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ABSTRACT
Following a change in the rate of convergence in a collision

zone, the rate of rock uplift also changes. This results in a change
in relief, and hence in erosion rate. Thus, over time, the erosion
rate tends to adjust to equal the rock-uplift rate. A perturbation
analysis of a mountain mass at critical taper suggests that the time
constant for this adjustment varies from 105 to .108 yr, depending
on initial relief, lithology, and erosion law. Under most conditions,
time constants for the adjustment are long enough to preclude at-
tainment of a steady state during a typical orogeny lasting on the
order of 107 yr. However, if erosion increases exponentially with
relief, a close approach to a steady state is possible in the relatively
few mountain belts on Earth with exceptional relief and/or weak
lithologies.
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INTRODUCTION
As the height of a mountain range increases, stream channels and

hillslopes become steeper. In addition, there may be an orographic in-
crease in precipitation, a decrease in vegetation, and initiation of glacia-
tion (Molnar and England, 1990; Pinter and Brandon, 1997). All of these
factors are likely to increase the erosion rate. Thus, an increase in the
rate of rock uplift that leads to an increase in height of a range usually
results in a compensating increase in erosion rate. There is, therefore, a
tendency toward attainment of a balance or steady state between the rate
of rock uplift and the rate of erosion. Hack (1960) was one of the first
to espouse this concept.

This steady state is most likely approached asymptotically because
forces tending toward the steady state decrease as the steady-state con-
dition is approached. Together with temporal changes in both climate and
uplift rate, this means that a steady state is never actually attained. Despite
this, it would be useful in studies of mountain geomorphology if we could
define the conditions under which a steady state is approached closely. It
will be approached more closely if the time scale for adjustment is rel-
atively short compared with that of changes in rates of uplift or erosion
(Whipple, 2001). Herein I explore this question.

Pinet and Souriau (1988) provided a simple example of a system
that asymptotically approaches a steady state; i.e., that of a landmass with
relief, R, defined as the mean height of the landmass above sea level,
undergoing denudation at a rate, Ė. As erosion progresses, R → 0. By def-
inition, in the absence of isostatic or tectonic adjustments, Ė 5 2]R/]t.
If the relation between Ė and R is linear, as in Ė 5 kR, we see that R 5
R0 e2kt, where R0 is the relief at time t 5 0. As t becomes large, R
decreases, thus decreasing Ė. R asymptotically approaches 0, but never
truly reaches it; thus, the time required to attain the steady-state value, 0,
cannot be used as a measure of the response time of the system. Rather,
the accepted measure, and that adopted here, is the time constant, tc 5
1/k.

PREVIOUS WORK
Time constants associated with the equilibration between rates of

erosion and uplift have been discussed in various contexts. Using a nu-
merical model of an evolving mountain range, for example, Kooi and
Beaumont (1996) calculated the ratio of mass output by erosion to mass
input due to tectonic processes and, for a range 50 km across, found that
tc ø 8 m.y. Adding partial isostatic compensation increased this to ;11
m.y. Increasing the width of the range to 500 km increased it to ;130

m.y. Variations with precipitation and erodibility were also discussed.
Similarly, Pinet and Souriau (1988) calculated tc for denudation in the
absence of isostatic or tectonic adjustments. In orogenic belts that were
younger than 250 Ma, they obtained tc ø 2.5 m.y., whereas in older belts
the value was ;25 m.y. In a reinterpretation of Pinet and Souriau’s data,
incorporating new data and isostatic compensation, Pazzaglia and Bran-
don (1996, p. 265) obtained a global average of ;69 m.y.

Taking a different approach, Whipple and Tucker (1999) calculated
the time for the profile of a channel to adjust to a tectonic perturbation
through migration of either a knickpoint or a wave of erosion from the
range front to the tips of headwater channels. This profile adjustment
time, tpa, applies only to the bedrock channel. For watersheds in Taiwan
with areas of 102–103 km2, Whipple (2001) found that tpa was on the
order of 1 m.y. However, for 3–20 km2 basins in the Mendocino triple
junction area, Snyder et al. (2000) obtained tpa ø 0.1 m.y. They attributed
the short response time to the weakness of the bedrock, an orographic
increase in precipitation, and positive feedbacks in the channel erosion
process. Isostatic adjustments and lags due to the response of hillslopes
to channel incision are not included in these analyses (Whipple and Tuck-
er, 1999, p. 17,668). Isostatic adjustment can lengthen tc by a factor of 5
to 6 (Baldwin et al., 2003), and lags due to hillslope adjustment are
largely responsible for the asymptotic character of the approach to a new
steady state. These lags may be shorter in watersheds dominated by steep
slopes that fail by sliding.

The Whipple and Tucker (1999) models approximate conditions in
a horst or on the uplifted flank of a tilted block-faulted range. They are
less applicable to mountain ranges in convergent settings where signifi-
cant vertical strain occurs far from the range boundaries (e.g., see Dahlen
and Suppe, 1988; Beaumont et al., 1994).

ANALYSIS
Consider a mountain range of width W formed at a convergent mar-

gin (Fig. 1). The range has a bulk density rc. It is underlain by litho-
spheric mantle of density r,m and is ‘‘floating’’ in an asthenosphere of
density ra. Consider a control volume consisting of a vertical slice of
unit thickness in a direction parallel to the axis of the range and extending
across its width (Fig. 1). The slice extends from the base of the crust to
and above the land surface. Mass (rock) may enter or leave this control
volume through the ends, sides, and bottom, either by viscoplastic de-
formation or as magma. For convenience, we express this flux in terms
of a volume of rock per unit time and denote it by Q. Erosion off the top
occurs at a spatially averaged rate, Ė. Both the width of the control vol-
ume, W, and the mean height of the slice of crustal rock in it, H̄, may
increase, remain constant, or decrease, depending on whether Q is greater
than, equal to, or less than ĖW. Ė depends upon, among other things, the
mean height of the range above sea level, referred to here as the relief,
R. Owing to isostasy, R is proportional to H̄.

Our objective is to study the time scale over which W and H̄, and
hence Ė, adjust to balance Q, and thus achieve an erosional steady state.
In such a system, conservation of mass is expressed by:

¯]H ]W˙ ¯Q 2 EW 5 W 1 H . (1)
]t ]t

Any difference between Q and ĖW is accommodated by thickening of
the crust in the orogen at a rate ]H̄/]t, by widening it at a rate ]W/]t, or
both.

We assume that the shape of the range approximates a wedge with
a critical taper such that the Mohr-Coulomb strength is reached at every
point in the wedge (Dahlen, 1984). The critical taper is the angle, w,
between the basal décollement and a plane extending from base level to
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Figure 1. Sketch of mountain range and definitions of some variables used in analysis. Mean ocean depth and mean
thickness of oceanic crust are from Skinner and Porter (1995, p. 25, 370) (rW, roc in kg/m3).

the range crest (Fig. 1, inset). The latter plane makes an angle, c, with
the horizontal; c is termed the critical surface slope. Valleys are cut below
this plane and ridge crests rise above it. This is a reasonable approxi-
mation to the shape of mountain ranges like those of Taiwan (Dahlen and
Suppe, 1988).

In such a mountain mass, the spatial distribution of erosion is an
independent variable dictated by climate and lithology, and vertical rock
velocities at the surface adjust so that they are everywhere equal to the
erosion rate. For example, suppose that at some point in the range,
streams are able to remove N tons of sediment annually. The value of N
is determined by the stream discharge and gradient. The latter would be
controlled by c. If hillslopes at this point in the range are not steep
enough to deliver N tons of sediment to the stream, the stream will down-
cut, increasing the steepness of the hillslopes. The resulting decrease in
stream gradient downstream will temporarily reduce the local mean slope
of the range below c. This will increase the flux of rock to this point,
thus elevating both the trunk channel and the ridge crests and restoring
the critical surface slope. Now, however, hillslopes are steeper and thus
able to supply the sediment load the stream is capable of carrying. This
is a straightforward application of Strahler’s Law (Hooke, 2000).

Let us now express Q, H̄, Ė, and W in terms of their steady-state
values (subscript 0) and small deviations from the steady state (subscript
1); thus, Q 5 Q0 1 Q1, H̄ 5 H̄0 1 H̄1, Ė 5 Ė0 1 Ė1, and W 5 W0 1
W1. Substituting these values into equation 1, noting that derivatives of
steady-state values with respect to time are 0 by definition, and subtract-
ing the steady-state relation from the resulting equation, ignoring second-
order terms, yields:

¯]H ]W1 1˙ ˙ ¯ ¯Q 2 E W 2 E W 5 (W 1 W ) 1 (H 1 H ) . (2)1 0 1 1 0 0 1 0 1]t ]t

To proceed, we need a relation between H̄ and W. As the range is
isostatically compensated, we approach this through Airy isostasy, thus:

r rc ,mR 5 h 1 2 1 (h 2 h ) 1 2c c,m o,m1 2 1 2r ra a

r rw oc2 h 1 2 2 h 1 2w oc1 2 1 2r ra a

ø bh 1 dDh 2 g, (3)c ,m

where r is density, h is thickness, and the subscripts c, a, o, ,m, and w
refer to crust, asthenosphere, ocean, lithospheric mantle, and water, re-
spectively (Fig. 1). The thin layer of sediment on the ocean floor has
been ignored. With the densities and thicknesses shown in Figure 1, b 5
0.21, d 5 0, and g 5 3.4 km. (Although d 5 0 with the density structure
shown, I retain this term for completeness. If it becomes significant, the
analysis is much more complicated.) Equating hc with H̄ (Fig. 1) then
yields:

1
H̄ 5 (R 1 g), (4)

b

and in terms of the perturbed quantities:

¯R 5 bH .1 1 (5)

Note that in an isostatically compensated symmetrical wedge at crit-
ical taper, the mean surface elevation (R) is reached at a point one-half
of the way from the edge to the apex (Fig. 1), so we have:

4R 4R 4R
W 5 5 5 , (6)

tan c b tan w bz

where z 5 tan f. From equation 6, W1 5 4R1/bz. Making appropriate
substitutions in equation 2 yields:

1
2 ˙ ˙b zQ 2 b(E R 1 E R )1 0 1 1 0dR 41 5 . (7)

dt 2(R 1 R ) 1 g0 1

Our goal is to use empirical studies to relate Ė to R and then solve
equation 7 for R1(t). We discuss the empirical studies next.

Erosion Laws
In developing an erosion law for use in the present analysis, we are

constrained by the fact that empirical data usually consist of measured
spatial differences in sediment yield at an instant in time; in a perturbation
analysis, we are dealing with small, temporal changes from an existing
state. We use the measured spatial differences to estimate how a temporal
change in a particular independent variable is likely to influence a de-
pendent variable. To be specific, we are interested in how a change in R
of a watershed will change Ė in that watershed. Thus, in our case, li-
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Figure 2. Adjustment of mountain topographic system to pertur-
bation, Q1, of 2% assuming linear erosion law with constants based
on Ahnert (1970) and linearized exponential erosion law with con-
stants based on Summerfield and Hulton (1994). Solution of equa-
tion 9 for R1 for any given time, t, was accomplished by using value
of R1 from previous time step on right side.

thology does not change, and changes in climate are small and reasonably
well prescribed. In contrast, in the empirical data spatial variations in
lithology and climate are likely to be both significant and poorly pre-
scribed, and they may mask or obscure the effects with which we are
primarily concerned. In addition, empirical data may include watersheds
that are in different stages of adjustment in response to previous pertur-
bations or that have been affected by human activities (K. Whipple, 2002,
personal commun.). For all these reasons, we use empirical data only as
a guide to the form and approximate magnitude of the effects in which
we are interested.

I have argued, theoretically, that Ė should be proportional to the
fraction, ℘, of the area of a watershed over which hillslopes equal or
exceed the angle of repose (Hooke, 2000). Intuitively, it is clear that ℘
must increase with the mean slope, . If hillslope magnitudes in theā
watershed are normally distributed, the increase in ℘ with is nonlinearā
(Hooke, 2000). This is consistent with empirical data of Montgomery and
Brandon (2002), who also showed that was correlated with the localā
relief between valleys and ridge crests, Rz. With the exception of plateau
areas, Rz is arguably proportional to R as defined herein (Fig. 1). Thus,
based on a combination of intuitive physical, theoretical, and empirical
grounds, we may expect that Ė is correlated with R. This is particularly
true in the present problem, as we are dealing with a perturbation to a
particular system.

In tectonically active terrains, particularly those underlain by rela-
tively weak lithologies, hillslope declivity may be limited by the angle
of repose. In such situations, Ė becomes independent of (Burbank etā
al., 1996); it is, instead, related to the frequency of landsliding, and hence
to the ability of streams to remove slide debris (Hooke, 2000; Hovius et
al., 2000). The latter is controlled by climate and by the slopes of stream
channels, which in turn is related to R. Hence, once again we expect Ė
to be positively correlated with R.

Various empirical studies have sought to quantify this correlation.
Ahnert (1970) and Pinet and Souriau (1988) favored linear relations,
whereas Schumm and Hadley (1961) and Summerfield and Hulton (1994)
presented data supporting exponential ones. In studies requiring a relation
between Ė and R for other purposes, linear erosion laws are commonly
used (e.g., Sleep, 1971; Dahlen and Suppe, 1988; Pinot and Souriau,
1988; Pazzaglia and Brandon, 1996; Stüwe and Barr, 1998). However,
there are cogent physical reasons for favoring a nonlinear law. Principal
among these is the increase, with relief, in the number of angle-of-repose
hillslopes that act as sediment sources (Hooke, 2000). Changes in oro-
graphic precipitation, vegetation, and glaciation that normally accompany
increased relief may also play a role.

For these reasons, we expect that within a given mountain range,
temporal changes in R will result in nonlinear changes in Ė. However,
we need to start with the simpler linear model and use that to examine
the nonlinear case.

Linear Model
Equation 7 is expressed in terms of R, so we start with the linear

relation:

Ė 5 a 1 bR ,0 0 (8)

or in terms of the perturbations, Ė1 5 bR1. Substituting these relations in
equation 7 yields a relation for dR1/dt that may be integrated to:

2b §Q1 22R /lt 2t/t1 c cR 5 (1 2 e e ), (9)1 4l

where

l 5 b(a 1 2bR ) and (10)0

21 b zQ1t 5 2R 1 g 2 . (11)c 01 2l 2l

Because Ė 5 0 when R 5 0, a is clearly 0 in this case. However, we
retain it for use later. Because R1 appears on both sides of equation 9, an

iterative solution is necessary. In general, however, ltc k 2R1, so
ù 1.0.22R /lt1 ce

To obtain numerical results, we need a value for b. In a reinterpre-
tation of Ahnert’s (1970) data, Montgomery and Brandon (2002) found
that Ė ù bARz where bA 5 2 3 1027 yr21. For purposes of illustration,
let’s assume R 5 «Rz, where « is expected to be greater than, but of order
unity. Here I use « 5 2 for purposes of illustration. Thus, b ø 1 3 1027

yr21.
As an example, consider a mountain range with a mean elevation,

R, of 2 km. Ė0 is then 0.2 mm/yr (equation 8). If c 5 38 and w 5 98, as
in Taiwan (Dahlen and Suppe, 1988), the orogen will have a subaerial
width of ;150 km (equation 6). In the steady state, the erosion, Ė0W0 5
30 m3/m.y., is balanced by an equal flux, Q0, into the control volume.
Let us choose a perturbation in Q0 of 2% or 0.6 m3/m.y. Using dQ0 5
dĖW 5 ĖdW 1 WdĖ and equations 6 and 8, one can straightforwardly
calculate that W and R must increase by ;1500 m and ;20 m, respec-
tively, to absorb this perturbation. However as noted, the approach to the
new steady state is asymptotic (Fig. 2). In this example, tc ù 89 m.y.

Because the increase in R is so small, the increase in Ė is only 0.002
mm/yr. Despite this, 50% of the perturbation in Q is absorbed by this
increase in erosion rate (W0dĖ). The remaining 50% is absorbed
by the increase in erosion resulting from the increase in width of the
orogen (Ė0dW). Both W0dĖ and Ė0dW increase linearly with R, and their
ratio remains constant.

Equation 11 may be used to calculate tc for other values of R (Fig.
3), remembering that Q0, and hence Q1, varies with R. Note also that tc
is dependent on W through equation 6. This effect may be amplified in
detachment-limited landscapes where the ability of streams to erode their
beds increases with discharge downstream and their ability to entrain
material is not limited by sediment already in transport.

Exponential Model
As noted, Summerfield and Hulton’s (1994) data can be interpreted

as supporting an exponential increase in Ė with their measure of topo-
graphic relief, RS, thus: Ė 5 . We wish to cast this in the form:p RS Sm eS

pRĖ 5 me . (12)

Assuming once again that R 5 2RS and evaluating mS and pS from Sum-
merfield and Hulton’s plot, we find m 5 7.59 3 1026 m/yr and p 5
0.0019 m21.

Use of equation 12 in equation 7 results in a relation that is not
readily integrated. However, for a given Ė0 and small perturbations, we
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Figure 3. Variation in time constant, tc, with relief for linear (dashed)
and linearized exponential (solid) erosion laws with Q1 5 2% and
constants based on Ahnert (1970) and Summerfield and Hulton
(1994), respectively. Result is insensitive to changes in Q1 (asl—
above sea level).

can approximate the exponential relation by a linear one, Ė 5 ae 1 beR.
The slope, be, of the linear relation is set equal to the slope of the ex-
ponential one at the value of Ė in question: be 5 mpepR. Thus, ae 5 Ė
2 beR and l then may be calculated from equation 10, substituting ae

for a, and be for b. Finally, tc is obtained from equation 11. For our
mountain range with R 5 2 km, tc is ;20 m.y. (Fig. 2). Figure 3 shows
how tc varies with Ro.

DISCUSSION
Because the time scale for orogenies such as that currently main-

taining the height of the Himalayas is of order 107 yr, time constants
#;106 yr are necessary to maintain a rough balance between rates of
erosion and rock uplift. With an exponential erosion law and constants
derived from data of Summerfield and Hulton (1994), such time constants
appear likely only in areas with relief in excess of 3000 m; with a linear
law and constants based on Ahnert (1970), they are not found (Fig. 3).
With the longer time constants in areas of more moderate relief that seem
likely from this analysis, a significant phase lag will develop between the
times of maximum rates of rock uplift and erosion.

Both the Summerfield and Hulton and the Ahnert data sets are from
humid temperate areas and relatively inactive or nonorogenic regions. In
more erosive climatic zones or in more active orogenic belts, potentially
with less well indurated rocks with higher fracture densities, b or p may
be higher, and hence tc lower. This is consistent with both intuition and
numerical modeling experiments (e.g., Kooi and Beaumont, 1996). The
role of climate is complicated by the fact that changes in precipitation
may be offset by changes in vegetation (Langbein and Schumm, 1958).
The most important changes in climate are likely to be those that affect
the ability of streams to undercut slopes at the angle of repose and to
carry away material sloughed from these slopes (Hooke, 2000).

A reasonable conclusion from these calculations is that if erosion
rates increase nonlinearly with relief, as seems likely, an erosional steady
state may be approached reasonably closely in the relatively few moun-
tainous areas of Earth with mean elevations above 3000 m, and in some-
what lower ranges composed of rocks prone to erosion. In lower areas
or areas of more resistant rock, changes in erosion rate are likely to lag
changes in rock uplift rate sufficiently to preclude a close approach to a
steady state. The lag will increase as relief decreases. These conclusions
hold over a range of b and p that is probably sufficient to cover most
natural situations.
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