	6.0			4.6		8.1	6.3
Eu	2.3	1.2	0.4		0.3	1	1.8		1.6 1.1			1.6	1.2
Gd	11.5	7.3	2.0		1.9	6.1		5.8		5.4		7.1	5.3
Tb	1.9	1.3	0.5		0.3	1.0		0.9		0.9		1.2	0.8
Dy	11.1	7.1	4.5		1.7	5	5.7		5.7			7.5	4.3
Но	2.6	1.4	1.0		0.4	1	.2	1.2		1.1		2.0	0.9
Er	7.0	4.9	3.4		1.1	3	3.4		3.5 3			5.0	2.5
Tm	-	-	-		-	0	0.5 0.		0.4			-	0.4
Yb	6.9	5.1	3.8		1.0	3	.0	3.0	2.6			5.7	2.4
Lu	1.0	0.7	0.6		0.2	0	.4	0.5		0.4		0.9	0.4
Y	61	37	29	1	0	33		31	31			46	24
$\Sigma P33 + Y$	406.3	312	83.6	6	7.8	159	.9	156.9		135.9		294.2	223.5
TR _{Ce} /TR _Y	3.0	3.8	0.9		2.2	2	.0	2.0		1.9		2.9	4.5
Eu/Eu*	0.57	0.46	0.74		0.57	0	.93	0.84		0.65		0.65	0.64

Таблица 2. Содержания редкоземельных элементов и иттрия (г/т) в породах сарминской серии и метасоматитах

Примечание. Характеристика проб приведена в табл. 1.

концентрации РЗЭ и Y несколько ниже, чем в хлоритоид-гранат-ставролитовом сланце (табл. 2, рис. 4а), однако соотношение TR_{Ce}/TR_{Y} остается практически неизменным (4.8), не меняется и

форма графика распределения РЗЭ, что позволяет предполагать отсутствие привноса или выноса РЗЭ, в то время как пониженная сумма РЗЭ обусловлена, по-видимому, различным содержанием

Рис. 4. Спектры РЗЭ, нормализованные относительно хондрита [25]. а – для хлоритоид-ставролит-гранатового сланца (156-1/99) и продуктов его метасоматического изменения (693/97, 177/99, 159/99), б – для хлоритоидных сланцев (666/97, 548/97, 601/97, 170-9/99) и метасоматитов по ним (159-5/98, 231/98, 159-6/98, 165/98), в – для гранатовых амфиболитов (699/97, 699-1/97) и метасоматитов по ним (542/97, 5426/97, 543/97). Характеристика проб дана в тексте.

акцессорных минералов в породах. Последующее окварцевание сланца при одновременном увеличении количества мусковита (повышение содержания К₂О до 3.1%) и собирательной перекристаллизации граната сопровождаются уменьшением ΣРЗЭ + У примерном в 1.5 раза и снижением отношения TR_{Ce}/TR_Y до 3.5, что свидетельствует о преимущественном выносе цериевых лантаноидов. Поскольку основными концентраторами TR_Y в метасоматитах являются циркон и гранат, низкая подвижность TR_у обусловлена, по-видимому, сохранностью этих минералов при метасоматозе. Однако при дальнейшем усилении окварцевания происходит вынос уже не только цериевых, но и иттриевых РЗЭ, хотя отношение TR_{Ce}/TR_{Y} продолжает уменьшаться (до 2.6). Суммарное содержание РЗЭ и У в тыловой зоне метасоматической колонки понижается, по сравнению с исходной породой, почти в 3 раза. При этом форма спектров РЗЭ в метасоматитах унаследует форму спектра РЗЭ в исходном сланце, но отмечается увеличение Еu-минимума и, кроме того, в метасоматитах правая часть графиков выполаживается $(Gd_N/Yb_N = 1.4-1.0)$ (рис. 4а), что свидетельствует о более высокой подвижности промежуточных членов ряда лантаноидов по сравнению с тяжелыми.

Если при мусковитизации хлоритоид-гранатставролитового сланца РЗЭ проявляют инертность, что, вероятно, обусловлено слабой степенью метасоматической проработки субстрата и значительной сохранностью исходного парагенезиса, то иная картина наблюдается в метасоматитах по хлоритоидным сланцам, где хлоритоид при повышении активности калия становится неустойчив и разлагается на мусковит и гранат. Кварц-гранат-мусковитовые метасоматиты по хлоритоидным сланцам характеризуются повышенными в 1.5–3 раза, по сравнению с исходными

породами, содержаниями иттриевых РЗЭ и Y, которые концентрируются в новообразованном гранате (табл. 2, рис. 4б). Содержание цериевых РЗЭ при этом заметно не меняется, а отношение TR_{Ce}/TR_Y снижается до 3.0–3.8. Спектры РЗЭ в метасоматитах близки по форме к спектрам РЗЭ в сланцах, однако отмечается некоторое углубление, вследствие повышения концентрации Gd, европиевого минимума (Eu/Eu* = 0.46-0.57) и выполаживание правой части спектров ($Gd_N/Yb_N = 1.2-1.3$). Последнее обусловлено появлением в метасоматитах граната, характерной особенностью распределения РЗЭ в котором является отсутствие фракционирования среди тяжелых лантаноидов [24]. Окварцевание сопровождается выносом РЗЭ, причем сначала выносятся преимущественно легкие и средние члены ряда, тогда как тяжелые РЗЭ проявляют относительную инертность (пр. 165/98); при этом отношение TR_{Ce}/TR_{Y} понижается до 0.9, а спектр РЗЭ приобретает V-образную форму ($La_N/Yb_N = 2.0$). Последующее разложение граната приводит к выносу тяжелых РЗЭ и Ү и увеличению TR_{Ce}/TR_Y до 2.2 (пр. 159-6/98) (рис. 4б). ΣРЗЭ + Y при окварцевании уменьшается в 3-6 раз по сравнению с хлоритоидными сланцами.

Для гранатового амфиболита (пр. 699/97) характерна более низкая, чем для сланцев, ΣРЗЭ + + Y – 127 г/т при двукратном превышении содержания цериевых лантаноидов над иттриевыми, и "наклонный" спектр РЗЭ ($La_N/Yb_N = 4.8$), со слабо выраженным Еи-минимумом (Eu/Eu* = 0.93) (рис. 4в). Биотитизация амфиболита сопровождается выносом Еи, усиливающимся при увеличении степени замещения амфибола биотитом (пробы 699-1/97 и 542/97) и свидетельствующим о том, что Еи в амфиболите находился в виде Eu²⁺, изоморфно замещающего Sr²⁺ в составе амфибола. Для гранат-биотитового метасоматита характерно пониженное, по сравнению с амфиболитом, содержание РЗЭ + Ү, что обусловлено меньшей емкостью биотита в отношении РЗЭ по сравнению с амфиболом [24]. Мусковитизация, напротив, сопровождается увеличением содержания легких РЗЭ почти в 2 раза по сравнению с амфиболитом и гранат-биотитовым метасоматитом и увеличением отношения TR_{Ce}/TR_Y (табл. 2). Для спектра РЗЭ в гранат-мусковитовом метасоматите характерен крутой наклон левой части, обусловленный отчетливым фракционированием легких лантаноидов (La_N/Sm_N = 4.1), и слабый наклон правой части ($Gd_N/Yb_N = 1.8$), при сохранении отрицательной Eu аномалии (Eu/Eu* = 0.64). Собирательная перекристаллизация граната сопровождается некоторым увеличением содержания TR_Y и Y в породе и уменьшением отношения TR_{Ce}/TR_Y (табл. 2).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Выполненные С.Р. Тейлором и С.М. Мак-Леннаном [24], а также А.А. Мигдисовым, Ю.А. Балашовым, И.В. Шарковым и др. [25] сопоставления средних содержаний лантаноидов в глинистых сланцах постархейского возраста показали значительную однородность сланцев в отношении РЗЭ, распространенность которых отражает состав верхней континентальной коры. На фоне усредненных проб глин и глинистых пород [25] сланцы сарминской серии, за исключением пробы 548/97, характеризуются повышенными, в целом в 2-3.5 раза, содержаниями РЗЭ. По сравнению со средними составами латеритов по гранитам [23] породы сарминской серии обогащены La и Се в 2-6 раз. Концентрации РЗЭ в изученных сланцах приближаются к таковым в щелочных гранитах зон активизации и нефелиновых сиенитах [26].

Одной из причин повышенных содержаний РЗЭ в сланцах может быть то, что раннепротерозойский метаморфический пояс, в состав которого входит сарминская серия, приурочен к высокопроницаемой зоне краевого шва Сибирской платформы, где выплавлению синметаморфических гранитоидов предшествовал интенсивный щелочной (калиевый) метасоматоз. Этот метасоматоз, выражающийся в фельдшпатизации метаморфических пород, характерен для всей зоны краевого шва [16] и, как показано на примере миня-абчадского комплекса в Северном Прибайкалье, сопровождался привносом РЗЭ, Zr, Nb, Hf [2, 27]. По данным В.А. Макрыгиной [2], в зоне Абчадского глубинного разлома, также входящего в систему разломов краевого шва, резко повышенные концентрации РЗЭ, в 2.5–4 раза превышающие кларковые содержания в осадочной оболочке, характерны не только для мигматитов, но и для амфиболовых, биотит-амфиболовых и биотитовых плагиогнейсов чуйской серии. Можно предполагать, что этот же процесс ответственен за повышенные концентрации редкоземельных элементов и в сланцах сарминской серии, тем более что содержания РЗЭ в сланцах возрастают при приближении к телам синметаморфических гранитов на границе с ольхонской серией и максимальны в пробе 693/97, отобранной среди микроклинизированных гнейсов и метапорфиритов.

Формирование кварц-мусковитовых метасоматитов сопровождалось изменением как концентраций РЗЭ в породах, так и соотношений между тяжелыми и легкими лантаноидами. При этом, как показывают полученные данные, поведение РЗЭ различно в передовых и тыловых зонах апосланцевых метасоматических колонок: калиевый метасоматоз, наряду с привносом Rb, Ba, Sr, Sn, Ta, сопровождался привносом РЗЭ, тогда как при окварцевании происходил вынос РЗЭ из пород вме-

сте с другими петрогенными и редкими элементами. Если сопоставить эти данные с температурами образования метасоматитов, то очевидно, что ведущим фактором геохимической эволюции метасоматического процесса являлось увеличение кислотности высокотемпературных флюидов при охлаждении, в результате чего, как показано Д.С. Коржинским [28], флюиды, первоначально привносившие редкие и рудные элементы в породы, становились недосыщенными и способными растворять и выносить эти же и другие компоненты из ранее сформировавшихся метасоматитов. Причем вынос РЗЭ при кислотном выщелачивании в зоне граната заметно превышал их вынос в зоне ставролита, где метасоматоз протекал при более высокой температуре. Однако в обоих случаях повышению кислотности растворов соответствовало последовательное снижение отношения TR_{Ce}/TR_Y в апосланцевых метасоматитах; иными словами, в составе РЗЭ возрастала доля иттриевых, менее основных лантаноидов, по сравнению с более основными цериевыми [29]. При этом повышенный, по сравнению с другими лантаноидами, вынос Еи при окварцевании гранат-ставролитового сланца, согласуется с данными экспериментов В.А. Жарикова [30], согласно которым Еи обладает аномальной растворимостью в подкисленных флюидах.

Судя по частому присутствию флюорита в мусковитизированных метапорфиритах, гранитах и гнейсах, наиболее вероятной формой переноса РЗЭ в процессе калиевого метасоматоза могли служить фторидные комплексы [31]. Наряду с этим, часто наблюдаемые вростки турмалина в мусковите позволяют рассматривать в качестве возможной формы переноса РЗЭ также комплексные соединения с бором [32]. Учитывая данные по устойчивости комплексных соединений редкоземельных элементов [33], можно предполагать, что обогащение передовой зоны метасоматической колонки по хлоритоидным сланцам иттриевыми РЗЭ при инертном поведении цериевых РЗЭ обусловлено, по-видимому, большей прочностью фторидных комплексов TR_Y, по сравнению с TR_{Ce}, и их повышенной миграционной способностью. При этом, как показано Г.А. Бандуркиным [34], возможен перенос TR_y вместе со Sn в виде сложных фторидных комплексов. В то же время следует отметить, что на поведение РЗЭ в передовой зоне метасоматической колонки влияет как интенсивность замещения исходной породы, так и состав новообразованного парагенезиса метасоматита, зависящий от относительной подвижности петрогенных компонентов, поскольку только при новообразовании в передовой зоне граната, селективно концентрирующего тяжелые РЗЭ и Ү, в сланцах заметно изменяется соотношение TR_{Ce}/TR_{Y} .

В отличие от метасоматитов по сланцам, образование гранат-мусковитовых метасоматитов по амфиболитам сопровождается увеличением в породах содержания наиболее основных цериевых РЗЭ, что может быть реакцией на общее повышение щелочности раствора при взаимодействии его с породами, богатыми основаниями [28]. Отложение редких элементов на щелочном барьере, каким являются амфиболиты, происходит в следующей последовательности: ранняя щелочная стадия (биотитизация) – Li, Rb, Cs, кислотная стадия (замещение биотита мусковитом) – Ba, Sr, Be, Sn, Th, U, TR, Ta(?). При этом, по-видимому, сначала происходит распад менее прочных комплексных соединений цериевых РЗЭ [29, 31], которые входят в состав мусковита (пр. 543/97), а затем более прочных соединений иттриевых РЗЭ, которые захватываются гранатом в процессе его собирательной перекристаллизации, сопровождающейся увеличением железистости (пр. 5426/97). В то же время, несмотря на различное поведение РЗЭ при метасоматозе по высокоглиноземистому и основному субстрату, кварц-гранат-мусковитовые метасоматиты по тем и другим породам имеют сходные спектры РЗЭ (при более низкой ΣРЗЭ + Y в метасоматитах по амфиболиту) и близкие отношения TR_{Ce}/TR_Y, что подтверждает вывод о том, что петрографический и химический состав полнопроявленного метасоматита не зависит от типа субстрата, а определяется, при данных Р-Т-параметрах, составом фильтрующихся растворов [35].

Если в передовых зонах метасоматических колонок по сланцам цериевые РЗЭ инертны, то в тыловых зонах, формирующихся в условиях повышенной кислотности, напротив, подвижность более основных цериевых лантаноидов выше, чем менее основных иттриевых. Последние на ранних стадиях окварцевания продолжают удерживаться в гранате и цирконе. Разложение граната и резкое уменьшение содержания TR_Y (пр. 159-6/98) позволяют предполагать воздействие на породы кислых фторидных растворов, поскольку, как показано экспериментально [18], в таких растворах сильно возрастает растворимость глинозема, от которой зависит стабильность граната. Таким образом, F, по-видимому, играл важную роль в процессах миграции РЗЭ при образовании кварц-мусковитовых метасоматитов как на ранней высокотемпературной стадии, так и в более низкотемпературных условиях.

Закономерная смена калиевой фельдшпатизации в породах сарминской серии выплавлением гранитов приморского комплекса и последующее образование кварц-мусковитовых метасоматитов, сопровождавшееся привносом в породы тех же элементов, которыми обогащены и граниты [27], позволяет связывать все эти процессы, проявившиеся в зоне краевого шва Сибирской платформы, с деятельностью одной и той же глубинной флюидной системы, для которой была характерна высокая активность калия, фтора и бора [22, 27]. При этом формированию кварц-мусковитовых метасоматитов способствовало возобновление деформаций в зоне краевого шва и возникновение на границе с ольхонской серией новой флюидопроводящей структуры.

выводы

1. Для метасоматитов кварц-мусковитовой формации [7] характерно различное поведение РЗЭ в передовых и тыловых зонах метасоматических колонок: инертность или привнос в передовых зонах калиевого метасоматоза и вынос из тыловых зон, где на фоне снижения температуры проявлено кислотное выщелачивание. Содержание РЗЭ + Y в тыловой зоне метасоматической колонки по сланцам понижается в 3–6 раз по сравнению с исходными породами.

2. На поведение лантаноидов в передовых зонах метасоматических колонок оказывают влияние состав субстрата, интенсивность метасоматоза, относительная подвижность петрогенных компонентов, тогда как в тыловых зонах важную роль играет устойчивость минеральных фаз, концентрирующих РЗЭ, которая, в свою очередь, зависит от состава воздействующего на породы раствора.

3. Увеличению кислотности раствора при метасоматозе сланцев и смене калиевого метасоматоза кислотным выщелачиванием соответствует уменьшение в породах отношения TR_{Ce}/TR_Y , в то время как в амфиболитах, напротив, при повышении кислотности раствора отношение TR_{Ce}/TR_Y возрастает. В то же время, несмотря на различное поведение РЗЭ при метасоматозе сланцев и амфиболитов, для кварц-гранат-мусковитовых метасоматитов, независимо от субстрата, характерны сходные спектры РЗЭ и близкие соотношения легких и тяжелых лантаноидов, что указывает на ведущую роль состава фильтрующегося флюида на распределение РЗЭ в продуктах метасоматоза.

Работа выполнена при финансовой поддержке РФФИ, проект № 00-05-64231.

СПИСОК ЛИТЕРАТУРЫ

- Петрова З.И., Пожарицкая Л.К. Геохимия процессов ультраметаморфизма в основных кристаллических сланцах // Тр. I Междунар. геохимического конгресса. Т. III. Кн. 2. М., 1972. С. 182–193.
- Макрыгина В.А. Геохимия регионального метаморфизма и ультраметаморфизма умеренных и низких давлений. Новосибирск: Наука, 1981. 200 с.
- 3. Загорский В.Е., Перетяжко И.С. Редкие земли в метаморфитах и метасоматитах Малханского и Ямаровского пегматитовых полей (Центральное
- 6 ГЕОХИМИЯ № 1 2003

Забайкалье) // Геология и геофизика. 1992. № 6. С. 57-67.

- Собаченко В.Н., Смирнова Е.В. К геохимии лантаноидов в приразломных метасоматических процессах, проявленных в докембрийских комплексах пород юга Восточной Сибири // Геохимия. 1996. № 6. С. 529–537.
- Жариков В.А., Омельяненко Б.И. Классификация метасоматитов / Метасоматизм и рудообразование. М.: Наука, 1978. С. 9–28.
- 6. Глебовицкий В.А., Бушмин С.А. Послемигматитовый метасоматоз. Л.: Наука, 1983. 216 с.
- Жданов В.В., Беляев Г.М., Блюман Б.А. и др. Региональные метаморфометасоматические формации. Л.: Недра, 1983. 280 с.
- Teracado Y., Fujitani T. Behavior of the rare elements and other trace elements during interactions between acidic hydrothermal solutions and silicic volcanic rocks, southwestern Japan // Geochim. et Cosmochim. Acta. 1998. V. 62. № 11. P. 1903–1917.
- Alderton D.H.M., Pearce J.A., Potts P.J. Rare earth element mobility during granite alteration: evidence from southwest England // Earth Planet. Sci. Lett. 1980. V. 49. P. 149–165.
- Древняя структура земной коры Восточной Сибири. Новосибирск: Наука, 1975. 185 с.
- Ескин А.С. Древние метаморфические комплексы Западного Прибайкалья // Геология Прибайкалья. Иркутск, 1969. С. 91–120.
- Устинов В.И., Рыбаков В.Г. К стратиграфии нижнего протерозоя центральной части Западного Прибайкалья // Стратиграфия докембрия региона средней Сибири. Л.: Наука, 1983. С. 60–67.
- 13. Федоровский В.С. Нижний протерозой Байкальской горной области. М.: Наука, 1985. 200 с.
- 14. Головенок В.К. Высокоглиноземистые формации докембрия. Л.: Недра, 1977. 268 с.
- Обухов С.П. Граниты рапакиви Прибайкалья. Дис. ... канд. геол.-мин. наук. Иркутск: ИЗК СО АН СССР, 1979. 307 с.
- Бухаров А.А. Протоактивизированные зоны древних платформ. Новосибирск: Наука, 1987. 200 с.
- Бибикова Е.В., Кориковский С.П., Кирнозова Т.И. и др. Определение возраста пород Байкало-Витимского зеленокаменного пояса изотопно-геохронологическими методами // Изотопное датирование процессов метаморфизма и метасоматоза. М.: Наука, 1987. С. 154–164.
- Зарайский Г.П. Условия формирования главных фациальных типов грейзенов по экспериментальным данным // Петрология. 1999. Т. 7. № 4. С. 460–480.
- Самойлов В.С. О влиянии кислотности-щелочности на равновесия породообразующих и акцессорных минералов // Геохимия и петрология метасоматоза. Новосибирск: Наука, 1975. С. 3–15.
- 20. Казицын Ю.В. Метасоматизм в земной коре. Л.: Недра, 1979. 208 с.
- 21. Коржинский Д.С. Теория метасоматической зональности. М.: Наука, 1982. 104 с.
- 22. Макрыгина В.А., Петрова З.И., Гантимурова Т.П. Сравнительная геохимия пород сармин-

ской серии и метасоматитов зоны Приморского разлома (Западное Прибайкалье) // Геохимия. 2000. № 2. С. 131–146.

- 23. *Schellmann W*. On the geochemistry of laterites // Chem. Erde. 1986. Bd. 45. H. 1/2. S. 39–52.
- 24. *Тейлор С.Р., Мак-Леннан С.М.* Континентальная кора: ее состав и эволюция. М.: Мир, 1988. 384 с.
- 25. Мигдисов А.А., Балашов Ю.А., Шарков И.В. и др. Распространенность редкоземельных элементов в главных типах пород осадочного чехла Русской платформы // Геохимия. 1994. № 6. С. 789–803.
- Бородин Л.С., Мухитдинов Г.Н., Осокин Е.Д., Похвиснева Е.А. Структурно-тектонические особенности размещения недосыщенных и пересыщенных кремнеземом щелочных пород и их сравнительная геохимическая характеристика // Проблемы геологии редких элементов. М.: Наука, 1978. С. 46–58.
- 27. Петрова З.И., Макрыгина В.А., Антипин В.С. Петролого-геохимическая корреляция гранитов рапакиви и кислых вулканитов в южном обрамлении Сибирской платформы // Петрология. 1997. Т. 5. № 3. С. 291–311.
- 28. Коржинский Д.С. Очерк метасоматических процессов // Основные проблемы в учении о магмато-

генных рудных месторождениях. М.: АН СССР, 1955. С. 333–456.

- Минеев Д.А. Геохимическая дифференциация редкоземельных элементов // Геохимия. 1963. № 12. С. 1082–1100.
- 30. *Жариков В.А.* Некоторые аспекты проблемы гранитообразования // Вестн. Моск. ун-та. Сер. 4. 1996. № 4. С. 3–12.
- 31. *Балашов Ю.А*. Геохимия редкоземельных элементов. М.: Наука, 1976. 266 с.
- 32. Загорский В.Е., Смирнова Е.В. Редкоземельные элементы в породах полей развития мезозойских редкометальных пегматитов Сибири // Геохимия. 1985. № 11. С. 1578–1587.
- 33. Wood S.A. The aqueous geochemistry of the rare-earth elements and yttrium. 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure // Chem. Geol. 1990. V. 88. P. 99–125.
- 34. Бандуркин Г.А. О поведении редкоземельных элементов во фторсодержащих средах // Геохимия. 1962. № 2. С. 143–149.
- 35. *Жданов В.В.* Метасоматиты, опыт изучения и картирования. СПб.: ВСЕГЕИ, 1999. 54 с.