
1132

Bulletin of the Seismological Society of America, Vol. 93, No. 3, pp. 1132–1143, June 2003

Phase Derivatives and Simulation of Strong Ground Motions

by David M. Boore

Abstract Phase derivatives can be used to compute instantaneous frequency and
envelope delay (also known as group delay). Envelope delay, in the guise of phase
differences, has been used by engineers in the simulation of strong ground motion,
particularly as a way of controlling the duration of motion. Simulations using the
stochastic method, in which duration is a simple function of source duration and a
path-dependent duration, possess envelope delay properties similar to those from
simulations based on phase differences. Envelope delay provides a way of extending
the standard stochastic method to produce nonstationary frequency content, as pro-
duced by ground motions containing surface waves.

Introduction

For many years, seismologists have used the derivative
of the phase spectrum of ground motion to compute group
velocities and to simulate waveforms of dispersed waves
(e.g., Aki, 1960 [see also Aki and Richards (2002), problem
7.8]; Dziewonski et al., 1969; Dziewonski and Hales, 1972).
The use of group velocity to determine the relative arrivals
of motion at different frequencies for multiple modes has
been used by Trifunac and colleagues (e.g., Trifunac, 1971;
Wong and Trifunac, 1979) to simulate strong ground mo-
tion. In the engineering literature, a number of papers have
appeared in which “phase differences” play a central role in
simulating earthquake ground motions (e.g., Ohsaki, 1979;
Ohsaki et al., 1984; Sawada, 1984; Thráinsson et al., 2000;
Shrikhande and Gupta, 2001; Montaldo et al., 2003;
Thráinsson and Kiremidjian, 2002), but aside from a scalar
factor involving the frequency increment, these phase dif-
ferences are nothing more than a finite-difference approxi-
mation of the derivative of the phase with respect to fre-
quency and thus are an approximation of the group delays,
well known in studies of dispersed waves (e.g., Udias,
1999). This article has several purposes: to acquaint engi-
neers with work of seismologists involving group delays and
vice versa and to introduce an extension of the widely used
stochastic method for simulating strong ground motions
(Boore, 2003b) that will produce simulated motions with
nonstationary frequency content, such as produced by basin
waves (e.g., Boore, 1999; Joyner, 2000). This extension uses
frequency-dependent phase derivatives.

Because I will be using the phase derivative of records
that are not clearly dispersive, I will henceforth call the de-
rivative of phase with respect to frequency the “envelope
delay,” a term sometimes found in the electrical engineering
literature. There are several advantages to using the envelope
delay rather than phase differences. The envelope delay has
units of time, and it has a natural physical interpretation that
makes it clear why the phase differences are not random,

even though the phases may appear to be so. In addition, by
using Fourier transforms it is easy to compute the envelope
delay without first unwrapping the phase and then using
finite-difference approximations for the derivative. The same
procedure can be used to compute the instantaneous fre-
quency of a time series without unwrapping the phase. This
can be useful in identifying spikes in records and in assessing
nonstationarity of the ground motion. The article begins with
the equations for computing phase derivatives, continues
with a section showing examples of using the derivatives for
recorded and simulated ground motions, and concludes with
the aforementioned extension to the stochastic method.

Theory

Because phase derivatives appear in different contexts
in this article, the derivation here considers a generalized
Fourier transform pair:

�
�i2pngh(g) � H(n)e dn,�

��
(1a)

�
i2pngH(n) � h(g)e dg;�

��
(1b)

h(g) and H(n) are complex variables and can be written in
terms of their amplitude and phase. (Note that a scaling fac-
tor involving 2p is not needed because the factor of 2p has
been separated out from the integration variables; in more
familiar terms, I am using frequency rather than angular fre-
quency in the transform pair [Press et al., 1992].) To sim-
plify notation, in this article I will work only with H(n) writ-
ten in this way:

i�(n)H(n) � A(n)e . (2)
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Obtaining the amplitude A(n) and phase �(n) is straightfor-
ward, for example, by computing the fast Fourier transform
(H(n)) of h(g), from which

2 2A(n) � �(H) � �(H) (3)�

and

�(n) � arctan (�(H)/�(H)), (4)

where �(H) and �(H) are the real and imaginary parts of
the complex variable H, respectively.

Of particular interest in this article is d�(n)/dn. There
are two situations in which this arises: envelope delay and
instantaneous frequency. Details concerning each are in the
following sections.

Because the phase given by equation (4) is wrapped
between �p and p, a straightforward finite-difference com-
putation of the phase derivative first requires unwrapping
the phase, which is not necessarily easy to do (Shatilo,
1992). A useful way to compute the phase derivative that
does not require unwrapping the phase starts with taking the
logarithm of equation (2) (Claerbout; 1992):

ln H(n) � ln A(n) � i�(n). (5)

Taking the derivative with respect to n then gives

d� 1dH
� � . (6)� �dn Hdn

Differentiating equation (1b), it is easy to show that

dH(n)/dn � i2pG(n) � i2p[�(G) � i�(G)], (7)

where G(n) is the Fourier transform of gh(g):

�

G(n) � gh(g) exp i2pngdg. (8)�
��

Combining equations (6) and (7) gives

d� 2� 2p[�(H)�(G) � �(H) �(G)]/A . (9)
dn

This gives the phase derivative of � in terms of the Fourier
transform of h(g) and gh(g), with no explicit derivatives
needed (Stoffa et al., 1974, equation 34). The derivative
given by equation (9) can be poorly behaved for values of
n for which A(n) becomes small. This is particularly a prob-
lem when A(n) represents the envelope of a time series, and
d�/dn is the instantaneous frequency. In such cases it is use-
ful to smooth the denominator and the numerator separately
before taking the ratio in equation (9). A simple triangular
weighting function works well for smoothing.

Note that any operation on H(n) that leaves the n de-
pendence of the phase � unchanged will not alter the phase
derivative. As will be made clear later, this means that the
envelope delay will be the same regardless of whether the
time series represents acceleration, velocity, or displace-
ment, because their phases differ by frequency-independent
increments of 90�. The instantaneous frequency, however, is
given by the time derivative of the phase, and the time de-
pendence of the phase, and thus the instantaneous frequency,
will depend on whether the time series represents accelera-
tion, velocity, or displacement.

Data Used in Examples

To illustrate envelope delay and instantaneous fre-
quency, I consider two recorded ground motions, one with
relatively long-period surface waves that arrive after the
body waves and one for which most of the energy content
occurs in the same time window (the record is that used by
Thráinsson and Kiremidjian [2002] to illustrate some prop-
erties of phase differences). To see the relative arrival times
of the different parts of the spectrum, it is best to plot a series
of bandpass-filtered motions. Instead, I use acceleration, ve-
locity, and displacement traces as familiar surrogates for
bandpass-filtered motions. The results for the two recordings
are shown in Figure 1. Note that the overall waveshapes for
the Santa Cruz recording are rather similar for acceleration,
velocity, and displacement, in distinct contrast to the wave-
shapes of the recordings at station S3E. The long-period late
arrivals on the S3E record are surface waves that have tra-
versed the Los Angeles basin (Boore, 1999).

Envelope and Instantaneous Frequency

Starting with a time series y(t), form the complex time
series yc(t),

y (t) � y(t) � iỹ(t), (10)c

where (t) is the Hilbert transform of y(t) [yc(t) is sometimesỹ
called the “analytic signal”]. The transform Yc(f ) of yc(t) is
given most conveniently by

0.0, f � 0.0
Y ( f ) � , (11)c �2Y( f ), f � 0.0

where Y(f ) is the Fourier transform of y (Mitra, 2001,
p. 794). Then use the mapping

h(g) r Y ( f ),c (12a)

H(n) r y (t)c (12b)

and the mapping of g and n to time and frequency,

n r t, g r f. (12c)
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Figure 1. Acceleration, velocity, and displacement horizontal-component time se-
ries and envelopes (for the displacement) for the ocean-bottom (station S3E) recording
of the 1990 Upland, California, M 5.6 earthquake (orientation of horizontal component
unknown, low-cut filtered at 0.1 Hz; see Boore and Smith [1999], Boore [1999]; data
available from http://quake.usgs.gov/�boore) and for the University of California Santa
Cruz (Lick Laboratory) recording of the 1989 Loma Prieta, California, M 6.9 earth-
quake (east–west component, low-cut filtered with a ramp from 0.05 to 0.1 Hz; data
from the California Strong Motion Instrumentation Program, ftp://ftp.consrv.ca.gov/
pub/dmg/csmip/LomaPrieta89/). rep and rjb are epicentral and Joyner–Boore distances,
respectively (see Abrahamson and Shedlock, 1997). Note the different timescales for
the two recordings.

The envelope of y(t) is given by the envelope of the ampli-
tude of H; this is

2 2A(t) � y(t) � y (t) . (13)� c

The derivative of the phase is used in the equation

1 d�
f (t) � (14)I 2p dt

to give the time-dependent instantaneous frequency f I (Farn-
bach, 1975; Taner et al., 1979; Kanasewich, 1981; Brace-
well, 1999). The phase used to compute the instantaneous
frequency is given by

�(t) � �arctan ỹ(t)/y(t). (15)

The time dependence of the phase, and thus f I(t), will depend
on whether y(t) represents acceleration, velocity, or displace-
ment.
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Figure 2. Instantaneous frequency (gray lines) for
the Santa Cruz recording of the 1989 Loma Prieta,
California, earthquake and the S3E recording of the
1990 Upland, California, earthquake. The ordinate la-
bels for the instantaneous frequency are given on the
right axes. The top two panels are for acceleration,
and the same scaling has been used for instantaneous
frequency in both panels. Note that the scaling for the
instantaneous frequency differs for the acceleration,
velocity, and displacement time series in the bottom
three panels. The instantaneous frequency was
smoothed with a triangular smoothing operator hav-
ing a base width of 5 sec.

Examples of the envelope of a time series are shown in
Figure 1, and the instantaneous frequencies are shown in
Figure 2. For the station S3E recording the instantaneous
frequency shows a decrease with time and, as predicted, de-
pends on the type of motion for which it is computed. I have
not found instantaneous frequency to be a very useful quan-
tity, although it has been used occasionally in seismology
(e.g., Levshin et al., 1992).

Envelope Delay

This article is primarily concerned with the envelope
delay because of its use in simulating strong ground motions.
If y(t) is a time series, use the following mapping:

h(g) r y(t), (16a)

H(n) r Y( f ), (16b)

and

g r t, n r f. (16c)

(Since h and H are generalized variables, I did not have to
switch the mapping of g and n to t and f compared to that
used for instantaneous frequency; I changed the mapping,
however, because I wanted to use only one equation, equa-
tion (2), relating a complex variable and amplitude and
phase.) With this mapping,

1 d�
t ( f ) � , (17)e 2p df

where, in the context of dispersive wave propagation (but
also useful in general, as shown in this note), te is the
frequency-dependent envelope delay (Kanasewich, 1981;
Scherbaum, 2001, equation (10.37), but without the minus
sign because of his definition of the Fourier spectrum of
y(t)).

The envelope delay as a function of frequency for the
two example acceleration records is shown in Figure 3. (In
this and almost all other plots of envelope delay, I plot en-
velope delay on the abscissa even though it is the dependent
variable; I do this to facilitate comparison with ground-
motion time series, for which time is plotted on the abscissa.)
The envelope delays clearly show the difference in the rela-
tive arrival times of different frequencies. The envelope de-
lay for the Santa Cruz recording of the 1989 Loma Prieta
earthquake is relatively insensitive to frequency (with a ten-
dency for higher frequencies to arrive several seconds earlier
than low frequencies), and the majority of the envelope delay
values occur near 9 sec, which corresponds to the time of
the peak in the envelope of the ground motion. (If the time
series had been shifted in time, the envelope delay values
would have been shifted by the same amount.) The envelope
delays for the S3E recording indicate a strong nonstation-
arity in frequency content for frequencies less than about

5 Hz, with the lower frequencies arriving later than the
higher frequencies; this is consistent with the displacement
waveform shown in Figure 1. The centroid time of the en-
ergy at a particular frequency is related to the mean value
of the envelope delay at that frequency, but the overall time
extent of the motion is determined by the statistical distri-
bution of the envelope delay about the mean value.

The envelope delay for S3E shown in Figure 3 was com-
puted from the acceleration time series and shows a strongly
nonstationary frequency content, even though this nonsta-
tionarity is not particularly evident in the acceleration time
series. This is consistent with theoretical expectations. To
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Figure 3. Frequency versus envelope delay for the two acceleration traces shown
in Figure 1. Note the different scales for the envelope delay times and the correspon-
dence of the envelope delays with the times of ground shaking (as seen from Fig. 1).
In particular, note that the envelope delay for the S3E record shows a strong dependence
on frequency, with lower frequencies corresponding to greater values of the envelope
delay, as would be predicted from Figure 1. In contrast, the envelope delays for the
Santa Cruz recording of the Loma Prieta earthquake show little frequency dependence,
also as expected from the relative times of the envelopes of the acceleration, velocity,
and displacements shown in Figure 1. The density of points along the ordinate is greater
for the S3E recording than for the Santa Cruz recording (a factor of 4) because the S3E
recording has a longer duration than the Santa Cruz recording, and therefore the interval
between adjacent frequencies is smaller. The envelope delays were not smoothed.

make the point empirically, envelope delays computed from
the acceleration, velocity, and displacement traces for the
S3E recording are shown in Figure 4. The delays are almost
identical.

In addition to analysis of dispersion and the simulation
of strong motion, envelope delay has been used to aid in
choosing corner frequencies of low-cut filters used in pro-
cessing strong-motion accelerograms (N. Abrahamson, per-
sonal comm., 1993). Digitizing noise will dominate the sig-
nal at long periods, and this will show up as a shift of the
envelope delay at low frequencies to smaller values (earlier
arrivals, corresponding to amplification of the noise before
the arrival of the seismic energy) and increased scatter in the
delays as the filter frequency is decreased.

The Relation Between Probability Distribution of
Envelope Delay and Waveform Shape and Duration

Ohsaki (1979) made the qualitative observation that the
shape of the envelope of an acceleration time series and the
probability distribution function (pdf) of phase differences
are similar and furthermore that the distribution of the phase
differences appeared to be similar in shape to a normal dis-
tribution. Nigam (1982, 1984) derived an analytic expres-
sion for the distribution of the phase difference of a random

process corresponding to Gaussian white noise multiplied
by a time-domain shaping function; Nigam remarked that
the distribution is not normal. (The equation for the distri-
bution in Nigam [1982] differs from that in Nigam [1984];
the later equation predicts a bimodal distribution, but my
simulations show that it is incorrect and that the earlier equa-
tion is correct.) Other authors have studied phase differences
as a means of characterizing and simulating ground motions
(e.g., Ohsaki et al., 1984; Sawada, 1984; Thráinsson et al.,
2000; Shrikhande and Gupta, 2001; Montaldo et al., 2003;
Thráinsson and Kiremidjian, 2002). Liao and Jin (1995) ex-
plicitly used the derivative of the phase, rather than phase
difference. Here I use simulations to investigate Ohsaki’s
observation, using envelope delays rather than phase differ-
ences (another reason to use envelope delays rather than
phase differences is that the independent variable of the
probability distribution is time rather than radians, and plots
of the pdf can be compared directly to the envelope of the
times series).

The simulation method is the widely used stochastic
method (see Boore [2003b] for a review). The stochastic
method represents possibly complex physics with simple
functional forms, attempting to account for the essence of
the physics; it combines seismological theory and the engi-
neering notion that ground motion is a random process. Of
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Figure 4. Frequency versus envelope delay for ac-
celeration, velocity, and displacement time series for
the S3E recording of the 1990 Upland, California,
earthquake. As expected, the envelope delays are al-
most identical. The envelope delays were not
smoothed.

particular interest in this article is the duration of the random
process, given in the stochastic method by the addition of
the source duration and an empirically derived duration re-
lated to distance traveled between the source and the site.
This results in a nonstationary random process in the sense
that the process is of limited duration, but the frequency
content of the motion is stationary. In a later section I de-
scribe a way of using envelope delay to produce nonstation-
ary frequency content in the context of the stochastic
method.

The stochastic method does not make explicit use of the
statistical properties of the envelope delay, as does the simu-
lation method of Thráinsson et al. (2000), Montaldo et al.
(2003), and Thráinsson and Kiremidjian (2002). In particu-
lar, those authors used empirical distributions of the phase

differences as a function of frequency and as a function of
the Fourier amplitude spectra. I thought it would be inter-
esting to see if the distributions of the envelope delay from
the stochastic-method simulations are similar to those from
data. I will compare the Santa Cruz recording of the 1989
Loma Prieta, California, earthquake and my simulations us-
ing a generic model for a coastal California rock site (file
“wr032496.dat” in Boore [2000]). The simulations were
computed for a magnitude of 6.9 and a distance of 10 km;
no attempt was made to adjust the parameters of the model
to match the data. Two envelope functions were used in the
simulations: a box window and a more realistic shaped win-
dow made up of time raised to a power multiplied by an
exponential decay (see Boore [2000] for details). The en-
velope delay is plotted against frequency in Figure 5 for the
first of a suite of simulations. Also plotted in the figure is
the envelope delay for the Santa Cruz recording. The distri-
butions of envelope delays are qualitatively similar, except
for the differences in the mean values (which are dependent
on the arbitrary origin time of each record and have nothing
fundamental to do with the waveforms of the ground mo-
tion). The comparison of the data used to obtain the ampli-
tude information by Thráinsson and colleagues is shown in
Figure 6; again, there is good qualitative agreement between
the simulations and the data. By using envelope delay rather
than phase differences, it is easier to understand the character
of the plot shown in Figure 6: the largest amplitudes occur
over a relatively narrow range of time, whereas the smaller
motions (e.g., coda waves) are spread out over a longer por-
tion of time. This leads to a spreading of the distribution of
envelope delay as the amplitude decreases.

Knowing that the stochastic method produces envelope
delay properties in good qualitative agreement with those
from data, I simulated 99 acceleration time series for both
the box and the shaped windows. Figure 7a,b shows the time
series for the first of the 99 simulations (in gray), along with
the mean envelope of the simulations. Also shown is the
probability distribution of the envelope delay, using the for-
mula from Nigam (1982). (A technical aside: Nigam’s for-
mula is based on a model in which filtered white noise is
windowed, but Şafak and Boore [1988] have shown that this
procedure, commonly used by engineers, distorts the low-
frequency portion of the spectrum. The stochastic method
simulations used in Fig. 7 do not contain this distortion, and
therefore the models of the random process assumed by Ni-
gam [1982] and used in the stochastic-method simulations
are not strictly comparable; the difference, however is not
important for the comparison shown in Fig. 7.) From this
figure it is clear that the probability distribution of the en-
velope delay has only a passing similarity to the average
envelope of the acceleration time series and that the pdf for
both the box and the shaped window are very similar. Figure
7c,d compares the histograms of the envelope delay with the
pdf from Nigam; this comparison simply serves as a quali-
tative check of his equation (I made the decision that a more
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Figure 5. Frequency versus envelope delay for
simulation 1 (see text), using box and shaped win-
dows, and for comparison, the envelope delay from
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Figure 6. Envelope delay versus amplitude for
simulation 1 (see text), box and shaped windows, and
for the Santa Cruz recording of the 1989 Loma Prieta,
California, earthquake. The scalings of the abscissa
and ordinate are the same for all plots. The envelope
delays were not smoothed.

quantitative comparison was not warranted, because no fur-
ther use will be made of the theoretical pdf).

Using Envelope Delay to Account for Time-
Dependent Frequency Content in
Stochastic-Method Simulations

The standard stochastic method does not account for
nonstationarity of frequency content of the ground motion,
which can be important in some situations, particularly when

basin waves are present (as they are for the S3E recording
of the 1990 Upland earthquake, used as one of the two ex-
amples in this article). Basin waves can significantly increase
the amplitude at long periods, as well as lead to increased
durations of these motions. The increase of motions at long
periods is shown in Figure 8, which compares response spec-
tra with and without the basin waves with predictions based
on the standard stochastic method and with empirical
ground-motion predictions. Frequency-dependent envelope
delay provides a way to extend the stochastic method to
allow for nonstationarity of the frequency content. This sec-
tion illustrates an initial attempt to do this. There are two
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parts to the extension: (1) account for the increased duration
of the longer period waves, and (2) account for the increased
amplification of the basin waves.

I accounted for the increased duration by first fitting a
simple function to the envelope delay (the derivative of
phase with respect to frequency) and then integrating this
functional form with a constant of integration chosen to give
zero incremental phase at high frequencies. I applied this
phase correction to the time series simulated in the standard
way for the stochastic method (Boore, 1983, 2003b). After
plotting the envelope delay for the S3E record in various
ways, I found that using a log axis for the abscissa suggested
that a simple straight-line fit of the envelope delay as a func-
tion of log frequency was a good representation of the ob-
served envelope delays (Fig. 9).

As shown by the relatively good agreement between the
stochastic model simulations and the response spectra com-
puted without the basin waves (Fig. 8), the amplification
function used in the simulation of the motion without basin
waves was reasonable. To account for the basin waves, I

computed the ratio of the Fourier spectra of the complete
S3E record and the portion of the record up to 50 sec (ef-
fectively removing the basin waves). The individual spectra
and the spectral ratio are shown in the upper panel Figure
10. I smoothed the ratio slightly and approximated the ratio
by a series of connected line segments (these are also shown
in the upper panel of Fig. 10). The amplification without the
basin waves (as used in the Atkinson and Boore [1998]
model simulations shown in Fig. 8), the basin wave ampli-
fication, and the combined amplification are shown in the
lower panel of Figure 10. In addition to the amplification,
the simulation included a diminution function given by path-
dependent attenuation and the path-independent attenuation
function exp (�pj0 f ), where j0 � 0.0516 (see Boore
[1999] for details).

By combining the additional amplifications and the
phase corrections, it is possible to include the basin waves
by making simple modifications to the software that pro-
duces stochastic-method time-domain simulations (e.g.,
SMSIM; see Boore, 2000, 2003a). The results of doing so
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Figure 8. Observed and predicted 5% damped
pseudo relative velocity response spectra (PSV) for
the horizontal components of motion at station S3E
from the 1990 Upland, California, earthquake. The
solid lines are from the data: the thick and thin lines
are the PSV from the whole record and from the S-
wave portion of the record (the first 50 sec of record
shown in Fig. 1), respectively. The spectra are the
geometric mean of the spectra for the two horizontal
components. The dashed lines are from empirical re-
gression equations published by Abrahamson and
Silva (1997) and Boore et al. (1997), and the dots are
theoretical predictions assuming body-wave arrivals
and the source model of Atkinson and Boore (1998)
(AB98). (Modified from Boore [1999].)
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Figure 9. Envelope delays for the recording of the
1990 Upland, California, earthquake at station S3E,
with log axis for the abscissa. The straight lines were
fit by eye and were used to represent the mean en-
velope delay for use in the stochastic modeling. The
envelope delays were not smoothed.

are shown in Figure 11, which compares the predicted mo-
tions at station S3E (74 km from a moment magnitude 5.6
earthquake) without basin waves, with the basin wave am-
plifications, with the basin wave amplifications and the non-
stationary frequency content, and the observations. As this
is only an illustration of a concept, I am not trying to match
exactly the observed waveforms (this could undoubtedly be
done by varying the input parameters). The general character
of the duration and amplitude of the basin waves has been
captured by this simple modification to the standard sto-
chastic method. The modification could also be used by
other simulation methods for which the usual method results
in stationary frequency content (e.g., FINSIM [Beresnev and
Atkinson, 1998]).

The simulations in Figure 11 are clearly specific for the
S3E record. An important question is whether the necessary
amplification and duration properties can be determined for
an arbitrary site within a basin. This question is beyond the
scope of this article, but duration should be related to group
velocities of surface waves propagating in the basin, and thus
it is potentially predictable. On the other hand, a number of
studies of basin amplification find that amplification depends

on source location (some of these studies have been re-
viewed in Field and the SCEC Phase III Working Group
[2000]). Unless some way is found to capture the essence of
this amplification without doing a complete finite-difference
calculation, this may make it difficult to account for basin
response at specific source and site pairs using the simple
extension to the stochastic method proposed here.

Discussion and Conclusions

Phase derivatives are useful in determining instantane-
ous frequency and the envelope delay of time series. These
derivatives can be computed using Fourier transforms, with-
out unwrapping the phase and forming finite-difference ap-
proximations. As illustrated by ground-motion recordings
with and without basin waves, the envelope delay contains
information about the duration of ground motion, including
nonstationary frequency content.

The statistical properties of envelope delay as a function
of frequency and amplitude have been used in simulations
of ground motion (e.g., Thráinsson and Kiremidjian, 2002).
I find that the envelope delays for simulations using the sto-
chastic method, in which duration is given by the addition
of a simple distance-dependent duration and the source du-
ration and amplitude is determined by standard seismologi-
cal models of Fourier spectra of the source, path, and site,
have statistical properties qualitatively similar to those from
data. Envelope delay has the advantage over phase differ-
ences that it can be interpreted more directly in terms of the
duration and waveforms of ground motion and, in addition,
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Figure 10. (upper) Fourier amplitude spectra
(FAS) of the acceleration recording of the 1990 Up-
land, California, earthquake at station S3E, smoothed
over 0.01 Hz, for the complete record and the first 60
sec of the record (see Fig. 1 for a plot of the accel-
eration time series) (gray lines), along with the com-
puted spectral ratio and straight-line approximation of
the spectral ratio (black lines). (lower) Amplification
functions as used in the simulations with and without
the basin waves, along with the basin-only amplifi-
cations.

can be used to extend stochastic simulations of ground mo-
tion to account for nonstationary frequency content.
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