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This paper focuses on heterogeneous soil conductivities and on the impact their resolution
has on a solution of the piezometric head equation: owing to spatial variations of the conduc-
tivity, the flow properties at larger scales differ from those found for experiments performed at
smaller scales. The method of coarse graining is proposed in order to upscale the piezometric
head equation on arbitrary intermediate scales. At intermediate scales large scale fluctuations
of the conductivities are resolved, whereas small scale fluctuations are smoothed by a partialy
spatial filtering procedure. The filtering procedure is performed in Fourier space with the aid
of a low-frequency cut-off function. We derive the partially upscaled head equations. In these
equations, the impact of the small scale variability is modeled by scale dependent effective
conductivities which are determined by additional differential equations. Explicit results for
the scale dependent conductivity values are presented in lowest order perturbation theory. The
perturbation theory contributions are summed up with using a renormalisation group analy-
sis yielding explicit results for the effective conductivity in isotropic media. Therefore, the
results are also valid for highly heterogeneous media. The results are compared with numer-
ical simulations performed by Dykaar and Kitanidis (1992). The method of coarse graining
combined by a renormalisation group analysis offers a tool to derive exact and explicit expres-
sions for resolution dependent conductivity values. It is, e.g., relevant for the interpretation of
measurement data on different scales and for reduction of grid-block resolution in numerical
modeling.

Keywords: coarse graining, filtering procedures, flow, heterogeneous porous media, multi-
scale modelling

1. Introduction

Measurement results of soil properties which are spatially variable crucially depend
on the resolution scale at which they are resolved. This paper focuses on heterogeneous
soil conductivities and on the impact their resolution has on the piezometric head equa-
tion. The need to know how the head equation depends on its resolution scale become
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most apparent when constructing numerical models with coarser resolution. Upscaling
methods can be used in order to incorporate subgrid-scale information into the model
parameter estimation of a model with coarser resolution.

In many practical problems, the analysist has data consisting of local measure-
ments across the site and several field tests. At small scale, soil conductivities are, e.g.,
measured by core sampling: small unperturbed cores with a typical diameter of about
10 cm are taken and small scale flow experiments are performed on them. The mea-
surement gives local porosity and conductivity values, which typically differ from core
to core location. A heterogeneous porosity and conductivity distribution results with
a typical measurement resolution of about 10 cm. By interpretation of the data, mean
values, variances and covariances can be identified. Prominent examples are the Borden
Test site (1986) or the Cap Cod Test site (1992) where core samples were tested in a lab
permeameter and statistical properties of the conductivity were derived.

At larger scales, e.g., in-situ pumping tests are performed. Short time pumping tests
of wells provide information on the vicinity of a well (meter scale). Within these experi-
ments draw-downs and fluxes are measured and short-range conductivities are identified
via Darcy’s law. In contrast, long time pumping tests characterize the medium on a more
regional scale (scale of hundreds of meters) and a long-range or effective conductivity is
measured. These are only some examples of conductivity measurements of a soil at dif-
ferent scales. However, all experiments have in common that they average information
over a volume determined by the resolution scale of the measurement procedure. The
influence of the spatial average of the conductivity data by using different measurement
techniques has been discussed, e.g., by Gelhar [16], Journel and Huijbregts [22] or Van-
marcke [33]. A summary of conductivity data from different field sites can be found,
e.g., in [17]. Therefore, it is useful for the practioneer to have insight into how data
collected at different scales are related to each other. In the groundwater literature, spa-
tial filters are widely used to conceptually represent measurements of conductivities on
different scales, for further reference see, e.g., also [3,11,18,26]. A detailed discussion
of their work can be found in [5].

The derivation of large scale effective parameters has been done, e.g., in the frame-
work of stochastic theories. Mean piezometric heads are determined by averaging the
head equation over many realizations of different conductivity fields. The mean heads
are characterized by effective conductivity values. Approximate results are derived in
lowest order perturbation theory of the variance of the logarithm of the conductivity. For
further reference see, e.g., [7,17]. Higher order perturbation theory contributions to the
effective conductivity were, e.g., calculated by Dean et al. [8]. On the other hand, exact
expressions for the effective conductivities can been found in the work of Neuman et
al. [24]. They developed an exact nonlocal formalism for the determination of effective
conductivity values. However, for the evaluation of their expressions they have to cal-
culate them numerically in a so-called localisation approximation. Moreover, effective
conductivity values may be determined as well by volume averaging methods or ho-
mogenization theory techniques, see, e.g., [34] or [27]. In these approaches, an effective
head equation is derived. Effective conductivity values are obtained from the solution of
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an additional differential equation. In the limit of small fluctuations the results reduce to
the standard perturbation theory results cited above.

However as mentioned above, for the consistent interpretation of measurements
performed at different resolution scales, one is more interested in averaging the head
equation on intermediate scales than on very large scales. Numerical investigations have
been performed, e.g., by Hou et al. [20], Nilsen and Espendal [25], Efendiev et al. [15] or
Durlovsky [12]. Analytical investigations are only found for a radial flow configuration.
Desbarats [10] developed a semianalytical formula for an equivalent scale dependent
conductivity. Sanchez-Vila [31], Sanchez-Vila et al. [32] and Indelman et al. [21] derived
analytical expressions for the equivalent conductivity in a radially convergent flow field.
They found that it equals the arithmetic mean in the vicinity of the well but approaches
the geometric mean in the far field of the well.

This paper presents a systematic approach to derive a resolution-dependent head
equation where small scale heterogeneities up to an arbitrary length scale are filtered
out and large scale heterogeneities are still resolved. For this purpose, we choose a
method called coarse graining. Basically, it is a partial volume averaging procedure
originally developed in the context of large eddy simulation in turbulent flow, for further
reference see also [23]. The method was also applied by Dykaar and Kitanidis [13] for
the numerical determination of the effective hydraulic conductivity. Moreover, Beckie
et al. [6] have used the method for spatial filtering of the head equation. They derived
spatially filtered head equations in small perturbation assumption.

We overcome these limitations and derive spatially filtered head equations that are
exact. In general, they are nonlocal. However, for further mathematical treatment we
localise them and approximate the subscale effects by their ensemble mean. Iteration of
the filtering procedure over stepwise coarser averaging volumes allows to formulate the
coarse graining procedure in terms of a differential equation which becomes a renormal-
isation group equation.

The novelty of our results is that we present explicit results for resolution depen-
dent model parameters of the spatially filtered head equation that are free from small
perturbation assumptions.

In section 2, we introduce the flow model and explain the concept of coarse grain-
ing. It is applied to spatially filter the heterogeneous head equation in section 3. Explicit
results are derived in section 4 in lowest order perturbation theory first. We extend
our perturbation theory results to any order perturbation theory by using renormalisation
group analysis in section 5. In section 6, we present a numerical model that tests the spa-
tially filtered head equation for its physical plausibility. We conclude with a discussion.

2. The concept of coarse graining

The steady-state head distribution for single-phase, incompressible flow through a
heterogeneous medium is described by

−∇K(x)∇φ(x) = ρ(x), (1)
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where φ(x) is the pressure or piezometric head distribution, K(x) a local conductivity
field and ρ(x) represents source or sink terms. For simplicity, we choose boundaries at
infinity. However, it is possible to extend the formalism presented in this paper to more
general situations.

The hydraulic conductivity K is a spatially heterogeneous field which is modelled
as lognormally distributed in space

K(x) = K0 exp
(
f (x)

)
, (2)

where f (x) is spatially normal distributed. K0 is a hydraulic conductivity of value one
that gives K the correct dimension. We split logK into its mean value and the deviation
from that value

f (x) = f + f̃ (x). (3)

The overbar (. . .) denotes an ensemble average over the normal distribution of f (x).

By construction, the ensemble average of the fluctuating part vanishes, f̃ (x) = 0. As-

suming a stationary distribution for f (x), the correlation function w(x, x′) ≡ f̃ (x)f̃ (x′)
only depends on the distance, w(x − x′). For mathematical reasons, we choose for the
correlation function a Gaussian

w(x − x′) ≡ σ 2
f exp

(
−(x − x′)2

2l20

)
, (4)

where σ 2
f is the variance and l0 an isotropic correlation length. For anisotropically dis-

tributed logK fields, the correlations are characterized in each spatial direction by a
different correlation length li for i = 1, . . . , d and d is the spatial dimension of the flow
problem.

The head equation (1) and the statistical properties of the heterogeneous hydraulic
conductivity field are valid on a scale which is at least of the order of magnitude of a
representative pore volume for which Darcy’s law holds. In the following we will refer
to this scale as the local scale. In standard or global upscaling procedures, all hydraulic
conductivity fluctuations are averaged out and replaced by an effective hydraulic conduc-
tivity tensor. In contrast to that, the central focus of this paper is to introduce and apply
the concept of a partially spatial averaging procedure called coarse graining. Coarse
graining procedures aim at coarsening the heads to intermediate scales by averaging the
heads over so-called filter volumes of intermediate sizes. In the following, we assume
that the coarse scale is characterized by a typical length λ and demonstrate the concept
of the coarse graining on the local head field φ(x).

Definition (Coarse graining in real space). Fluctuations of φ(x) are smoothed out over
a filter volume λd around the location x by〈

φ(x)
〉
λ

≡ 1

λd

∫ +λ/2

−λ/2
ddx′φ(x + x′), (5)
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where 〈φ(x)〉λ is the coarser head distribution, d the spatial dimension and ddx an infin-
itesimal volume element.

For further mathematical treatment, we define the Fourier transform of the head
field,

φ(x) ≡
∫

ddq exp(iqx)φ(q), (6)

where ddq denotes 1/(2π)d
∫

ddq, for the sake of brevity. Using its Fourier transform
the partial volume average of the head field (5) can be written as

〈
φ(x)

〉
λ
= 1

λd

∫ +λ/2

−λ/2
ddx′

∫
ddq exp

(−iq(x + x′)
)
φ(q)

=
∫

ddq exp(−iqx)
∏
i

sin(qiλ/2)

qiλ/2
φ(q). (7)

Here qi is ith the component of the Fourier vector q. Small q-values contribute to the
integrals in (7) whereas large q-values are suppressed by the fast oscillations of the sine-
functions for large q-values. In other words, the sine-functions act as filter functions
for q-values: the larger λ the wider is the spectrum of q-values which are filtered out.
Therefore, the coarse graining procedure can be also considered as follows:

Definition (Coarse graining in Fourier space). The head field is transformed into Fourier
space, q-values larger than a cut-off value λ−1 are filtered out and the function is trans-
formed back to real space. We define this filter process in Fourier space by means of a
projection onto small wave numbers

φ(q−) ≡
{
φ(q) if qi <

1

λ
,

0 otherwise.

Thus, the Fourier transform of a local head field is composed of its projection on
small q-values and the complementary projection on large q-values,

φ(q) = φ(q−) + φ(q+). (8)

3. Coarse graining of the head equation

The equivalence of filtering in Fourier space can be employed for coarse graining
the head equation. We will give here only a brief review of the different steps of the
coarse graining method that was originally developed for large eddy-simulations in fluid
mechanics. For further reference the reader is referred to [23].
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Step 1. Fourier transformation of the head equation

−Kq2φ(q) + (iq)
∫

ddq ′K̃(q − q′) (iq′)φ(q′) = −ρ(q). (9)

Using the Green’s function formalism, the solution for Fourier transformed heads
can be written as

φ(q) = −G0(q)ρ(q)− G0(q)(iq)
∫

ddq ′K̃(q − q′)(iq′)φ(q′), (10)

where G0(q) is the Green’s function of the homogeneous head equation (with fluctua-
tions of hydraulic conductivity set to zero, K̃ = 0). It solves −Kq2G0(q) = 1 and is
therefore given by G0(q) = −1/(Kq2).

For shorter notation, we introduce the operators Lq,q ′ and Rq,q ′ by

Lq,q ′φ(q′)≡ −K q2φ(q) + (iq)
∫

ddq ′K̃(q − q′)(iq′)φ(q′), (11)

Rq,q ′φ(q′)≡ iq
∫

ddq ′K̃(q − q′)(iq′)φ(q′). (12)

The operator notation allows to write equations (9) and (10) in very compact form:

Lq,q ′φ(q′) = −ρ(q), (13)

φ(q) = −G0(q)ρ(q)− G0(q)Rq,q ′φ(q′). (14)

We assume that the inverse operator L−1
q,q ′ exists, too. It is defined by

L−1
q,q ′′Lq ′′,q ′ ≡ δq,q ′ . (15)

It implies that L−1
q,q ′ is related to the Fourier transformed Green’s function of the

full head equation by

L−1
q,q ′ = Gq,−q ′ . (16)

Note that a minus sign in the Green’s function arises. The Green’s function in real
space is the solution of the full head equation assuming Delta functions δ(x − x′) as
source terms. Transforming the governing equation into Fourier space, we get δ(q + q′)
as source terms which differ from the right-hand side of (15) by a minus sign.

Step 2. Applying the filtering procedure to the heads provides the following set of
equations

φ(q−)= −G0(q−)ρ(q−) − G0(q−)Rq−,q ′φ(q′)
= −G0(q−)ρ(q−) − G0(q−)Rq−,q ′+φ(q

′
+) − G0(q−)Rq−,q ′−φ(q

′
−), (17)

φ(q+)= −G0(q+)ρ(q+) − G0(q+)Rq+,q ′φ(q′)
= −G0(q+)ρ(q+) − G0(q+)Rq+,q ′+φ(q

′
+) − G0(q+)Rq+,q ′−φ(q

′
−). (18)
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Due to the filter the inner integration variables q′, q′′ and q′′′ are restricted to large,
respectively small wave numbers. The arguments of the functions and the operators are
also defined on the restricted wave number spectra. Both equations are coupled because
the heads on the right-hand sides still depend on long as well as on short wave number
contributions. As pointed out above, the main interest is in φ(q−) because its Fourier
back transform is the coarse grained head distribution we want to determine. To that
end, the solution for φ(q+) is inserted into the equation for φ(q−).

Step 3. Decoupling of the filtered heads. We solve the implicit set of equations (17)
and (18) by making use of the inverse operator as introduced in step 1 but with restricted
wave spectra:

φ(q+) = −L−1
q+,q ′+

ρ(q+) − L−1
q+,q ′+

Rq ′+,q ′′−φ(q
′′
−), (19)

φ(q−) = −L−1
q−,q ′−

ρ(q−) − L−1
q−,q ′−

Rq ′−,q ′′+φ(q
′′
+). (20)

The remaining step is simple. We have to insert φ(q+) into (20) and get

φ(q−) = −L−1
q−,q ′−

ρ(q−) − L−1
q−,q ′−

Rq ′−,q ′′+
(−L−1

q ′′+,q ′′′+
ρ(q′′′

+) − L−1
q ′′+,q ′′′+

Rq ′′′+ ,q ′′′′− φ(q
′′′′
− )

)
. (21)

Step 4. Mean field approximation and Localisation approximation. We rewrite (21)
into

Lq−,q ′−φ(q
′
−) = −ρ(q−) − Rq−,q ′+

(−L−1
q ′+,q ′′+

ρ(q′′
+) − L−1

q ′+,q ′′+
Rq ′′+,q ′′′−φ(q

′′′
−)

)
. (22)

By its structure, (22) looks already like the filtered head equation we are aiming
for. The left-hand side of the equation is equivalent to equation (9) with all Fourier vari-
ables restricted to small wave numbers. The large wave fluctuations show their impact
by means of the second and third terms on the right-hand side. For further mathemati-
cal treatment, we approximate the long wave fluctuations by their ensemble mean val-
ues (mean field approximation) and, therefore, the second term on the right-hand side
vanishes. This can be seen easily when expanding L−1 in a perturbation series and per-
forming the ensemble average term by term: the statistical translation invariance of the
hydraulic conductivity field requires that q + q′′ = 0 with q > λ−1 and q ′′ < λ−1 which
cannot be fulfilled simultaneously and the terms have to vanish.

The third term on the right-hand side does not vanish. Writing the term explicitly,
we find

iq−
∫

ddq ′
+ddq ′′

+K̃(q+ − q′+) iq′+G(q′+,−q′′+) iq′′+K̃(q′′+ − q−) iq−φ(q−)

≡ iq−δKeff(q−, λ) iq−φ(k−). (23)

δKeff(q−, λ) can be understood as a scale-dependent effective hydraulic conduc-
tivity tensor which is induced by small scale heterogeneities varying on typical length
scales smaller than λ. Note that the Fourier-back-transform of (23) yields a nonlocal,
resolution dependent hydraulic conductivity tensor as found as well by Neuman and
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Orr [24]. However, we simplify (23) by evaluating δKeff(q, λ) at q = 0 which corre-
sponds to localisation in the work of Neumann and Orr [24].

Step 5. Fourier backtransformation. In real space, equation (23) reads after localisation

−∇(
K + 〈

K̃(x)
〉
λ

)∇〈
φ(x)

〉
λ
+ ∇δKeff(q = 0, λ)∇〈

φ(x)
〉
λ

= 〈
ρ(x)

〉
λ
. (24)

4. Explicit results in lowest order perturbation theory for isotropic media

Explicit results for δKeff(λ) can be found in lowest order perturbation theory for
weakly heterogeneous hydraulic conductivity fields. In this approximation, the full
Green’s function (16) reduces to the Green’s function of the homogeneous head equa-
tion. In isotropic media, the effective hydraulic conductivity tensor simplifies to a di-
agonal tensor with identical entries. They are given as the solution of the following
integrals

δKeff
ij (λ) = −δijKσ 2

f

∫
ddq ′

+ exp

(
−q′2l20

2

)
q ′
iq

′
j

q′2
(2πl20)

d/2

(2π)d
. (25)

For further mathematical treatment, we relax this constraint and replace it by the
smoother cut-off function

1 − exp

(
−q′2λ2

8

)
. (26)

We choose the width of the Gaussian function such that its Gaussian Fourier back
transform has a similar width as the sharp cut-off function defined in the partial spatial
average (5). (25) with the smooth cut-off function (26) yields isotropic conductivities
values

δKeff(λ) = −Kσ 2
f

1

d

(
1 −

(
l20

l20 + λ2/4

)d/2)
(27)

for spatial dimensions d = 1, 2 or 3. Equation (27) combined with the arithmetic
mean K expanded in powers of σ 2

f produces a mean coarse grained hydraulic conduc-
tivity of

Kg

(
1 + σ 2

f

1

2
− σ 2

f

1

d

(
1 −

(
l20

l20 + λ2/4

)d/2))
. (28)

In the limit of zero coarse graining, all fluctuations of the hydraulic conductivity
are modelled explicitly and λ is zero. In this case, the mean hydraulic conductivity value
is accordingly given by the arithmetic mean or in lowest order perturbation theory by
Kg(1 + σ 2

f /2 + · · ·). The fluctuating part of the hydraulic conductivity is equivalent
to the full fluctuations, 〈K̃(x)〉λ=0 ≡ K̃(x), as in the local equation (1). In the other
limiting case of coarse graining over very large volumes, λ is much larger than the cor-
relation length l0 and the mean hydraulic conductivity has to be equivalent, e.g., in two
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Figure 1. Keff/Kg in lowest order perturbation theory for two and three spatial dimensions with σ 2
f

= 0.5.

dimensions to the geometric mean. Equation (28) is consistent with this result. The fluc-
tuating part 〈K̃(x)〉λ�l0 vanishes simply because it is equivalent to the volume average
of K̃(x) over a representative part of the medium containing many correlation lengths.
This average value is zero by definition. On intermediate scales equation (28) interpo-
lates between the arithmetic mean and the effective hydraulic conductivity value. The
full behavior of Keff(λ) can be seen in figure 1 where it is plotted against the dimension-
less quantity λ/l0.

4.1. Statistical properties of the coarse grained hydraulic conductivity fluctuations

Next, we present the statistical properties of the hydraulic conductivity field fluc-
tuating on coarser scales 〈K̃(x)〉λ. Explicitly, it is written as〈

K̃(x)
〉
λ

≡ 1

λd

∫ +λ/2

−λ/2
ddx′K̃(x + x′). (29)

Obviously, its mean value vanishes because the statistical and the spatial average

are interchangeable which leads to 〈K̃(x)〉λ = 0. The correlation function of the hy-
draulic conductivity field at coarser scales follows as〈

K̃(x)
〉
λ

〈
K̃(x)

〉
λ
≡

∫
ddqddq ′ exp(iqx + iq′x)K̃(q)K̃(−q)δ(q + q′) exp

(
−q2λ2

8

)
= σ 2

f

(
l20

l20 + λ2/4

)
exp

(
− (q − q ′)2

l20 + λ2/4

)
(30)
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which leads to a hydraulic conductivity variance on coarser scales of

σ 2
f (λ) ≡ σ 2

f

(
l20

l20 + λ2/4

)d/2

. (31)

If all hydraulic conductivity fluctuations are resolved explicitly and no coarse
graining procedure has been applied, λ is zero and the variance reduces to the small
scale variance as introduced in section 2. On the other hand, if all hydraulic conductivity
fluctuations are averaged out and replaced by an effective hydraulic conductivity tensor,
the ratio λ/l0 becomes very large and the variance very small. The variance approaches
zero in the limit of λ/l0 → ∞, which is equivalent to a global upscaling of the hy-
draulic conductivity without intermediate coarse graining. This result is consistent with
field data reviewed by Gelhar [17]. In general, three dimensionally resolved hydraulic
conductivity data show a higher variance than depth-averaged data. A similar result was
found by Stauffer [28]. He analyzed the statistical properties of conductivities averaged
over vertical profiles.

In contrast, the correlation length of the coarse grained logarithmic hydraulic con-
ductivity fluctuations is increased compared with the small scale correlation length.
From (30) the corresponding correlation length can be identified as

lλ =
(
l20 + λ2

4

)1/2

. (32)

By construction, the resolution scale of coarse grained processes is λ. Hence, all
correlation lengths have to be at least of the order of magnitude of λ.

5. Renormalization group analysis

The results of section 4 are valid for small variances of logK (lowest order per-
turbation theory). In the following section, we extend the calculation to higher order
perturbation theory by iterating the coarse graining procedure successively over small
wave number bands.

Applying one coarse graining step we found the new mean coarse grained hydraulic
conductivity value

δKeff
ij (�) =

∫
q ′,q ′′>�

ddq ′ddq ′′K̃(−q′) iq ′
iG(q′,−q′′) iq ′′

j K̃(q′′). (33)

The wave numbers q ′, q ′′ are restricted to large wave numbers > �, here written in
terms of limited integral ranges. The reason for doing so becomes obvious if we iterate
the coarse graining process over small wave number bands. We obtain

δKeff
ij (�− δ�)

= δKeff
ij (�) +

∫ q ′,q ′′<�

�−δ�<q ′,q ′′
ddq ′ddq ′′K̃(−q′) iq ′

iG(q′,−q′′,�) iq ′′
j K̃(q′′), (34)
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where G(q′,−q′′,�) is the respective Green’s function of the Fourier transformed full
head equation resulting from the former coarse graining step. Hence, (34) is still an
implicit expression which requires further simplification for an analytical treatment by
a closure procedure. A perturbation theory analysis offers one possibility and the ex-
plicit results of lowest order analysis we presented already in section 4. To improve this
analysis, a resummation of perturbation theory contributions may be performed. In gen-
eral, resummation techniques are quite problematic because they lead to a nonsystematic
summation of perturbation theory contributions and a priori it is not evident whether the
relevant contributions are taken into account. Fortunately, we can make use of exact
results for the effective hydraulic conductivity in the limit of global upscaling (coarse
graining to very large scales) in order to test the resummation procedure.

The simplest way to close the implicit expression (34) is to replace the Green’s
function by its coarse grained ensemble mean value

G(q,−q′,�) ≈ δ(q − q′)
(K + δKeff(�))q2

(35)

and to perform the ensemble average in (34) over K̃ . This approximation is called renor-
malization of the Green’s function. However, this approximation fails our test: it does
not reproduce the geometric mean for the global upscaled (effective) hydraulic con-
ductivity in isotropic media. A more detailed analysis reveals that a so-called vertex
renormalization has to be taken into account. In this approximation, the lowest order
fluctuating parts of the hydraulic conductivity are renormalized with the help of an ex-
pression which is related to the effective hydraulic conductivity. For further reference
see also [9]. Therefore, we replace the lowest order fluctuating parts of the conductivities
Kf̃ by

Kf̃

(
1 + δKeff(�)

K

)
. (36)

Inserting both renormalization approximations (35) and (36) into (34) gives

δKeff
ij (�− δ�)

= δKeff
ij (�) +

∫
�−δ�<q ′<�

ddq ′f̃ (−q′)f̃ (q′)
(K + δKeff(�)) iq ′

i iq
′
j

q′2 (37)

which can be rewritten in the limit of δ� → 0 as a differential equation

dδKeff(�)

d�
δij = −

(
1

2π

)d

�d−1
∫
q ′=�

d�w(q ′ = �)
(K + δKeff(�)) iq ′

i iq
′
j

q′2 . (38)

Here, we introduced spherical coordinates where d� is an element of the solid angle.
The integration is then performed over all angles while holding the radius fixed, q ′ = �.
It results the isotropic hydraulic conductivity
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dδKeff(�)

d�
= −

(
1

2π

)d

�d−1w(k′ = �)
(
K + δKeff(�)

)2π

d
. (39)

Equation (39) is called renormalization group equation. It can be solved analytically by
separation of variables. We perform the integration of the right-hand side of (39) for
consistency with our former results analogously as in section 4: the upper integration
limit is modelled by the smooth Gaussian function (26).

(a)

(b)

Figure 2. Keff/Kg in two (a) and three (b) spatial dimensions for different σ 2
f .
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Finally, we obtain

ln

(
K + δKeff(�)

Kf

)
= −1

d
σ 2
f

(
1 −

(
l20

l20 + λ2/4

)d/2)
(40)

or after exponentiation

Keff(λ) = K exp

(
−1

d
σ 2
f

(
1 −

(
l20

l20 + λ2/4

)d/2))
(41)

which is in lowest order perturbation theory equivalent to (28). The results are plotted in
figure 2 for the cases of two and three spatial dimensions. We postpone the discussion
of the results to a later section of the paper. However, the novelty of our results is that
we give not only the spatially filtered head equation in its form (24) but also quantify the
impact of subscale heteroegneities by the partially effective conductivity explicitly.

6. The numerical model

We study the quality of the results we presented in the last section in a two-
dimensional numerical simulation. The aim of this investigation is to test whether the
coarse-grained head equation (24) preserves essential physical features of the heteroge-
neous flow behavior.

It is evident that smoothing the head over the volume λd is equivalent to loosing
information about the system: on coarser resolution scales, hydraulic conductivity con-
trasts tend to be smaller, head gradients are smoothed out and flow lines are straightened.
However, the total amount of water flowing through the system has to be the same due
to mass conservation of the fluid.

We generated a heterogeneous hydraulic conductivity field by using the numerical
generator FGEN92 (for further reference see [29]). This field is considered in the fol-
lowing as our reference field. It represents the hydraulic conductivity field on the finest
resolution scale. The hydraulic conductivity field is defined on a uniform rectangular
grid of 256 by 256 quadratic cells. The uniform grid spacing is �x = �y = 0.1 m.
Therefore, the whole spatial domain is 25.6 · 25.6 m2. The hydraulic conductivity field
is log-normally distributed in space as assumed in (2) and characterized by the follow-
ing statistical properties: the variance of the logK is σ 2

f = 1. The geometric mean
of the hydraulic conductivity is chosen for simplicity as Kg = 1 m/d. The hydraulic
conductivity values are spatially correlated and the correlation function is Gaussian as
proposed in section 2. The correlation lengths are isotropic and given by l0 = 3 m.
In other words, one correlation length of the heterogeneous field is resolved by 30 grid
cells. The whole domain contains 10 correlation lengths of the heterogeneous medium
in each spatial direction. The heterogeneous hydraulic conductivity field is plotted in
figure 3 together with the equivalent homogeneous hydraulic conductivity value that re-
sults from global upscaling in the limit λ/l0 → ∞. The latter is given by the geometric
mean, formula (28).
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Figure 3. Heterogeneous fine-scale and equivalent homogeneous log-hydraulic conductivity field.

The local head equation (1) is solved by using the software MODFLOW (USGS)
in the user shell PMWIN 5.1 by W.H. Chaing and W. Kinzelbach (1991–1999). For the
flow simulation, we choose the following parameters: the rectangular domain is bounded
by constant head boundaries at the inflow and outflow of the domain (located at the
left and right boundaries). The mean head gradient aligned in x-direction is ≈−10−2

with water flowing from the left to right. The numerical solver uses a preconditioned
conjugate-gradient package with a modified incomplete Cholesky preconditioner.

The order of magnitude of the total water balance can be easily estimated. The
whole domain contains 10 correlation lengths of the heterogeneous medium in each
spatial direction. Therefore, the geometric mean approximates the equivalent homo-
geneous hydraulic conductivity reasonably well. With a mean head difference of
�φ = 2.5 · 10−3 m over the whole domain and a geometric mean of Kg = 1 m/d,
the total flow in m2/d follows as

Q = Kg�φ = 2.5 · 10−3 m2/d. (42)

Calculating the flux through the block numerically, we find the value of Q = 2.44×
10−3 m2/d which fits the theoretical value pretty well.

Moreover, we generate the coarser hydraulic conductivity fields. We explain the
procedure in detail for one coarsening step. The next coarsening steps are analogous.
The first slightly coarser grid has 128 by 128 cells such that 2 by 2 cells of the fine
grid form one coarser grid cell. The mean hydraulic conductivity value on coarser grid
resolution is given by formula (28) assuming a ratio of λ/l0 = 2�x/(30�x) = 2/30.
The simplest way to obtain the values 〈K̃(x)〉λ is to average K̃(x) arithmetically over the
2 by 2 cells. We refer to this averaging procedure as block-averaging. In total, the coarser
hydraulic conductivity field results as the sum of the two parts Keff(λ) + 〈K̃(x)〉λ. We
subdivide each coarser grid cell in 2 by 2 subcells with identical hydraulic conductivity
values which establishes again the 256 by 256 grid. For the next coarsening steps, we
iterate the procedure until a single homogeneously distributed hydraulic conductivity
value results. To that end, we have 7 coarsening steps to perform and get models with
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Figure 4. Coarse-grained hydraulic conductivity fields: block-averaged hydraulic conductivity fields in
the left column (filter over 2 × 2, 8 × 8, 32 × 32, 64 × 64 cells) and moving-frame averaged hydraulic

conductivity fields in the right column (filter over 34 × 34, 9 × 9, 27 × 27, 81 × 81 cells).
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the resolution of 2i by 2i cells with i = 1, . . . , 8. Some of the coarse-grained hydraulic
conductivity fields resulting from block-averaging are plotted on the left-hand side of
figure 4.

After these preparative steps, the head equation is solved for each of the 7 coarser
hydraulic conductivity fields. All numerical simulations are performed on the 256 by
256 grid providing comparable numerical results as far as possible. Moreover, the total
flux is measured. The results are plotted in figure 4. As we can see the total flux values
vary with a standard deviation of about 13% around the theoretical value.

The result can be improved by using an averaging procedure that is more related
to the smoothing process introduced in section 3, equation (5). We call it moving-frame
average. For this purpose, we slightly decrease the domain size to 243 by 243 grid cells.
The moving-frame average over K̃(x) at location x follows as the arithmetic mean over
the hydraulic conductivity values of all 8 next-neighbor cells plus the cell in the center
(average over 3 by 3 cells). The average is performed at each location of the fine scale
grid. It results in a coarser hydraulic conductivity field on 243 by 243 grid cells. Note
that the average is performed on each grid cell individually. Therefore, the hydraulic
conductivity field is smoothed but shows still small variations within the coarser grid
block of the 9 cells. The procedure is iterated and 5 coarser hydraulic conductivity fields
result with the resolution of 3i by 3i for i = 1, . . . , 5. Again, the head equation is solved
on the coarser hydraulic conductivity fields and the total water flux is measured. Due
to the small changes in the total domain size, the mean head difference is also smaller
and the total water flux is approximately Q ≈ 2.4 · 10−3 m2/d. The total water balances
are plotted for all numerical simulations in figure 5. In order to gain comparable results
for the 256 × 256 realization and the 243 × 243 realization the total water flux of the
243 × 243 realization are scaled by the factor 2.5/2.4.

In general, the total water balances are better for moving-frame averaged hydraulic
conductivity fields than for block-averaged hydraulic conductivity fields. They vary
within a range of only 8%. Summarized, our numerical simulation demonstrated that
the total water flux through the overall domain is conserved by the spatially filtered flow
model within a tolerable standard deviation.

We compare our exact results with different ad-hoc averaging methods: the arith-
metic mean over blocks, the geometric mean over blocks and the harmonic mean over
blocks. For the arithemtic mean, we simply average the hydraulic conductivity over
blocks of (2×2), (4×4), (8×8), (16×16), (32×32), (64×64) and (128×128) cells.
For the harmonic mean, we average the inverse hydraulic conductivity over the same
blocks and take the inverse afterwards. For the geometric mean, we perform the aver-
age blockwise over the logarithm of the hydraulic conductivity and exponentiate it. The
comparison of all averaging methods is plotted in figure 6. It demonstrates that the best
averaging method in a two-dimensional isotropic medium is the geometric mean over
blocks and that our theoreticaly predicted effective hydraulic conductivities are in good
agreement with this averaging method. However, our theoretical formalism also holds
for three-dimensional domains. In a three-dimensional domain, the geometric mean fails
and no ad-hoc averaging rule is known. It implies that our formalism is more general.
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Figure 5. Total water budget for the different spatial averaging procedures at different coarse graining levels.

Figure 6. Analytical results for Keff(λ)/Keff(λ = ∞) (solid lines) plotted against the ratio λ/l in two and
three spatial dimensions, compared with numerical results of [13].
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Moreover, it can extended to anisotropic media. In anisotropic media, no ad-hoc averag-
ing rules are known either.

7. Discussion and conclusions

Using a coarse graining method we derived explicit results for the head equation
on intermediate scales: small scale fluctuations in the heterogeneous conductivities are
averaged out up to an arbitrary intermediate scale, whereas large scale fluctuations are
still resolved by the coarse-grained model

−∇(
K + 〈

K̃(x)
〉
λ

)∇〈
φ(x)

〉
λ
+ ∇δKeff(λ)∇〈

φ(x)
〉
λ

= 〈
ρ(x)

〉
λ
, (43)

where 〈φ(x)〉λ is the coarser head and K(x) + 〈K̃(x)〉λ ≡ 〈K(x)〉λ is the coarser hy-
draulic conductivity field. Small scale fluctuations of the hydraulic conductivity field
are averaged out, yet they show an impact on the coarse grained hydraulic conductiv-
ity represented by the additional term δKeff(λ). We calculated δKeff(λ) in lowest order
perturbation theory and extended our results to higher order contributions by using a
resummation technique (renormalisation group analysis). For isotropic media, we found
the very compact result

Keff(λ) = K exp

(
−1

d
σ 2
f

(
1 −

(
l20

l20 + λ2/4

)d/2))
. (44)

Expression (44) models the scale-dependent transition from the arithmetic mean in case
of no coarse graining to the effective conductivity for global upscaling. We tested our
analytical result (44) also by numerical evaluation of (33) and found an excellent agree-
ment of both results. For further reference, the reader is referred to [4].

The analytical results are comparable to results found by Dykaar and Kitani-
dis [13]. They calculated effective hydraulic conductivity values using a numerical spec-
tral approach. In this approach, the effective hydraulic conductivity values are deter-
mined by a volume average over auxiliary functions which are defined as solutions of ad-
ditional differential equations. Transforming their expressions for the effective hydraulic
conductivity values into Fourier space equals our expression (23). However, Dykaar and
Kitanidis [13] evaluate their expressions numerically using a spectral approach, whereas
we obtain explicit results for the effective hydraulic conductivity value using a pertur-
bation theory approach combined with a renormalization group analysis. The results
which can be compared best are the numerical results plotted in figure 1 in [13] and our
explicit results for a small variance of σ 2

f = 0.75. For comparison, both results are plot-
ted in figure 6. Numerical and explicit results fit well. Moreover, Dykaar and Kitanidis
[13] also find in three dimensions the asymptotic effective hydraulic conductivity value
of Kg exp(σ 2

f /6) for isotropic media. Again, they show numerical results whereas we
present an analytical derivation of this result.

The results presented here are relevant with regard to different aspects in modeling
ground water flow in heterogeneous formations.
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First, the results can be used in order to separate spatialy variable hydraulic conduc-
tivities into large scale heterogeneous contributions modeled explicitly and small scale
hydraulic conducitivities which are taken into account by a partialy effective hydraulic
conductivity δKeff(λ). Modelling all spatial variability in detail implies a high com-
putional effort which can even exceed the computational power of modern computers.
Hence, a reduction of the grid block resolution, which is desired for numerical modelling
purposes, can be performed without a big loss of information. The partial differential
equation for the filtered head distribution, (43), can easily be discretized on a coarser
grid with the corresponding hydraulic conductivity field 〈K(x)〉λ. Moreover, the filtered
head equation can be also used to reduce the computational effort solving the fine scale
model in the framework of multi-grid methods. The idea is to improve the efficiency
of multi-grid methods by a subtle choice of the coarse grid operators. It is applied in
algebraic multi-level methods which show robustness and good convergence.

Second, taking into account small scale variabilities by coarse graining, interme-
diate scale variabilities can be modelled deterministically. The resolved-scale hydraulic
conductivity field 〈K(x)〉λ can be estimated from local field tests. One could krige, e.g.,
the local field tests to yield a best estimate of the resolved-scale hydraulic conductivity.
The best estimate tends to smooth the data. However, using the covariances of the kriged
data we can account for the unobserved subscale variability. To that end, the covariances
of the kriged data are to be used in (25) and in the renormalization group equation (39)
instead of the filtered covariances of the unconditioned hydraulic conductivity field. Al-
ternatively, one can proceed also in the following simpler way. The coarse-graining
scale λ can be determined from the distance between the local field tests. Knowing λ,
the subscale correlation length l0 and the subscale variance σ 2

f can be estimated using
(32) and (31). Hence, all parameters are known in order to express δKeff(λ) and there-
fore to establish the model (43) explicitly.

Moreover, coarse graining provides a method to interprete measurement results
obtained at different length scales or with a different spatial resolution. The data can be
treated in form of a systematic post-processing. The data are transformed to a common
scale and the information can be taken into account by a numerical model consistently.
This point is also emphasized by Beckie [5] in a recent paper. He presents a comparison
of methods for support volume determination. The filtering procedure used in the coarse
graining procedure is one member of the family of spatial filtering concepts he proposes
in equation (1).
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