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Abstract

The time domain random walk (TDRW) method has been developed for simulating solute transport in discrete
fracture networks. The following transport processes have been considered: advective transport in fractures,
hydrodynamic dispersion along the fracture axis, sorption reactions on the fracture walls and decay reactions. The
TDRW method takes advantage of both random walk and particle-tracking methods. It allows for the one-step
calculation of the particle residence time in each bond of the network while avoiding mass balance problems at
fracture intersections with contrasted dispersion coefficients. The accuracy of the TDRW method has been addressed
by means of synthetic test problems into single fractures and into a 2D discrete fracture network. In each case,
simulated and theoretical results compare very well.
0 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Simulation of solute transport in fractured
rocks is a basic requirement for two present-day
issues: groundwater pollution in fractured aqui-
fers and performance assessment of radioactive
waste repositories in crystalline rocks. As trans-
port in such media is often advection-dominated,
Lagrangian methods are attractive because they
are free of numerical dispersion. The simplest La-

grangian models rest on particle-tracking rou-
tines, which assume plug £ow where dispersion
at the local scale is negligible compared to disper-
sion resulting from the heterogeneity of the £ow
¢eld [1^3]. However, this assumption is question-
able, particularly when dealing with pollutant
transport. For instance, the arrival times from a
pollution source to a well for water supply may be
underestimated and lead to tragic consequences.
Moreover, in the case of radioactive leakage from
a repository for spent nuclear fuel, the radioactiv-
ity level of the solute that arrives in the biosphere
may be much more important than that predicted
by pure advection in fractures. Note that particle-
tracking routines can be adapted to include the
e¡ects of both velocity pro¢les between the frac-
ture walls and of molecular di¡usion. In that case,
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the particles are moved by advection along path
lines and random jumps are superimposed to sim-
ulate di¡usion over path lines. This approach is
justi¢ed for simulating the dispersion at the scale
of the fracture plane. However, it is time-consum-
ing and not suited to complex fracture networks.

To take into account dispersion in single frac-
tures, transport models may be built using the
classic random walk (RW) method instead of
the particle-tracking method. The RW method is
based on the stochastic motion of a large number
of particles, which obeys a Markovian process. In
one dimension, this process can be written as:

X pðtþ vtÞ3X pðtÞ ¼ W x þ Zc x ð1Þ

and satis¢es the 1-D Fokker^Planck equation:

D i

D t
¼ 3

D ðXi Þ
D x

þ 1
2
D
2ðP i Þ
D x2

ð2Þ

where X=Wx/vt ; P=cx
2/vt ; Xp(d) [L] is the posi-

tion of the particle at time d, Wx [L] is the mean
displacement of particles during time step vt [T],
cx

2 [L2] is the variance of the particle motion
during vt, Z is a random number drawn from a
normal deviate and i is the probability density
function of the particle displacements. The pa-
rameters X and P are chosen so that Eq. 2 corre-
sponds to the advection^dispersion equation,
which is straightforward when the advection^dis-
persion equation in the fracture plane is written in
the form:

D cf
D t

¼ 3
D

D x
uf þ

DDf

Dx

� �
cf

� �
þ D

2ðDfcfÞ
D x2

ð3Þ

where cf [M L33] is the solute concentration in the
fracture, t the time variable, x [L] the space coor-
dinate along the £ow direction, uf [L T31] the
mean £uid velocity and Df [L2 T31] the hydro-
dynamic dispersion coe⁄cient. Thus, the calcula-
tion of particle displacements is performed as fol-
lows [4] :

X pðtþ vtÞ3X pðtÞ ¼ uf þ
DDf

D x

� �
vtþ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dfvt

p
ð4Þ

The main di⁄culty in RW simulations lies in the
particle transition between two media with con-

trasted dispersion coe⁄cients. If the transition is
abrupt, the derivative of the dispersion coe⁄cient
in Eq. 4 is not de¢ned, the mass balance at the
interface is not preserved, and special techniques
have to be applied to compute the particle leaps.
Since dispersion in fractures is generally velocity-
dependent (DfOunf , with 09 n9 2, see Detwiler et
al. [5]), this problem is particularly emphasized in
fracture networks because £uid velocity may di¡er
by several orders of magnitude from one fracture
to the next, which leads to sharp contrasts in dis-
persion coe⁄cients. Both interpolation and re£ec-
tion techniques have been proposed to overcome
this problem [6^8]. However, these methods in-
crease the computing time because time steps
have to be re¢ned for preserving the mass balance
at the interface. Moreover, the RW method neces-
sitates at least 30 leaps per particle in a bond to
simulate dispersion accurately. With realistic frac-
ture networks of thousands of bonds, this yields
cumbersome calculations.

In this work, we have developed a Lagrangian
method in time domain taking advantage from
both random walk and particle-tracking methods.
The time domain random walk (TDRW) method
was ¢rst introduced by Banton et al. [9] for sim-
ulating non-reactive solute transport in 1-D po-
rous media. Delay and Bodin [10] proposed a ¢rst
extension of this method, enabling the simulation
of transport in a single fracture, while accounting
for matrix di¡usion. Here, the TDRW method
has been adapted to discrete fracture networks
and enhanced to deal with sorption and decay
reactions. The particle travel time between two
nodes of the network is calculated in one step
while taking into account the mechanisms men-
tioned above. This avoids the multiple-leap calcu-
lations of classical RW methods and strongly re-
duces computation e¡orts.

2. The TDRW method

The fracture network is represented by con-
nected bonds with 1-D £ow and the following
mechanisms are considered: advection in frac-
tures, hydrodynamic dispersion along the fracture
plane, adsorption on the fracture walls and radio-
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active decay. The £uid velocity is assumed to be
constant in each bond of the fracture network (i.e.
between two successive fracture intersections).
The adsorption reaction obeys a linear instanta-
neous equilibrium. To consider a one-dimensional
transport along the fractures, it is stated that: (1)
the width of each fracture is much smaller than its
length, and (2) transverse di¡usion and dispersion
within each fracture ensure complete mixing
across its width. The transport in bonds is then
described by:

D cf
D t

þ V cf ¼ 3
uf
Rf

D cf
Dx

þ 1
Rf

D

D x
Df

D cf
Dx

� �
ð5Þ

where V [T31] is the decay constant and Rf [di-
mensionless] is the retardation coe⁄cient which
represents the e¡ect of solute sorption on the frac-
ture walls. In the Lagrangian framework, consid-
ering the change of variable:

D cf
D t

¼ D cf
D x

D x
D t

¼ D cf
D x

uf
Rf

ð6Þ

Eq. 5 can be rewritten as:

D cf
D x

þ V cf
Rf

uf
¼ 3

Rf

u2f

D

D t
uf þ

DDf

Dx

� �
cf

� �

þR2
f

u3f

D
2

D t2
ðDfcfÞ ð7Þ

Terms in Eq. 7 can be identi¢ed with those
in the Fokker^Planck equation by applying an
equivalent change of variable to Eq. 2:

D i

D x
¼ 3

1
X
2

D ðX i Þ
D t

þ 1
2X 3

D
2ðP i Þ
D t2

ð8Þ

Thus, the mean and variance of the particle
travel time distribution for a displacement of
length vx are respectively:

W t ¼
Rf

u2f
uf þ

DDf

D x

� �
v x ð9Þ

c
2
t ¼ R2

f
2Dfvx
u3f

ð10Þ

However, while the Markovian process in Eq. 1
leads to a Gaussian distribution of particles in

space, it can be shown that the travel time distri-
bution is lognormal for Peclet numbers Pe= ufvx/
Df larger than 10 (see Appendix). Therefore, the
stochastic calculation of travel times over a dis-
tance vx is given by:

lnðvtvxÞ ¼ W ln þ Zc ln ð11aÞ

W ln ¼ ln W t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c

2
t =W

2
t

p� �
ð11bÞ

c
2
ln ¼ lnð1þ c

2
t =W

2
t Þ ð11cÞ

where Wt and ct
2 are the mean and variance in

Eqs. 9 and 10, vtvx [T] the particle travel time
for a travel distance vx, Z a random number
drawn from a normal deviate, and Wln [T] and
c
2
ln [T2] the mean and variance of the logtrans-

form. If indices n and n+1 refer to the upstream
and downstream nodes of a bond of length vx,
the particle travel time in this bond is:

tnþ13tn ¼ expðW ln þ Zc lnÞ ð12Þ

Note that the TDRW method enables the scale-
dependent dispersion coe⁄cient to be dealt with,
provided that the spatial derivative in Eq. 9 is
calculable. The decay reaction is simulated by
computing the mass decrease of the particle :

mpnþ1 ¼ mpn exp½3V ðtnþ13tnÞ� ð13Þ

where mpn and mpnþ1 [M] represent the mass of
the particle at nodes n and n+1, respectively.

The assumption made on the form of the travel
time distribution is the main limitation of the
TDRW method. Indeed, in fracture networks,
Peclet numbers can be locally less than 10 in
very short bonds or in bonds with very low £ow
velocities. The assumption of a lognormal travel
time distribution in these bonds can be erroneous,
and yield inaccurate results. However, we have
found that an empirical correction of Eq. 11b
makes it possible to preserve the accuracy of the
TDRW method for Pe6 10. This corrections con-
sists in multiplying Eq. 11b by a factor L=131/
(33Pe), which leads to:

W
�
ln ¼ L W ln ¼ 13

1
33Pe

� �
ln

W tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c

2
t =W

2
t

p
 !

ð14Þ
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The use of Eq. 14 instead of Eq. 11b will be illus-
trated in Section 3. Other limitations may stem
from the assumption of a full mixing across the
width of each fracture, required for considering
1-D transport. The validity of this assumption is
questionable in short bonds with high £ow veloc-
ities, because the transit time along these bonds
can be lower than the mixing time across the
aperture. However, this problem is strongly
damped in realistic fracture networks, because
the time spent by a particle in these bonds is
very low as compared to its total residence time
in the network.

3. First validation of the TDRW method: transport
in a single fracture

The ability of a model to simulate transport in
a fracture network depends ¢rst on its accuracy in
each elementary bond. To check this point, three
theoretical transport problems in a single fracture
were simulated. For the ¢rst two tests, the solute
was assumed to undergo ¢rst-order radioactive
decay and sorption reactions on the fracture
walls. The case of an instantaneous injection at
the inlet of the fracture was ¢rst addressed. As-
suming a steady-state £ow in the fracture and a
constant dispersion coe⁄cient, the breakthrough
curve at the fracture outlet can be computed with
the analytical solution of the advection^dispersion
equation for 1-D semi-in¢nite media [11] :

cf1ðtÞ ¼
m0lf

2bWuf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Z

Df

Rf
t3

r

exp 3

lf3
uf
Rf

t
� �2

4
Df

Rf
t

0
BBB@

1
CCCA expð3V tÞ ð15Þ

where m0 [M] is the injected mass, lf [L] the frac-
ture length, b [L] the half-aperture of the fracture
and W [L] the fracture width. The second trans-
port problem was based on the same assumptions
as above, except that the injection followed an
exponential decaying release F(t) =m0Qexp(3Qt)
where F [M T31] is the solute mass £ux at the

inlet of the fracture, m0 [M] the total mass in-
jected in the fracture and Q [T31] a decay coe⁄-
cient de¢ning the release rate of the injected mass
and also accounting for the radioactive decay of
the source mass. In that case, the theoretical
breakthrough curve can be computed by applying
the convolution theorem to Eq. 15:

cf2ðtÞ ¼
Z t

0

Fðd Þ
m0

cf1ðt3d Þ dd ð16Þ

With the TDRW method, a non-instantaneous
injection can be simulated by assigning a delayed
initial time to each particle. For the exponential
decaying injection described above, a random ini-
tial time Tinit was thus computed for each particle
according to the following expression:

T init ¼ 3
1
Q

logðZ01Þ ð17Þ

where Z01 is a random number drawn from a uni-
form deviate between 0 and 1. The parameter val-
ues used in both problems were arbitrarily ¢xed as
follows: m0 = 1033 g; lf = 10 m; 2b=2.5U1034 m;
W=1 m; uf = 4U1035 m s31 ; Df = 2U1035 m2

s31 ; Rf = 1.2; V=3U1036 s31 ; Q=1U1035 s31.
The third problem was set up to test the accuracy
of the TDRW method for very low Peclet num-
bers, using Eq. 14 instead of Eq. 11b. A transport
problem in a small bond has been carried out with
Pe= 2, that is: lf = 1 m; uf = 4U1035 m s31 ;
Df = 2U1035 m2 s31, and an instantaneous injec-
tion of non-reactive tracer (no radioactive decay
and no sorption reactions). The results of the
three tests are shown in Figs. 1 and 2. The very
good match between numerical and analytical re-
sults proves the accuracy of the TDRW method,
whatever the Peclet number values.

4. Second validation of the TDRW method:
transport in a discrete fracture network

To check the e⁄ciency of the TDRW method
in simulating transport in fractured rocks, a series
of numerical tests was performed on a 2-D syn-
thetic fracture network with two orthogonal sets
of fractures (Fig. 3). Fracture apertures were con-
stant and equal to 2.5U1034 m. The fractured
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block was subjected to a steady-state £ow and the
boundary conditions were: constant hydraulic
heads of 100 m and 95 m on sides 1 (north) and
3 (south), respectively, and no £ow conditions on
sides 2 and 4 (east and west). The hydraulic heads
at the nodes of the network were calculated using
Darcy’s law, a mass conservation principle at
fracture intersections (i.e. Kircho¡’s law) and a
direct method to solve the system of linear equa-
tions. Then, £uid velocities in the bonds were cal-
culated using a parallel plate approximation and
the Hagen^Poiseuille £ow un = (Hnþ13Hn)bgb2/
(3Wln) where Hn and Hnþ1 [L] are the hydraulic
heads at nodes n and n+1, b [M L33] the £uid
density, b [L] the half-aperture of the fracture, W
[M L31 T31] the dynamic viscosity and ln [L] the

length of the bond (n, n+1). A total mass
m0 = 1032 g represented by 50 000 particles was
injected into one of the £owing fractures intersect-
ing side 1, and the TDRW breakthrough curves
were computed at the outlet of the network (side
3, see Fig. 3). A sharp contrast of dispersivity
(ratio of 20) between both orthogonal sets of
bonds was assumed. A constant dispersivity of
2 m was assigned to bonds N^S, whereas the dis-
persivity in bonds E^W was ¢xed at 0.1 m. Two
TDRW simulations were performed in the net-
work, considering either the perfect mixing or
the stream-tube assumption for mass sharing at
fracture intersections [12]. The CPU time required
for TDRW simulations was approximately 9 s
with an 850-MHz Pentium0 III PC, which re-
duces the calculation time by a factor 30 as com-
pared to a standard random walk method.

Note that a more general mixing model was
recently proposed by Park and Lee [13] but per-
fect mixing and stream-tube assumptions, which
are extreme cases, are more relevant to test the
TDRW method. The complex issue of the actual
tracer behavior at these intersections is beyond
the purpose of the present work. Park et al. [14]
have shown this topic to be of weak in£uence in

Fig. 3. The network test problem for TDRW simulations:
size = 350U350 m; 27 fractures. The 71 bold lines show the
£owing bonds, i.e. the backbone of the network. The tracer
particles were injected at the inlet of bond B1.

Fig. 2. Example of the accuracy of the TDRW method for a
low Peclet number (Pe= 2).

Fig. 1. Solute transport in a single fracture with sorption on
the fracture walls and radioactive decay. Comparison be-
tween TDRW simulations (30 000 particles) and analytical
breakthrough curves.
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most fracture networks, as compared to variabil-
ity and uncertainty in parameters de¢ning the
geometrical structure of networks.

To get the analytical solutions at the scale of
the fracture network, the latter was split into ele-
mentary paths. An elementary path is de¢ned as a
set of £owing bonds connected in series through
which a particle may cross the network (Fig. 4).
In well-connected systems, the number of such
paths is generally much greater than the number
of £owing bonds. For instance, 1800 elementary
paths were identi¢ed as compared to 71 £owing
bonds in the simple network of Fig. 3. For a non-
reactive tracer, the solute mass £ux at the second
node of an elementary path, denoted F2 [M T31]
is given by:

F 2ðtÞ ¼
m0l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ZD1t3

p exp 3
ðl13u1tÞ2
4D1t

� �
ð18Þ

where l1 [L] is the length of the ¢rst bond in the
elementary path, u1 [L T31] the £uid velocity in
the ¢rst bond and D1 [L2 T31] the dispersion co-
e⁄cient in the ¢rst bond. The solute transport
into the elementary path can be modeled by ap-
plying the convolution theorem:

Fnþ1ðtÞ ¼
Z t

0
O nFnðd ÞEnðt3d Þdd

¼ O nFnðtÞ � EnðtÞ ð19Þ

where ‘�’ symbolizes the convolution operator; Fn

and Fnþ1 [M T31] are the solute mass £ux at no-
des n and n+1; On is the percentage of the solute
mass in bond (n31, n) that £ows into bond (n,
n+1), this percentage depends on the £ow con¢g-
uration and on the mixing model at the fracture
intersection; En [T31] is the probability density
function of residence times in bond (n, n+1).
For a non-reactive solute, En(t) is :

EnðtÞ ¼
lnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ZDnt3
p exp 3

ðln3untÞ2
4Dnt

� �
ð20Þ

where ln [L] is the length of bond (n, n+1), un [L
T31] the £uid velocity in bond (n, n+1) and Dn [L2

T31] the dispersion coe⁄cient in bond (n, n+1).
For an elementary path i with N bonds in series,
the solute mass £ux across the outlet may be cal-
culated from the residence time distributions in
each individual bond. Given that Eq. 18 may be
rewritten as: F2(t) =m0E1(t), the recursive appli-
cation of Eq. 19 through the N nodes gives:

FNðtÞ ¼ m0

YN31

j¼2

O j

 !
E1ðtÞ � E2ðtÞT � EN31ðtÞ ð21Þ

Because the time spent by a particle in bond
(n31, n) has no in£uence on its time spent in
bond (n, n+1), time distributions are statistically
independent. In that case, the means and varian-
ces of residence times in successive bonds are ad-
ditive [15]. Therefore, the convolution product in
Eq. 21 can be replaced by an equivalent proba-
bility density function:

EeqðtÞ ¼
leqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ZDeqt3
p exp 3

ðleq3ueqtÞ2
4Deqt

� �
ð22aÞ

where:

leq ¼
XN
j¼1

lj ð22bÞ

ueq ¼ leq
teq

¼ leqXN
j¼1

tj

¼ leqXN
j¼1

ðlj=ujÞ
ð22cÞ

c
2
eq ¼

XN
j¼1

c
2
j ¼

XN
j¼1

2Djlj
u3j

ð22dÞ

B1

Fig. 4. Two distinct elementary paths.
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Deq ¼
u3eqc

2
eq

2leq
ð22eÞ

The theoretical breakthrough curve at the
downstream boundary of the network is the sum
of the elementary solutions of each path. Using in
the notations an additional exponent i referring to
the paths, the concentration at the outlet is :

coutðtÞ ¼

XNbP

i¼1

Fi
NiðtÞ

XNbP

i¼1

Qi

¼ m0

QTot

XNbP

i¼1

YNi31

j¼2

O
i
j

 !
Ei

eqðtÞ
" #

ð23Þ

where Qi [L3 T31] is the £ow rate into the elemen-
tary path i, QTot [L3 T31] the total £ow rate into
the network, Ni the total number of bonds in the
elementary path i and NbP the total number of
elementary paths. Results of TDRW simulations
and analytical breakthrough curves calculated
with Eq. 23 are plotted in Fig. 5. Once again,
numerical results compare very well with analyt-
ical results, for both the perfect mixing and
stream-tube models at fracture intersections.
This con¢rms the accuracy of the TDRW method

and proves its e⁄ciency for simulating advective^
dispersive transport in fracture networks.

5. Conclusion

An e⁄cient Lagrangian method developed in
time domain is proposed for the simulation of
solute transport in discrete fracture networks.
The method handles both advection and dis-
persion mechanisms and allows the particle resi-
dence times to be directly computed in each bond
of the network. Comparisons between numerical
results and analytical breakthrough curves for sin-
gle fractures and discrete networks have proven
the accuracy of the method. Transport simula-
tions are free of numerical dispersion, are much
faster than the classic RW method and avoid
mass balance problems stemming from dispersion
contrast at fracture intersections. Thus, the meth-
od is expected to be very useful for simulating
solute transport in complex 2-D fracture net-
works or 3-D channel networks. Other mecha-
nisms such as radioactive decay, sorption reac-
tions or scale-dependent dispersion are easily
accounted for. Because these mechanisms often
in£uence tracer test experiments, at either the lab-
oratory or ¢eld scale, the TDRW method should
become a convenient tool to ¢t and interpret real-
case studies.
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Appendix. Lognormal distribution of travel times

The TDRW method assumes that the travel
time distribution in 1-D £owing bonds is lognor-
mal. An empirical justi¢cation is that classical
breakthrough curves show a positive asymmetry.
This is reinforced by the comparison of skewness
and kurtosis coe⁄cients between a theoretical
travel time distribution and a lognormal one.

Fig. 5. Comparison between TDRW simulations (50 000 par-
ticles) and analytical breakthrough curves at the outlet of the
network. PM: perfect mixing assumption; ST: stream-tube
assumption.
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The probability density function of travel times in
a semi-in¢nite 1-D medium is:

f ðx; tÞ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffi
4Z

D
R
t3

r exp 3
x3

u
R
t

� �2
4
D
R
t

0
B@

1
CA ð24Þ

with x the travel distance, u the mean £uid ve-
locity [L T31], D the dispersion coe⁄cient [L2

T31], and R [dimensionless] the retardation coef-
¢cient which represents the e¡ect of solute sorp-
tion along the £ow path. Using the temporal cen-
tered moments: W n ¼

Rr
0 f ðx; tÞðt3tÞn dt with t ¼Rr

0 f ðx; tÞt dt ¼ Rx=u, the skewness coe⁄cient Q1

and the kurtosis coe⁄cient Q2 of Eq. 24 are calcu-
lated as:

Q 1 ¼
W 3

ðW 2Þ3=2
¼

ffiffiffiffiffi
18
Pe

r
ð25Þ

Q 2 ¼
W 4

ðW 2Þ2
33 ¼ 30

Pe
ð26Þ

with the Peclet number Pe= ux/D. On the other
hand, a lognormal distribution of mean tm =Rx/u
and of variance ct

2 = 2R2Dx/u3 has a skewness
coe⁄cient Q P1 and a kurtosis coe⁄cient Q P2 given
by:

Q
0
1 ¼

c tð3t2m þ c
2
t Þ

t3m
¼

ffiffiffiffiffi
18
Pe

r
þ

ffiffiffiffiffiffiffi
8
Pe3

r
ð27Þ

Q
0
2 ¼

c
2
t ð16t6m þ 15t4mc

2
t þ 6t2mc

4
t þ c

6
t Þ

t8m

¼ 32
Pe

þ 60
Pe2

þ 48
Pe3

þ 16
Pe4

ð28Þ

It is obvious that Eqs. 25 and 27 and Eq. 26
and 28 result in almost the same values whenever
Pes 10, which is the case for most transport
problems in fractures.
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