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Abstract

This study employs the principles of energy conservation to establish the framework for the

development of the dynamical equations of head cut as a part of a continuum mechanical analysis of

soil erosion induced by surface flow. The dynamics of head cut are controlled by several physically

distinct processes, notable among which are surface seal formation, its failure and the redistribution

of flow energy into kinetic and dissipation energies of water and soil. Thus, an erosive energy release

rate function is introduced in the global energy equation, which is shown to depend on physical

parameters governing the dynamics of the process region. The energy release rates are decomposed

into line integrals representing motions associated with the translation, rotation, self-similar

expansion and the distortion of the head cut cavity. From these considerations, approximate

analytical expressions are derived which establish criteria for the initiation and the steady state head

cut velocity. The results at this stage of development are preliminary and need testing and validation

with data under controlled experimental conditions.
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1. Introduction

Considerable mathematical difficulties exist in the determination of erosion and sedi-

ment transport rates due to concentrated flows near head cuts and gullies. Although an

overall functional boundary value problem may be formulated to describe the process

region of head cut, an exact solution of such a nonlinear integro-differential equation will be

an unrealistic expectation. Moreover, the shape and size of the boundary within which

erosion and sediment transport processes take place are not beforehand known, thus,

making the problem further mathematically intractable. In the past, several studies have

been conducted to understand the fluid dynamics of free fall under a step change in the

surface slope, which elucidated the flow structure hydraulic parameters (Moore, 1943;
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Henderson, 1965). These studies have helped in understanding the development of tractive

forces on the rigid boundary as well as the accompanying effects when boundary conditions

near the fall are changed. They are also useful in understanding the roles of various

parameters in the initiation of the erosion process and its short term or transient character-

ization. A sustained growth of head cuts and the resulting sediment transport rates, however,

are believed to be primarily energetic in nature where the energy redistribution between the

flow and the soil mass becomes the controlling mechanism. Energy is released from the

surface flow, which is then used in the erosion and entrainment processes and further

converted into kinetic energy of the flow and in the transport of eroded materials. A part of

the energy is also utilized in the propagation of the newly created boundary of the head cut.

This paper, therefore, explores in a systematic way the various conservation laws which

may be utilized to circumvent the complexities present in the interacting subprocesses of

head cut dynamics. The inspiration for this approach lies in the success which researchers

have found in the areas of nonlinear wave propagation in fluids (Witham, 1973). The

exchange of energy in the process region is formulated into suitable forms which are shown

to lead to certain closed form solutions. One solution establishes the bounds of the velocity

for steady state head cut motion, whereas the other solution yields a criterion for its initiation.

2. Energy model formulation

Energy principles have long been used as a means to investigate problems of continuum

mechanics of deformable bodies. Along with the subject of variational calculus, these

principles have greatly helped the understanding of complicated dynamic systems espe-

cially when subprocesses in the systems, such as those involving nonlinearity of material

properties, local singularities and strong fluctuations, etc., become complex due to strong

interactions between sources and sinks in the system. In order to bypass a detailed analysis

of this complicated problem, the concept of energy release rate in the process region is

introduced. In the general case, this consists of a surface integral which for two-dimensional

analysis (as in a flume study) reduces to a line integral. The choice of the line integral is

somewhat arbitrary but is chosen such that it surrounds the head cut cavity thereby directly

integrating the locally varying parameters. The line integrals are amenable to numerical

evaluation and yield informations on head cut growth rates as will be seen below.

The subject of soil erosion by overland flow may, in its simplest manifestation, be

viewed as an interaction problem between the hydrodynamics of the flow and the

underlying surface soil matrix with its constitutive properties. The process region is

primarily limited to the zone near the soil surface. In some locations, this process seems to

take place in a uniform manner (Fig. 1A); at others it is concentrated, leading to

discontinuities (head cuts) which move upstream as a result of that part of the energy

that is expended by concentrated flow on the surface soil matrix (Fig. 1B). Thus, the

energy source of the system is derived from the flow, whereas the energy sink lies in the

process of soil detachment, entrainment and removal of the soil and water from the surface

in general, or specifically from the head cut region. In order to formulate the problem of

the eroding head cut, the case of a soil of which the original surface is denoted by X2 = 0

(Fig. 1A and B) is considered. This surface supports a concentrated flow regime with time
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rate of flow energy per unit volume given by R (Fig. 1). Let P be the time rate of energy

responsible for the detachment of soil, and let Q be the heat energy per unit time of flow

that enters the process region. Assume further that T and E are, respectively, the total

kinetic and internal energies of the detached soil mass originally bounded by an arbitrary

surface Sp denoted in part by X2 = 0 (Fig. 1). (E is a temperature-dependent quantity, a

factor rarely considered in soil erosion research). The energy partitioning mechanism in

the process region assumes that the flow energy is transmitted to the soil surface by means

of an equivalent tractive force vector Fi, (i = 1,2,3). The generality of this approach is self-

evident by considering the general three-dimensional problem in which the domain of the

soil mass is given by X2z 0. In this paper, the indicial notation with a repeated index

denotes a summation and a dot over a variable implies the time rate of change.

As suggested in this model (Fig. 1), the process region is assumed to be homogeneous and

uniformly eroding and bounded by the surfaces Sp and Sc. Thus, Pmay be viewed as the rate

at which energy is required to detach soil in the process region represented by Vp. The

system’s energy balance equation in the region Vp bounded by Sp may then be given by:

Rþ Q ¼ dT

dt
þ dE

dt
þ P þ HV ð1Þ

where HVrepresents energy rate associated with seepage, rainfall, etc. While the latter

Fig. 1. A schematic representation of the process region of an eroding surface: (A) for an uniform surface and (B)

for a head cut region.
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contributions may be very significant, they are not considered in this exercise on head cut

analysis. The time rates of flow and heat energies may be represented by:

R ¼
Z
Sp

Tiu̇idS þ
Z
Vp

fiu̇idV ð2Þ

Q ¼
Z
Sp

ð�qiniÞdS þ
Z
Vp

qcdV ð3Þ

where ui and fi are the displacement and body force vectors, respectively; qi is the heat flux

vector; c is the heat produced by internal heat sources; q is the mass density and ni is the

outward unit normal vector to the surface S. The integral signs with Sp and Vp are surface and

volumetric integrals, respectively.

The time rate of change of the total kinetic energy equals the total time rate of change of

the kinetic energy density in Vp plus the flux of kinetic energy density out of the boundary

surface of Vp, i.e.

dT

dt
¼

Z
Vp

qK̇dV þ
Z
Sp

qKVið�niÞdS ð4Þ

where K is the kinetic energy per unit mass, Vi is the velocity vector and ni is the outward

unit normal vector of the surface Sp. Similarly, the time rate of change of the internal

energy is given by the relationship:

dE

dt
¼

Z
Vp

qėdV þ
Z
Sp

qeVið�niÞdS ð5Þ

where e is the internal energy per unit mass. Outside the process region, the deformations

are assumed to be infinitesimal so that there, the linear equations of continuum mechanics

are valid. These equations are (Eringen, 1980):

tij;j þfi ¼ qüi ð6Þ

eij ¼ 1=2ðui;j þuj;i Þ; Vi ¼ u̇i ð7Þ

qė ¼ tijėij þ qi;i þ qc ð8Þ

qK̇ ¼ qüiu̇i ð9Þ

Ti ¼ tijnj ð10Þ
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where tij is the stress tensor and eij is the infinitesimal strain tensor. The set of Eq. (6)

represents the balance of linear momentum, whereas Eq. (8) is derived from the

conservation of energy principles in which e represents the internal energy density. The

components of surface traction Ti are obtained in terms of the stress tensor tij from Eq.

(10), where ni is the outward unit normal. The above separation of the energies in the form

of fluxes moving with velocity Vi makes it possible to derive the detachment energy rate P.

This is accomplished by substituting Eqs. (3)–(5) into Eq. (1), followed by the application

of the Gauss Theorem to change the volume integral term into a surface integral term. The

resulting equations simplify considerably by utilizing the linear equations of continuum

mechanics given by Eqs. (6)–(10), which yields:

P ¼
Z
Sc

qðK þ eÞVini þ Tiu̇i � qinif gdS ð11Þ

The erosive energy or detachment rate given by Eq. (11) is a general expression and

should therefore be a widely applicable relationship. It should be mentioned that although

Eq. (11) is derived by satisfying the set of field equations (Eqs. (6)–(10)) which are linear,

no linearity assumption is essential in the process region and, therefore, the integral

theorem given by Eq. (11) will admit any physically admissible constitutive law. The first

two terms on the right hand side of Eq. (11) represent fluxes of kinetic and internal

energies in the process region, whereas the third term is the thermal energy fluxes. The

growth and the deformation of the head cut cavity directly affect the magnitude of these

fluxes, and therefore, in the following section, we investigate the dynamical kinematics of

head cut developments.

3. Components of energy release in head cut processes

The generalized energy balance equation applies to all forms of soil erosion by water.

However, real world situations involve soil heterogeneity, nonuniform and unsteady flows,

which lead to uneven changes in the geometry of the eroding soil surface, often manifested

as head cuts. In those situations, the application of the energy balance equation becomes

extremely complicated and is best approached by allocating proportionately the flow-

released energy to the components of geomorphic changes of the growing and migrating

head cuts. These components of the moving head cuts consist of translational, rotational,

self-similar expansion and distortional (non-self-similar) motions (Fig. 2). In order to make

these energy allocations, we present a general analysis, using a moving coordinate system,

that simulates in a schematic manner how geomorphological differences in erosional

responses, including head cuts, may be understood. In this analysis, the origin coincides

with the tip (0) of the head cut (Fig. 3). These coordinate systems are a moving

translational frame (0� x1,x2) and a rotational frame (0� r,h)3 both moving with the

head cut velocity, Vc. The rotational frame has an angular velocity x3. The kinematic

details of transcribing these motions into these coordinate systems can be quite compli-

cated, even for a system with two coordinates, which is applicable in most experimental

head cut studies in the laboratory. The following analysis assumes a planar model in the
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X1–X2 plane (Fig. 4). The position of a point B on the head cut surface Sc at time t = t0 is

denoted by a vector
!
r ðh; t0Þ, that extends from the tip 0 to the point B. After an incremental

time increase Dt, the head cut has propagated over a distance and the deformation of the

domain Sc, the head cut region, has moved along a rather arbitrary but smooth trajectory as

indicated in Fig. 4. We select a point, say b, on the new curve Sc in such a way that the

numerical value of the moving angular coordinate h of the point is the same as that of the

Fig. 3. Cross-section of the head cut process region Vq.

Fig. 2. A schematic representation of the geomorphic components of a moving head cut.
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point B. The point b is represented by a vector
!
r ðh; t0 þ DtÞ as shown in Fig. 4. We define

the velocity of Sc, as
!
V ðh; t0Þ as

!
V ðh; t0ÞDt ¼ !

vDt þ !
r ðh; t0 þ DtÞ � !

r ðh; t0Þ ð12Þ

As shown in Fig. 4,
!
VDt is the vector connecting the points B and b. Letting Dt! 0 we

obtain

!
V ¼ !

vþ B
!
r

Bt
¼ !

vþ B

Bt
ðr!erÞ

i.e.

!
V ¼ !

vþ r
B

Bt

!
er þ

Br

Bt

!
er ð13Þ

where r is the length of
!
r and

!
er is a unit vector having the same direction as

!
r.

In order to separate energies associated with translation, rotation, expansion and

deformation, we consider in Fig. 5, schematically, the shapes of Sc at time t = t0 and

t = t0 +Dt, which are viewed from the moving frame (0� x1,x2). Since the values of the

moving angular coordinate h of the point b is the same as that of B, the points 0, B and b

are observed as if they were on a straight line. The points B* and b* in Fig. 5 correspond,

respectively, to the points B and b in Fig. 4. The shape of the thinly drawn curve in Fig. 5

is similar to that of the solid curve, i.e. Sc at t= t0, while the area within the thin curve is the

same as that of the dashed curve, i.e. Sc at t= t0 +Dt. The point H* is the intersection of the

thin curve and the line 0b*. Since

0b*� 0B* ¼ B*H*þ H*b*

Fig. 4. A schematic representation of the displacement of a point B on the head cut surface as described by a

moving coordinate system.
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we may obtain

rðh; t0 þ DtÞ � rðh; t0Þ ¼ arðh; t0ÞDt þ hðh; t0ÞDt ð14Þ

where h(h,t0) is a constant representing the extent of non-self-similar distortion and

ar(h,t0)Dt is the length B*H*. The constant a, on the other hand, is a deformation constant

representing the extent of self-similar distortion and is determined by equating the area

within the thin curve to that within the dashed curve, i.e.Z 2p

0

r2ðh; t0 þ DtÞdh ¼ ð1þ aDtÞ2
Z 2p

0

r2ðh; t0Þdh ð15Þ

The length H*b* is denoted by h(h,t0)Dt. In the limit Dt! 0, we obtain from Eqs. (14)

and (15)

Br

Bt
¼ ar þ h ð16Þ

where

a ¼

Z 2p

0

Br2

Bt
dh

2

Z 2p

0

r2dh

ð17Þ

Fig. 5. A schematic representation of a growing and deforming head cut during a time interval Dt.
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For conditions in which soil cohesion is small, energy associated with deformations

(non-self similar) will be small in comparison with the other dissipation energies. Thus, in

the following case, we will assume h = 0. The boundary velocity
!
V, relationship (13), now

yields

!
V ¼ !

vþ x3x
!
r þ a

!
r ð18Þ

It is seen from Eq. (18) that Vi decomposes into the components of translation with

velocity vi, the rotation with angular velocity x3, and the self-similar expansion, expressed

by the parameter a, of the process region of the head cut. Combining Eq. (18) with Eq.

(11), we obtain

P ¼ viJi þ x3L3 þ aM ð19Þ
where

Ji ¼
Z
Sc

qðj þ eÞni � Tj
Buj

Bxi

� �
ds ð20Þ

L3 ¼
Z
Sc

ei3exc qðj þ eÞni � Tj
Buj

Bxi

� �
ds ð21Þ

M ¼
Z
Sc

Xi qðj þ eÞni � Tj
Buj

Bxi

� �
ds ð22Þ

It is noted that J1, L3 and M are the components of the energy release rates associated

with the translation, rotation and self-similar expansion, respectively. These integrals,

however, are line integrals which enclose the process region but have similarities with

those which appear in studies of crack propagation in solids. In solid mechanics, those

integrals lead to path-independent integrals (Budiansky and Rice, 1972; Freund, 1972)

which form a powerful basis for solutions of nonlinear crack propagation problems.

Similarly, integrals given by Eqs. (20)–(23) may be converted by Gauss’ theorem to forms

over the regular region outside the process region such that their numerical evaluations for

phenomenologically nonlinear effects could be accomplished.

4. Head cut models

In general, head cuts may grow in a variety of ways involving quite complicated

mechanisms whose origins may be in certain inherent, dynamic instabilities. The first

model assumes surface flow in which individual particles are detached from the surface of

the soil which idealistically is considered to be homogeneous. This is the most commonly

assumed case illustrated in Fig. 6a. In this model, erosion rates may be estimated based on

excess tractive force or stream power over a certain critical value. These critical values
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have been the subject of extensive research but no definite procedure has been devised yet

for its determination and, therefore, has remained an empirical consideration. The second

model, shown in Fig. 6b, is a layered system consisting of a compact, cohesive surface

layer on top of a significantly less-cohesive, or often a nearly cohesionless, substrate. Only

the latter case is considered in this paper. It represents situations that are often observed on

agricultural fields where tilled soil develops a seal during rainfall, which subsequently

breaks down by surface or concentrated flow, thereby forming head cuts or approximate

stepwise changes in the surface topography. In this model, two contributing factors are

considered and have been observed in laboratory studies (Bennett et al., 2000). One factor

may lead to a chipping (surface) mode failure caused by crack propagation in the surface

seal. The second factor is due to propagation of debonding between the surface seal and

the substrate material due to the soil removal by the flow. Head cut growth involves both

modes with comparable participation. The hydrodynamics of surface flow primarily

controls the extent of these operational mechanisms but soil properties and the geo-

morphology of the head cut specifics are also contributing factors. The study of layered

system failure involves assessing the stress distribution in the seal layer caused by the

various forces acting on the seal and due to the weakening of the substrate when the pore

pressure between the seal and the substrate becomes less negative or positive. Since the

Fig. 6. Graphical representation of two modes of head cut erosion: (A) case of homogeneous material and (B) case

of heterogeneous material of a developed surface seal over a homogeneous substrate.
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theme of this paper concerns the mechanical analysis of this process, certain intrinsic

instability mechanisms will be first discussed.

The study will first focus on the stability behavior of head cut growth. The conceptual

model is based on an analysis of balance of energy represented by a special case of Eq.

(11). The special case is obtained in the limit of equilibrium when dynamic forces are zero.

In this situation, we will assume that the thickness of the seal is h and the bonding force

between the seal and the substrate is negligible, but seal and substrate are held together by

interfacial capillary tension. The substrate material is cohesionless and is readily entrained

and transported by the surface water when the interstitial suction is lost. We will further

assume that the separation length over which the seal is simply resting without any

resistance from the substrate against vertical deflection of the seal is S (Fig. 7). The

situation may, therefore, be modeled as a beam of width unity with an overhang of length

S and thickness h (Fig. 7). Furthermore, the seal is subjected to self-weight and the weight

of flowing water and it will be assumed that the hydrodynamic force of the flowing water

is equivalent to a thrust of magnitude F due to the jet effect acting at an angle u with the

Fig. 7. A schematic representation of the flow field and a bending seal in the head cut region.
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horizontal direction. In order to apply the principle of balance of energy to this problem,

the various energy sources (gravity) and sinks (plastic hinge) and a failure mechanism

must be identified. A plausible mechanism of seal failure is that the energy storing bending

stress which is maximum near the support x = S gives rise to a plastic hinge. A plastic

hinge in a rectangular (b	 h) beam is formed when the top or bottom half of the cross-

section is fully stressed up to yield stress ry in either tension or compression. The plastic

moment (ultimate) is then given by 1/4bh2ry. At the maximum bending stress, the value of

which depends on the seal mechanical properties and the hydrodynamic forces of the flow,

an ultimate (plastic) bending moment develops. In this limiting state, the energy balance

Eq. (11) when simplified yields:

W � V ¼ 0 ð23Þ

where W is the work done by all external forces and V is the sum of all energies either

stored (strain energy) or dissipated in yielding (i.e. at a hinge). W primarily consists of the

work W1 done by the superimposed total weight and the work W2 of the thrust F. The

quantifying relationships for W1 and W2 are, respectively:

W1 ¼
Z S

0

qy dx ð24Þ

W2 ¼
Z S

0

Fcosudx� Fdsinu ð25Þ

where

q ¼ q0 þ qgH ð26Þ

in which q0 is the weight per unit length of the seal, q is the mass density of water, H is the

average water depth of flow, g is the acceleration due to gravity, y and x are coordinates

with the origin located at the ‘‘hinge’’ point, and d is defined in Fig. 7. The vertical

deflection of the section x is given by y such that at the tip (x = 0), the deflection equals

d = y(0). Thus,

W ¼
Z S

0

ðq0 þ qgHÞydxþ
Z S

0

Fcosudx� Fdsinu ð27Þ

The strain energy U1 stored in the seal is given by

U1 ¼
1

2EyI

Z S

0

M 2dx ð28Þ

whereM is the bending moment at the section x and EyI is the flexural rigidity of the seal. Ey

is the Young’s modulus of elasticity and I is the moment of inertia. Similarly, the strain

energy U2 in the substrate due to compression by the weight of the overlying seal may be

calculated. The energyU3 in the plastic hinge for a rotation under angleU at x = S is given by

U3 ¼ MuU ð29Þ
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where U is defined in Fig. 7, andMu is the ultimate moment (plastic moment) of the seal of

unit width and is given by

Mu ¼
1

4
ryh

2 ð30Þ

where ry is the yield stress of the seal material. Thus, the sum of all energies either stored

(strain energy) or dissipated in a failure mechanism is given by:

V ¼ U1 þ U2 þ U3 ð31Þ
so that the energy balance equation given by Eq. (23) yields:Z S

0

ðq0 þ qgHÞydxþ
Z S

0

Fcosudx� Fdsinu ¼ 1

2Ey

Z S

0

M 2dxþ U2 þMuU ð32Þ

Eq. (32) may be viewed as the stability equation from which the nature of the dynamic

states may be determined (Timoshenko and Gere, 1961) by investigating the bifurcation

points in the phase plane (F– S ). Some insight into the roles played by the main

parameters in determining the head cut dynamics may be gained by simplifying Eq.

(32) to exclude secondary energy terms such as the strain energy U1 and the compression

energy U2 of the substance. Furthermore, the integral relationship Eq. (24) may be

simplified by integrating the work of gravity over the length of the overhang. This quantity

is approximately given by the expression:Z S

0

qy dxc
1

2
qS d ð33Þ

so that Eq. (32) simplifies to yield:

1

2
qS d þ FS cosu � Fdsinu ¼ MuU ð34Þ

Upon solving Eq. (34) for F, one obtains:

F ¼ 1

cosu � d
S
sinu

Mu

U
S
� 1

2
qd

� �
ð35Þ

If we further assume that diUS (Fig. 7), where the tip deflection d (Timoshenko and

Gere, 1961) is given by:

d ¼ qS 4

8EyI
¼ US ð36Þ

then Eq. (35) reduces to:

F ¼ 1

cosu � Usinu
Mu

qS 2

8EyI
� 1

2
q
qS 4

8EyI

� �
ð37Þ
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The critical thrust Fcr may be determined from Eq. (37) by letting BF/BS = 0 in Eq.

(37). This yields:

S cr ¼
ffiffiffiffiffiffiffi
Mu

q

s
ð38Þ

from which the maximum thrust Fcr is given by:

Fcr ¼
1

16cosu
M 2

u

EyI
ð39Þ

When we substitute Mu ¼ 1=4ðryh
2Þ and EyI ¼ Eyh

3=12, Eq. (39) yields the critical

horizontal thrust Hcr =Fcrcosu as:

Hcr ¼
3

64

ry

Ey

� �
ryh ð40Þ

In effect, Eq. (40) determines the threshold condition for the head cut movement.

Whenever the thrust F is larger than Fcr, the head cut will progress and for sufficiently

large F, a steady condition may eventually take place. The problem is now reduced to

determining F or H for a given flow field. Let us assume that the flow velocity on the

overhang is in a critical flow condition. From hydraulic considerations (Henderson, 1965),

the critical velocity Vc is approximately given as a function of the critical depth Hc

according to the relationship:

Vc ¼
ffiffiffiffiffiffiffiffi
gHc

p
ð41Þ

We assume that the pressure distribution at the brink point x = 0 is parabolic with depth

Hc*. From hydraulic considerations (Henderson, 1965), the following applies:

2

3
U

Hc*

Hc

U1 ð42Þ

The pressure distribution profile is as shown in Fig. 7 (inset). The magnitude of the

thrust F, therefore, is given by the resultant of the parabolic pressure distribution and

equals:

F ¼ 2

3

Hc*

4

� �
ðHc*Þqg ð43Þ

where q is the density of the fluid and g is the acceleration constant. If we assume further

that Hc*/Hc = 2/3 then the thrust F is given by

F ¼ 2

27
qgH2

c ð44Þ

S.N. Prasad, M.J.M. Römkens / Catena 50 (2003) 469–487482



We will also assume that this thrust makes an angle u with the horizontal direction.

When Eq. (44) is utilized in Eq. (39), we obtain after some simplifications

V 2
c ¼ 81

128

ry

Ey

� �
ry

q

� �
h

Hc

� �
1

cosu
ð45Þ

Eq. (45) is a very revealing relationship. It expresses the point of failure in terms of soil

mechanical properties of yield stress and the modulus of elasticity and the physical flow

properties of density and thickness of the surface layer on one hand and the critical flow

field on the other. Eq. (45) is rather remarkable in the sense that once the mechanical

property of the surface is evaluated, the critical flow field for seal breakup to occur may be

determined by this relationship. It may also be noted that the three ratios on the right side

of Eq. (45) have appeared in a way that is rather expected. The first two terms (ry/E) and

(ry/q) are germaine to the mechanical response of the seal material, whereas the last term

is flow case specific. Fig. 8 shows a schematic representation of this relationship for

different flow regimes. It is hypothesized that this relationship should also be applicable

for determining the condition of rill initiation in an overland flow situation when surface

seals fail and rilling initiates.

The above analysis yields relationships of critical flow parameters and soil mechanical

properties from which seal failure can be deduced. Once failure occurs, a new cycle of soil

detachment and entrainment takes place, which is controlled by the hydrologic flow, the

substrate water regime and intrinsic soil mechanical properties as embedded in the general

expression of Eq. (11). Similar cycles of seal failure, soil detachment and entrainment were

observed in rainfall-runoff studies with soil beds (see Römkens et al., 1997) These

experimental studies revealed a high degree of surface seal failure instability which was

Fig. 8. A schematic representation of the relationship between the critical flow velocity and the surface seal

property ry/q for different flow regimes.
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followed by a rather catastrophic erosion event. It appears that there exist various

bifurcation paths in the stability phase plane which may be further analyzed near the

origin by the results based on Eq. (45).

5. An energy relationship application for head cut growth in cohesionless soil

We now consider the dynamic case of steady growth of head cut by an application of

the general Eq. (11). We will neglect the thermal change and assume the head cut

migration rate
!
V is such that V2 =V3 = 0 and V1 =C is a constant. We further assume that

there is no significant rotation of the cavity and, thus, only translational effect represented

by C and deformational effect represented by S (introduced later) are retained in the

analysis which follows. In the various experimental studies carried out in the past, head

cuts are constrained more along the axis of the experimental setup, and therefore, results

based on the above assumptions will be relevant in these cases. The angle u was assumed

to be the direction of thrust with the horizontal (Fig. 7). This angle u =u0 +u1 where u1 is

the angle of the centerline of the core of flow with the horizontal and u0 is the angle of the

tangent to the brink with the vertical. These angles are dependent on the geometry of the

head cut and the hydrodynamic conditions (Froude number) of the flow. The rate of work,

W2, supplied by the jet, therefore, is given by

W2 ¼ FCcosðu0 þ u1Þ ð46Þ

Let the cross-sectional area of the head cut be A so that the kinetic energy K1 associated

with the migration velocity of the head cut volume enclosed per unit width is given by:

K1 ¼
1

2
q*AC2 ð47Þ

In the above, q* is total mass density (soil +water) which includes the sediment mass

also. For steady conditions, C may be assumed constant so that the time rate of the kinetic

energy is:

d

dt

1

2
q*AC2

� �
¼ 1

2
q*C2 dA

dt
ð48Þ

An estimate of dA/dt may be made by assuming that entrainment of the soil into the

flow takes place over a length S so that

dA

dt
¼ SC ð49Þ

The conservation of energy principle states:

d

dt
ðkinetic energyþ internal energyÞ ¼ Rate of work supplied

� Rate of energy dissipation ð50Þ
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If one further simplifies the model by assuming that there is no significant loss in the

internal energy, such as for cohesionless material and dissipational energy, one will obtain

a case which will be similar to a purely kinetic model in which the kinetic energy of the

entrained material equals the energy supplied by the jet. In this case, one obtains:

d

dt
ðkinetic energyÞ ¼ Rate of work supplied by the jet ð51Þ

An application of the results from Eqs. (46)–(49) in Eq. (51) leads to a rather simple

analytical equation given by:

FCcosðu0 þ u1Þ ¼¼ 1

2
q*C2SC ð52Þ

so that

C2 ¼ 2F

q*S
cosðu0 þ u1Þ ð53Þ

When Eq. (44) is utilized in Eq. (53), we finally obtain

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

27

q
q*

gH2
c

S

� �
cosðu0 þ u1Þ

s
ð54Þ

This relationship shows that the rate of head cut migration for a given critical horizontal

thrust by the flow is inversely related to the square root of the head cut size. Conversely,

for a given head cut size migration is quadratically related to the critical flow depth.

For the sake of a qualitative evaluation, if we assume q/q* = 1/2, S/Hc = 10, and cos

(u0 +u1) = cos75j, we obtain from Eq. (54)

Cc0:044Vc ð55Þ

Eq. (55) is derived by making many simplifying assumptions and, therefore, establishes

certain scaling law with the magnitude of overland flow velocity. This finding appears to

be in confirmation with results of the set of experiments carried out in Bennett et al.

(2000). Eq. (48), however, forms a basis for testing the role played by the characteristics of

soil dynamical parameters. The surface flow (hydraulic) parameters also are represented in

Eq. (54). Eq. (55), however, is a simplification of the dynamics of head cut which,

however, retains the kinetic aspects of the system.

6. Summary

This paper describes a conceptual approach of head cut growth based on continuum

mechanical principles. These principles consist of the energy balance in the head cut

region in which the flow energy is converted into head cut growth. An energy model was
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formulated that applies to any process region where erosion by surface flow is taking

place. Of the different head cut modes that occur in nature, the one with a cohesive surface

layer on top of a cohesionless substrate was further investigated. A condition for head cut

growth was derived in which the critical flow velocity was related to the surface layer

mechanical and physical properties. This relationship appears to have applicability to cases

when incipient rilling occurs. For studying the dynamic equilibrium of head cut move-

ment, the energy principle enables us to examine the roles played by the hydrodynamic

parameters of surface flow and the soil mechanical parameters. Under simplifying

assumptions, it is seen that the steady state head cut growth velocity bears a direct

relationship with the critical surface flow velocity.

List of Symbols

A cross-sectional area of head cut of application case

C rate of head cut migration

E internal energy

Ey Young’s modulus of elasticity

Fcr critical hydraulic thrust

H water depth of flow

Hcr* critical water depth at tip of seal

Hcr critical water depth

HV energy terms other than kinetic and internal, associated with erosion processes

I moment of inertia

K kinetic energy per unit mass

K1 kinetic energy per unit width of enclosed volume of application case

M bending moment

Mu ultimate (plastic) moment

P time rate of erosion energy for detached soil

Q heat energy rate entering the process region

R rate of flow energy

S head cut depth per unit width of application case

Sc eroding surface area

Sq arbitrary surface delineating the process region

T Total kinetic energy

Ti (i = 1, 2, 3) surface traction vector

Vc critical water velocity

Vp volume of process region

W work

Xi (1,2,3) fixed coordinates

b seal width

e internal energy per unit mass

ė time rate of change of internal energy per unit mass

eij strain tensor

ėij time rate of change of strain tensor

er unit vector

fi (i= 1, 2, 3) body force vector
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g gravitational acceleration

h seal thickness

S length of seal overhang

ni outward normal vector

q total weight per unit length of seal (soil weight plus water load)
!
qi heat flux vector

q0 soil weight per unit length

r length of vector
!
r

!
r ðh; tÞ position vector

tij stress tensor

u strain energy

ui displacement vectors

u̇i time rate of change of displacement

uij velocity gradient

üi (i= 1, 2, 3) acceleration vector

c heat produced by internal heat sources

d deflection from horizontal of seal tip

x3 angular velocity

u jet flow angle with horizontal coordinate

U angle of seal deflection at the ‘‘plastic’’ hinge

h relational angle of (x1,x2)-coordinate system into the (X1,X2)-coordinate system

q fluid mass density

q* mass density of eroding material (soil +water)

ry yield stress
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