И.Б. Серавкин, А.М. Косарев, В.М. Горожанин

ИЗОТОПНЫЕ ОТНОШЕНИЯ Rb И Sr И РАДИОЛОГИЧЕСКИЙ ВОЗРАСТ ВУЛКАНОГЕННЫХ КОМПЛЕКСОВ БАЙМАК-БУРИБАЕВСКОЙ (D₁ems), ИРЕНДЫКСКОЙ (D₁-D₂e) И КАРАМАЛЫТАШСКОЙ (D₂e) СВИТ

Как известно, стабильные изотопы являются чуткими индикаторами петрогенетических процессов и с успехом используются при решении вопросов происхождения магматических горных пород, выяснении палеогеодинамических условий и абсолютного возраста их образования [Балашов, 1985; Магматические..., 1985; Фор, 1989]. Радиологическое датирование имеет определяющее значение для древних комплексов, лишенных фаунистических остатков, но оно важно и для палеозойских формаций, особенно осадочно-вулканогенного и вулканогенного происхождения, в которых фаунистические остатки или отсутствуют или, находясь в осадочных прослоях, не всегда дают ясный ответ на вопрос о возрасте ассоциирующихся с осадками вулканитов. Разработанные в разное время геохронологические шкалы (для интересующего нас в данной работе периода от ордовика до девона включительно) приведены в таблице 1.

Магматические и метаморфические комплексы Южного Урала, в том числе и расположенные в пределах рассматриваемого нами западного крыла Магнитогорского мегасинклинория (листы N-40-XXIX и N-40-XXXV), датированы различными методами изопотной геохронологии: K-Ar, U-Th-Pb, Rb-Sr и α-Рb [Гаррис, 1977]. В последние годы получены также данные Sm-Nd и Ar-Ar методами. До 80-х годов прошлого столетия на Урале широко использовались результаты K-Ar определений, выполненных в лабораториях Института геологии и геохимии под руководством Л.Н. Овчинникова (г. Свердловск) и Института геологии под руководством М.А. Гаррис (г. Уфа). Эти данные легли в основу геохронологической шкалы Урала (таблица 1). Практически все опубликованные данные касались интрузивных пород и метаморфических комплексов. Датировки эффузивных пород в книге М.А. Гаррис [1977] не приводятся и даже не обсуждаются. Это понятно, так как южноуральские палеозойские вулканиты преимущественно имеют натриевый состав, в большинстве случаев лишены свежих минералов, содержащих калий, и поэтому пригодность их для исследований К-Аг и Rb-Sr методами резко ограничена. Сказанное в полной мере относится к вулканогенным комплексам районов западного крыла Магнитогорского мегасинклинория. Более перспективным представлялось определение абсолютного возраста формирования колчеданных руд по серицитам околорудно измененных пород. Такие определения были выполнены К-Аг методом в лабораториях

Свердловска и Уфы для большинства уральских колчеданных месторождений. Данные обобщены Ф.П. Буслаевым и Б.А. Калегановым [Медноколчеданные..., 1988]. В рассматриваемых нами районах модельный и изохронный абсолютный возраст по серицитам K-Ar методом получен для Юбилейного, Маканского, Бакр-тауского, Тубинских и Подольского месторождений, которые здесь перечислены в порядке их положения в разрезе баймак-бурибаевской и ирендыкской свит (снизу вверх). Модельный возраст серицитов Юбилейного месторождения был определен Л.Н. Овчинниковым с соавторами [1976], по этим данным получена изохрона 347±20 Ма [Медноколчеданные..., 1988]. Изохронный радиологический возраст серицитов Маканского рудного поля, также полученный по данным модельных возрастов [Гаррис, 1966; Овчинников и др., 1969, 1976], составил 338±8 Ма, но модельные возраста дают и более древние датировки. Определения модельных возрастов серицитов Бакр-тауского [Гаррис, Аршинов, 1986] и Тубинских [Гаррис, 1966] месторождений позволили построить 2 изохроны для Бакр-тауского (І — 332±4 Ма и II — 317±8 Ма) и одну изохрону для Тубинских (341±1Ма) месторождений. Наконец, для серицитов Подольского месторождения, залегающего в ирендыкской свите, было получено 14 определений модельного возраста с разбросом значений от 420±18 Ма до 312 Ма [Гаррис и др., 1979]. По ним получены 2 изохроны: I — 360±24 Ма и II — 328±17 Ма [Медноколчеданные..., 1988].

Приведенные данные показывают следующее: 1) значительный разброс значений модельного возраста серицитов (от силура до среднего карбона), 2) несоответствие изохронного возраста серицитов положению месторождений в разрезе (например, 247 Ма для наиболее древнего Юбилейного и 360 Ма для наиболее молодого из приведенных Подольского месторождения); 3) общее значительное омоложение изохронного возраста серицитов по сравнению с возрастом по геологическим данным (эмс – эйфель, 394–380 Ма). Следует подчеркнуть, что для таких месторождений как Юбилейное, Маканские и Подольское в настоящее время не остается сомнений в их сингенетичном формировании. Следовательно, разброс значений изохронного возраста серицитов объясняется процессами их перекристаллизации, и радиологический возраст отражает в основном этапы поздних преобразований, а не время формирования месторождений [Медноколчеданные..., 1988].

			Комиссия по	Геохронологи-	Шкала	International
			определению	ческая шкала	геологическо-	stratigrafic chart
	Перис	ЭД,	абс. возр.,	Урала [Гаррис,	го времени	[J.Remane et
	эпоха	a,	1964	1977]	[Харланд и	al., 2000]
	век.				др.,1982]	
			Радиолог	ический возраст с	стратиграфически	их рубежей,
				МЛН. Л	ет (Ма)	1
1	Карб	ОН	340	340	360	355+5
		fm	510	510	367	370+5
	D ₃	f			374	375+5
ΗO		ZV			380	380-
G B		ef		370	387	390+5
ЦЦ		ems		570	30/	570±5
	D ₁	zg			401	
		gd	410+10	400	401	410+8/ 5
d		prd	410±10	400	408	410+8/-3
I y]	S ₂	ld			414	415
П		W			421	423±3
	S ₁	ln	440+15	440	428	
		ash	440±15 —	440	438	435+6/-4
4 K	O_3	kar			450	45515
B I		lld			458	435±5
рдо	O_2	llv			470	165+5
0 b		ar			4/8	403±3
	O_1	tr	500+20	500	505	500
	Кембр	ий	500±20	500	505	500

Геохронологические шкалы по данным разных исследователей

Понимание ограниченных возможностей К—Аг метода [Овчинников и др., 1981] и постановка Rb—Sr метода в лабораториях институтов РАН Екатеринбурга и Уфы привело к широкому использованию результатов Rb—Sr изотопных определений [Краснобаев и др., 1985, 1981, 1992; Ронкин, 1989; Бобохов, 1991; Горожанин, 1991, 1998; и др.]. Применительно к рассматриваемым нами в данной работе районам были получены важные данные по первичному отношению изотопов Sr (IR) и ⁸⁷Rb/⁸⁶Sr в вулканитах баймак-бурибаевской, ирендыкской и карамалыташской свит [Горожанин, Глухова, 1987; Бобохов, Горожанин, 1989; Бобохов и др., 1989; Горожанин, 1991; Бобохов, 1994; Spadea et al, 2002] (см. табл. 2). Как следует из таблицы 2, первичные отношения ⁸⁷Sr/⁸⁶Sr, по данным уральских исследователей, закономерно возрастают от относительно древнего (эмсского) к более молодым (эйфельским) комплексам. Эта закономерность менее очевидно, но все же проявляется и по зарубежным данным, полученным при анализе проб, предоставленных А.М. Косаревым [Spadea et al, 2002].

Таблица 1

Сравнение отношения IR Sr в южноуральских породах и в вулканитах современных геодинамических обстановок показывает, что формирование баймак-бурибаевской свиты происходило в предостроводужной океанической обстановке, ирендыкской свиты — в островодужных условиях, Первичные отношения ⁸⁷Sr/⁸⁶Sr (IR) в породах баймак-бурибаевской, ирендыкской и карамалыташской свит на площади листов N-40-XXIX и N-40-XXXV по разным данным

Таблица 2

[2002]	IR Sr ва- риации	0,70474	0,70518- 0,70577	0,70463 0,70446		0,70579	0,70465-0,70666		
adea et al.	По- рода	BZ MBZ BZ				BZ	BZ		
Spa	Ин- декс свиты	b-br ₁ ¹	b-br ₁ ¹ b-br ₁ ² b-br ₁ ³ , b-br ₂			н.	kr		
	Ma	374	380	420*	380	380	396		
анин [1998	IR Sr	0,70369	0,70435	0,70392	0,70409	0,70464	0,70460		
Горож	Порода, минерал	cP _X Ri Bz		cPx	ΒZ				
Бобохов [1994]	<u>IRSr вариации</u> IRSr cp. 0,7023-0,7057			0,7038		<u>0,7034–0,7051</u> 0,7043	7107 0 2020 0	0,7045	
Горожа- њмин [1989]	Вариации IR Sr	0,70297- 0,70573					10307 0	0,70472	
Бобохов, нин, Куз	Порода		Ri					Ri	
нин [1991]	Вариации IR Sr	0,70297- 0,70573					L020L 0	0,70472	
Горожа	Порода		Ri					Ri	
ин, [1987]	IR SR		0,7031			0,7040			
Горожан Глухова	Минерал		cPx			cPx			
т ский	возрас Геологиче		sut	D ¹		D ¹ –D ⁵ ¢	D2e		
Гатты		Баймак- бурибаевская		R	ирендыкска	квяэшетілгемедеЯ			

Примечание. Сокращенные названия пород и минералов: Ri – риолит, BZ – базалыт, MBZ – магнезиальный базалыт, cPx – моноклинный пироксен. * данные Ю.Л. Ронкина.

а карамалыташской свиты — в режиме окраинных морей (IR Sr толеитов N–MORB — 0,7024–0,7035; островодужных вулканитов — 0,7030–0,708; базальтов окраинных морей — до 0,7073; [Магматические..., 1985]). Такой вывод независимо получен и по другим петро-геохимическим данным.

Радиологическое датирование вулканогенных комплексов Rb–Sr методом, данные которого в целом приближаются к геологическим (по конодонтовой шкале), все же не дает пока удовлетворительных результатов. Так, приведенный в табл. 2, по данным В.М. Горожанина, возраст баймак-бурибаевской свиты (420–374 Ма) лежит в пределах: граница венлока и лудлова — рубеж живета и франа (см. табл. 1), тогда как по конодонтам возраст этой свиты соответствует эмсу (394–387 Ма по последней международной шкале). Нами *получены определения изотопного состава Rb и Sr no 11 авторским пробам.* Анализы выполнены в лаборатории Института геологии УНЦ РАН (г. Уфа) В.М. Горожаниным. Кроме того, использованы полученные ранее, но не опубликованные результаты определений в той же лаборатории, частично по авторским пробам (12 проб), и некоторые опубликованные данные (15 опр.) (рис. 1, 3, таблицы 3, 4). Анализировался изотопный состав Rb и Sr во вкрапленниках пироксена, кислых вулканитах, базальтах, метаосадочных породах и интрузивных породах различного состава баймакбурибаевской и ирендыкской свит (рис. 1–4).

Отношения 87 Rb/ 86 Sr и 87 Sr/ 86 Sr во вкрапленниках клинопироксена из базальтов баймакбурибаевской свиты (b-br₁ 3) Хворостянского участка представлены на рис. 1. По результатам трех

К рис. 1

Результаты определения изотопного состава Rb и Sr в клинопироксенах из баймак-бурибаевской свиты (данные B. M. Горожанина, образцы из коллекции авторов и Е. Н. Горожаниной)

№ обр.	Местоположение	Минерал	⁸⁷ Rb/ ⁸⁶ Sr	s, %	⁸⁷ Sr/ ⁸⁶ Sr	s, %	Rb, мкг/г	Sr, мкг/г
8111*	Участок Хворо- стянский	Пироксен из базальта	0,0502	0,5	0,70394	0,0003	1,5	54,3
8112*	то же	то же	0,52598	0,5	0,70649	0,0003	2	11,4
84//25	то же	то же	0,0896	0,5	0,70419	0,0003	1,6	53,5

Примечание: * образцы из коллекции авторов.

Рис. 1. Изохронная зависимость изотопных отношений Rb и Sr во вкрапленниках клинопироксенов баймакбурибаевской свиты (b-br₁³) (данные B. M. Горожанина)

анализов получена изохрона. Одна из проб пироксена, частично замещенного вторичными минералами, подверглась кипячению в 10% растворе HCl с целью устранения влияния метаморфизма. В связи с тем, что изохрона построена по минимально необходимому количеству точек и две из них имеют близкие значения отношения ⁸⁷Sr/⁸⁶Sr и ⁸⁷Rb/⁸⁶Sr (обр. 84/25 и 8111), полученный абсолютный возраст 374 ± 33 Ма нельзя считать надежно установленным.

Как известно, возраст кислых пород, широко распространенных в Баймакском рудном районе среди отложений баймак-бурибаевской свиты, вызывает дискуссию. А.А. Захаровым практически все кислые породы отнесены к субвулканическим образованиям и датированы D_2 и D_2 gv. Нами кислые породы эффузивной, экструзивной и субвулканической фаций глубинности, а также интрузивные плагиограниты и диориты объединены в Баймакский вулкано-интрузивный комплекс, синхронный баймак-бурибаевской свите.

Проанализирован изотопный состав Rb и Sr различных типов кислых пород Куль-юрт-тауского, Бакр-тауского, Таш-тауского, Уваряжского, Япайского месторождений и некоторых других участков Баймакского рудного района (таблица 3, рис. 2).

Несмотря на значительное количество измерений, получить изохрону не удалось, так как большая часть проб имеет низкие содержания Rb и низкие отношения ⁸⁷Sr/⁸⁶Sr и ⁸⁷Rb/⁸⁶Sr (рис. 2). Эрохронная (не удовлетворяющая условиям построения изохроны) зависимость соответствует радиологическому возрасту кислых вулканитов, не затронутых гидротермальными изменениями, 400±20 Ma, что отвечает нижнедевонскому возрасту баймакбурибаевской свиты. Другая эрохрона с возрастом 368±16 Ма получена для субвулканических мегафировых риолитов, измененных гидротермальными процессами, интенсивно серицитизированных (обр. 9148, 9153, 9157). Как видно в таблице 3, в отличие от неизмененных пород, в серицитизированных вулканитах содержания Rb превышают концентрации Sr, что связано с замещением плагиоклаза серицитом и выносом Sr из породы. Соответственно, радиологический возраст этих пород значительно омоложен и отвечает времени серицитизации или перекристаллизации серицитов.

Наряду с кислыми вулканитами Бакр-тауского месторождения были исследованы метаосадочные породы этого объекта — кремнистые туффиты и хлоритолиты слоистого горизонта (b-br₁²). Полученная эрохрона (рис. 3) соответствует

Рис. 2. Эрохронная зависимость изотопных отношений Rb и Sr в «неизмененных» и затронутых околорудными гидротермальными изменениями кислых вулканитах баймак-бурибаевской свиты (данные В. М. Горожанина)

Таблица 3

№ обр.	Местоположение	Порода	⁸⁷ Rb/ ⁸⁶ Sr	s, %	⁸⁷ Sr/ ⁸⁶ Sr	s, %	Rb, мкг/г	Sr, мкг/г
2600**	м-е Куль-юрт-тау	риолит	0,1242	0,5	0,70384	0,03	5,6	133,2
2602**	м-е Бакр-тау	риолит	0,1604	0,5	0,70356	0,03	12,5	227,3
2104a**	г. Уваряж	риолит	0,56	0,5	0,70591	0,03	29,8	455,9
2105a**	м-е Япай	риолит	0,0729	0,5	0,70409	0,03	10,7	428,6
2106a**	м-е Япай	риолит	0,4506	0,5	0,70633	0,03	35,8	232,7
2107a**	м-е Япай	риолит	0,1357	0,5	0,70407	0,03	10,4	224,2
2108a**	м-е Бакр-тау	риолит	0,1775	0,5	0,70531	0,03	13,3	219
9150	м-е Бакр-тау	риолит базокварцевый	2,54862	0,5	0,71925	0,03	22	25,3
9148	м-е Бакр-тау	мегафир серици- тизированный	2,9466	0,5	0,71846	0,03	26	25,8
9153	м-е Бакр-тау	галька мегафира в руде	4,92956	0,5	0,72748	0,03	19,3	11,5
9157	м-е Бакр-тау	мегафир измененный	4,656	0,5	0,72814	0,03	34,9	22
9184	п. Богачевка	диорит	0,0674	0,5	0,70382	0,03	2,3	99,1
9185	п. Богачевка	риолит	0,02943	0,5	0,70368	0,03	1,4	137,2
Э—19	м-е Таш-тау	риолит	4,27474	0,5	0,72749	0,03	30,2	20,7
И-0149*	дер. Ишмурзино	риолит	0,54967	0,5	0,70752	0,03	24,6	131,1
84 /11	п. Новочеркасск	риолит	0,4317	0,5	0,70648	0,03	14,6	99,1

Результаты определения изотопного состава Rb и Sr в кислых вулканитах баймак-бурибаевской свиты (данные А.С. Бобохова и В.М. Горожанина, образцы из коллекции А.С. Бобохова и авторов)

Примечание: * образец из коллекции авторов, ** образцы, данные по которым опубликованы [Бобохов, 1991].

абсолютному возрасту 382±29 Ма, что отвечает радиологическому возрасту эйфеля. Омоложение радиологического возраста осадочных пород по сравнению с их геологическим возрастом, вероятно, объясняется, как и для кислых вулканитов, воздействием процессов околорудного метасоматоза. Об этом, в частности, свидетельствуют и значительные вариации содержаний Rb и Sr в измененных вулканитах (см. рис. 3). В этих породах отмечаются высокие значения отношения ⁸⁷Sr/⁸⁶Sr (до 0,74026) и повышенное первичное отношение ⁸⁷Sr/⁸⁶Sr (0,70544), что, вероятно, связано с контаминацией осадков изотопом ⁸⁷Sr, заимствованным из морской воды.

Основная часть результатов, полученных по нашим пробам, относится к вулканическим и интрузивным породам ирендыкской свиты Подольского рудного поля (таблицы 4, 5, рис. 4 А, Б). Анализировались главным образом интрузивные породы подрудной зоны месторождения (4 пробы) и вулканиты трахидацитовой толщи (ir₅) надрудной

зоны (11 проб), а также породы экструзивного рудовмещающего купола (3 пробы) и риолит низов ирендыкской свиты района д. Мрясово (1 проба). При выборе пород для анализа авторы исходили из повышенных содержаний К₂О в интрузивных породах и субщелочных вулканитах ir₅ по сравнению с другими кислыми вулканитами ирендыкской свиты. Однако большой разброс значений изотопных отношений не позволил получить линейную зависимость и определить абсолютный возраст ирендыкских кислых вулканитов. Разброс значений изотопных отношений Rb и Sr связан с широкими вариациями содержаний суммы щелочей и К₂О в породах, что в свою очередь обусловлено метасоматическими процессами (см. таблицу 5). Так, содержания К₂О в проанализированных интрузивных породах варьируют от 0,29% до 2,18%, а в вулканитах трахидацитовой толщи — от 0,23% до 3,69%. Столь же велики и вариации содержаний СаО: от 0,26% до 4,34% в интрузивных породах и от 0,31% до 3,82% в вулканитах. Соответственно,

содержания Rb, прямо зависящие от содержаний калия, меняются в интрузивных породах от 3 ррт до 40,3 ррт, а в вулканитах трахидацитовой толщи — от 3,6 ppm до 43,9 ppm. Столь же значительны и вариации содержаний Sr, зависящие от количества плагиоклаза и соотношений в нем альбитовой и анортитовой молекул: содержания Sr варьируют в интрузивных породах от 41,5 ppm до 315,4 ppm, а в вулканитах трахидацитовой толщи — от 66,4 ppm до 984,4 ppm. Наиболее низкие содержания Sr (18,8 ррт в обр. 214/1100) отмечаются в метасоматитах, в которых плагиоклаз полностью замещен вторичными минералами, в основном серицитом. Первичный баланс К₂О, Na₂O и CaO в этой породе кардинально нарушен в связи с привносом калия и выносом кальция и натрия. Не удивительно, что эта проба имеет наиболее высокие стронциевое и рубидий-стронциевое изотопные отношения (см. рис. 4 A), отражающие результат вторичных процессов (87 Rb/ 86 Sr = 2,0178; 87 Sr/ 86 Sr = 0,71846).

Измеренные («невыщелоченные») отношения ⁸⁷Sr/⁸⁶Sr в кислых породах ирендыкской свиты близки к таковым в кислых вулканитах баймакбурибаевской свиты.

Так, ⁸⁷Sr/⁸⁶Sr варьирует в интрузивных породах ирендыкской свиты в пределах 0,70433–0,708, в породах ir₅ — 0,70309–0,70703, в породах ir_{1–3} — 0,70488–0,70798, а в баймак-бурибаевской свите составляет 0,70356–0,70752. Существенно меняются, как уже отмечалось, отношения ⁸⁷Sr/⁸⁶Sr и ⁸⁷Rb/⁸⁶Sr, повышающиеся при гидротермальных изменениях вулканитов и ирендыкской, и баймакбурибаевской свит (см. обр. 9148, 9153, 9157 в таблице 3. и обр. 214/1100 в табл. 4). Отношения ⁸⁷Rb/⁸⁶Sr

Крис. 3

Результаты определения изотопного состава Rb и Sr в метаосадочных породах баймак-бурибаевской свиты (данные B. M. Горожанина, образцы из коллекции А. С. Бобохова)

№ обр.	Местоположение	Порода	⁸⁷ Rb/ ⁸⁶ Sr	s, %	⁸⁷ Sr/ ⁸⁶ Sr	s, %	Rb, мкг/г	Sr, мкг/г
9142	м-е Бакр-тау	кремн. туффит	1,24	0,5	0,71157	0,03	36	85,1
9147	м-е Бакр-тау	кремн. туффит	6,392	0,5	0,74026	0,03	29,8	13,7
9149	м-е Бакр-тау	хлоритолит	0,756	0,5	0,71011	0,03	0,9	3,5

Рис. 3. Эрохронная зависимость отношений Rb и Sr в метаосадочных породах баймак-бурибаевской свиты (данные В. М. Горожанина)

Рис. 4. Изотопные отношения Rb и Sr в кислых вулканитах ирендыкской свиты: А – все результаты определений, Б – результаты основной совокупности определений (данные В.М. Горожанина). На рис. 4 Б приведены номера образцов, помещенных в таблице 4.

в измененных породах дают значения 2,0178– 4,92956, тогда как в «неизмененных» вулканитах эти значения < 1.

Основные выводы по изучению изотопного состава Rb и Sr в вулканитах баймак-бурибаевской, ирендыкской и карамалыташской свит заключаются в следующем.

1. Первичные отношения ⁸⁷Sr/⁸⁶Sr в вулканитах подтверждают выводы, сделанные на основании геологических и петро-геохимических данных, о геодинамических обстановках формирования вулканогенных комплексов: образовании баймакбурибаевской свиты в океанических предостроводужных условиях, ирендыкской свиты — в островодужной обстановке, карамалыташской свиты в режиме окраинного моря.

2. Содержания Rb и Sr в породах баймакбурибаевской и ирендыкской свит значительно

варьируют (Rb — от 3 ppm до 43,9 ppm; Sr — от 11,5 ppm до 984,4 ppm; по данным определений В.М. Горожанина в Институте геологии УНЦ РАН, г. Уфа). Вариации зависят как от первичного состава пород (главным образом, от содержания К₂O, Na₂O и CaO), так и, особенно, от вторичных преобразований вулканитов. Отношение ⁸⁷Rb/⁸⁶Sr в метасоматически измененных породах повышается до значений 2,0178-4,92956, тогда как в кислых вулканитах, не затронутых околорудным метасоматозом, это отношение составляет 0,02943-0,75331. Отношения ⁸⁷Sr/⁸⁶Sr в метасоматитах дают значения 0,71846-0,72814, более высокие по сравнению со значениями тех же отношений в «неизмененных» вулканитах 0,70356-0,708 (данные В.М. Горожанина, табл. 3, 4).

3. Датирование вулканитов баймак-бурибаевской и ирендыкской свит Rb—Sr методом дает цифры абсолютного возраста, довольно близкие к установленным по палеонтологическим данным в сопоставлении с международной геохронологической шкалой. Однако разброс этих цифр достаточно велик. Например, для баймак-бурибаевской свиты приводятся цифры от 420 Ма до 374 Ма (см. табл. 2). По образцам авторов модельный радиологический и изохронный возраст баймак-бурибаевской свиты определен в интервале 400 ± 20 Ма — 374 ± 33 Ма, что соответствует отрезку геологического времени от конца жединского века раннего девона до конца живетского века среднего девона.

4. Учитывая преимущественно натриевый тип вулканитов девонских колчеданоносных формаций

Таблица 4

Мо п/п	No of page 19	Порода	87pb/86Sr	s 0/2	87 Sr/86 Sr	s 0/2	Rh wrr/r	Sr MKE/E
J12 11/11		Порода		5, 70	0.70400	5, 70		SI, MKI/I
	214/1820*	гранодиорит	0,0277	1	0,70433	0,03	3	315,4
2	214/1820,5*	диорит	0,08846	0,5	0,70562	0,03	4,9	163,4
3	214/1265*	габбродиорит	0,192	0,5	0,706	0,03	8,6	130,7
4	214/1150*	плагиогранит	0,7102	0,5	0,708	0,03	40,3	41,5
5	п19/836,2*	риолит	0,28	0,5	0,70447	0,03	14,6	192,5
6	п19/559*	андезит	0,17	0,5	0,70605	0,03	13,7	264,4
7	п19/537,3*	дацит	0,0702	0,5	0,70309	0,03	23,6	984,4
8	12468/0*	риолит	0,13866	0,5	0,70501	0,03	3,6	76,8
9	12489/10**	риолит	0,216	0,5	0,70521	0,03	20,2	274,1
10	12470/6**	трахириолит	0,30534	0,5	0,706	0,03	19,1	183,3
11	12470/1**	трахириолит	0,39865	0,5	0,70633	0,03	29,1	214,1
12	214/424*	риодацит	0,11042	0,5	0,70649	0,03	17,1	452,9
13	12489/23**	риолит	0,36064	0,5	0,70594	0,03	43,9	356,4
14	12466/2**	трахидацит	0,75331	0,5	0,70703	0,03	17,1	66,4
15	46/483.5*	риолит	0,73313	0,5	0,70649	0,03	37	194,1
16	12470/22**	риолит	0,26238	0,5	0,70605	0,03	12,9	144
17	214/1100*	Метасоматит серицит- кварцевый по риодациту	2,0178	0,5	0,71846	0,03	12,4	18,8
18	850//735*	риодацит	0,59538	0,5	0,70798	0,03	25,5	125,6
19	ИР**	риолит	0,0378	0,5	0,70488	0,03	5,4	417,6

Результаты определения изотопного состава Rb и Sr в кислых вулканитах ирендыкской свиты (данные B.M. Горожанина, образцы из коллекции авторов и А.С. Бобохова)

Примечание: * образцы из коллекции авторов, ** образцы, данные по которым опубликованы [Бобохов, 1991]. 1–17 – породы района Подольского месторождения; 1–4 – интрузивные породы подрудной зоны; 5 – экструзивная порода (ir₃); 6–16 – породы трахидацитовой (сукраковской) толщи (ir₅); 17 – метасоматит рудовмещающего экструзивного купола; 18 – риодацит рудовмещающего экструзивного купола; 19 – риолит района д. Мрясово.

Сумма	99,84	99,87	99,32	99,88			99,89	99,42	100,01	99,64	100,16
ШШ	3,2	3,5	4,6	2,4			0,4	1,41	2,0	0,0	0,46
K_2O	0,75	0,29	2,18	1,24	0,62	0,3	1,12	0,23	1,60	2,38	3,69
Na_2O	1,93	0,97	1,88	3,84			3,99	5,27	4,00	4,53	4,67
CaO	1,58	4,34	3,07	0,26	2,84	3,82	3,82	1,91	3,60	1,24	0,31
MgO	6,29	7,89	7,03	5,75	2,61	5,08	0,57	1,73	1,32	0,57	1,00
ΣFe_2O_3	5,18	6,85	8,88	1,33	2,98	5,94	6,22	6,00	5,60	4,68	4,01
Al ₂ O ₃	14,48	13,19	15,07	16,3	11,48	17,86	14,22	13,68	13,80	12,72	14,59
TiO_2	0,30	0,36	0,34	0,31	0,34	0,94	0,45	0,46	0,49	0,63	0,45
SiO ₂	66,02	62,35	56,10	68,38	72,99	57,69	68,88	69,38	67,22	73,71	70,93
Порода	Гранодиорит	Диорит	Габбродиорит	Плагиогранит	Риолит	Андезит	Дацит	Дацит	Дацит	Трахириолит	Трахириодацит
Nº oбp.	214/1820	214/1820,5	214/1265	214/1150	П-19/836,2•	П-19/559•	П-19/537,3••	12468••	12489/10••	12470/6••	12470/1••
№ <u>№</u> П/П	1	2	3	4	5	6	7	8	6	10	11

Примечания: 1–4 – интрузивные породы подрудной зоны, 5 – экструзивный кварцевый риолит (ir₃), 6–11 – породы надрудной (сукраковской) толци (ir₅). Химический состав пород определен рентгено-флюоресцентным методом (в ИГЕМ); • – в Институт геологии (Уфа); • – силикатный анализ, Институт геологии (Уфа).

Таблица 5

Химические составы (% мас.) вулканических и интрузивных пород ирендыкской свиты района Подольского месторождения, по которым выполнены определения изотопного состава Rb и Sr Южного Урала и их зеленокаменные изменения, сопровождающиеся метасоматозом, радиологическое датирование названных вулканических комплексов K—Ar и Rb—Sr методами имеет ограниченное значение.

Литература:

Балашов Ю.А. Изотопно-геохимическая эволюция мантии и земной коры. М.: Наука, 1985. 221 с.

Бобохов А.С. Эндогенная динамическая система Южноуральской палеоостровной дуги. М.: Наука, 1991. 181 с.

Бобохов А.С. Эволюция палеозойского магматизма Южного Урала по геохимическим и изотопным данным и проблема формирования континентальной коры: Препринт доклада Президиуму УНЦ РАН. Уфа, 1994. 44 с.

Бобохов А.С., Горожанин В.М. Эволюция среднедевонского вулканизма Южного Урала по Sr-изотопным данным: Тез. докл. / VII конф. ТОВМО. Тюмень, 1989. С. 129–130.

Бобохов А.С., Горожанин В.М., Кузьмин С.А. Стронциево-изотопные данные для кислых вулканитов Магнитогорского мегасинклинория Южного Урала: Препринт доклада Президиуму БНЦ УрО АН СССР. Уфа, 1989. 24 с.

Гаррис М.А. Некоторые черты металлогении Урала по геохронологическим данным // Абсолютное датирование тектоно-магматических циклов и этапов оруденения по данным 1964 г. М.: Наука, 1966. С. 153–168.

Гаррис М.А. Этапы магматизма и метаморфизма в доорогенной истории Урала и Приуралья. М.: Наука, 1977. 296 с.

Гаррис М.А., Аршинов Ю.П. Этапность и стадийность гидротермально-метасоматических процессов, сформировавших сульфидное месторождение Бакр-Тау // Минералогия, геохимия и генезис полезных ископаемых Южного Урала. Уфа: БФАН СССР, 1986. С. 22–26.

Гаррис М.А., Тимергазина А.К., Аршинов Ю.П. Изотопные данные о генезисе и возрасте Подольского колчеданного месторождения // Минералогия и геохимия сульфидных месторождений и рудоносных комплексов Южного Урала. Уфа: БФАН СССР, 1979. С. 48–53.

Горожанин В.М. Роль контаминации в происхождении кислых вулканитов Магнитогорского мегасинклинория // Микроэлементы в магматических, метаморфических и рудных формациях Урала / БНЦ УрО АН СССР. Уфа. 1991. С. 32–39.

Горожанин В.М. Первичный изотопный состав стронция в магматических комплексах Южного Урала // Магматизм и геодинамика. Екатеринбург: УрО РАН, 1998. С. 98–108. **Горожанин В.М., Глухова Г.А.** Изотопный состав стронция пироксеновых вкрапленников из базальтов островодужных комплексов Южного Урала // Методы изотопной геологии: Тез. докл. / Всесоюз. школа-семинар. М., 1987. Ч. 1. С. 77–78.

Краснобаев А.А., Бибикова Е.В., Степанов А.И. и др. Возраст эффузивов машакской свиты и проблема радиологической границы нижний – средний рифей // Изотопное датирование процессов вулканизма и осадкообразования. М.: Наука, 1985. С. 118–124.

Краснобаев А.А., Бибикова Е.В., Ронкин Ю.Л., Козлов В.И. Геохронология вулканитов айской свиты и изотопный возраст нижней границы рифея // Изв. АН. Сер.геол. 1992. № 6. С. 25–40.

Краснобаев А.А., Ферштатер Г.Б., Степанов А.И. и др. Петрология и рубидий-стронциевая геохронология Бердяушского массива рапакиви (Южный Урал) // Изв.АН СССР. Сер. геол. 1981. № 1. С. 21–38.

Магматические горные породы. Т. 3: Основные породы / *Под ред. О.А. Богатикова*. М.: Наука, 1985. 486 с.

Медноколчеданные месторождения Урала. Геологическое строение / В.А. Прокин, Ф.П. Буслаев, М.И. Исмагилов и др. Свердловск: УрО АН СССР, 1988. 241 с.

Овчинников Л.Н., Вороновский С.Н., Молярова Г.В. и др. Новые данные об абсолютном возрасте рудных месторождений фанерозоя // Определение абсолютного возраста рудных месторождений. М.: Наука, 1976. С. 48–58.

Овчинников Л.Н., Степанов А.И., Вороновский С.Н. О причинах искажения калий-аргоновых дат // Проблемы геохронологии и изотопной геологии. М.: Наука, 1981. С. 3–31.

Овчинников Л.Н., Степанов А.И., Краснобаев А.А., Дунаев В.А. Обзор данных по абсолютному возрасту геологических образований Урала // Магматические формации, метморфизм, металлогения Урала. Свердловск: УФАН СССР, 1969. Т. 1. С. 173–204.

Ронкин Ю.Л. Изотопы стронция — индикаторы эволюции магматизма Урала // Ежегодник ИГГ. Свердловск: УНЦ АН СССР, 1989. С. 107–110.

Фор Г. Основы изотопной геологии. М: Мир, 1989. 590 с.

Харланд У.Б., Кокс А.В., Ллевеллин П.Г. и др. Шкала геологического времени. М.: Мир, 1982. 140 с.

International Stratigraphic Chart. International Union of Geological Sciences / J. Remane (Ed.), UNESCO, 2000.

Spadea P., D'Antonio M., Kosarev A., Gorozhanina Y., Brown D. Arc-continent collision in the Southern Urals: Petrogenetic aspects of the Forearc-arc complex // Mountain Building in the Uralides. Washington, American Geophysical Union, 2002. P. 101–134.