= GEOCHEMISTRY =

New Data on Geochemistry of the Oldest (2.95–3.05 Ga) Andesite Association in Eastern Fennoscandia

S. A. Svetov

Presented by Academician V.A. Koroteev July 5, 2002

Received July 29, 2002

The paper presents results of geochemical study of the oldest (2.95–3.05 Ga) and esite association of the Chalka volcanic structure, which is a member of the Archean Vedlozero–Segozero greenstone belt located in the southeastern part of the Fennoscandian Shield. The Vedlozero–Segozero greenstone belt extends longitudinally over about 300 km (width 50–60 km) and includes several local greenstone structures (Hautavaara, Koikary, Palasel'ga, Semch, Sovdozero, Oster, and others) [1].

The greenstone belt consists of komatiite–basalt associations (2.95–3.05 Ga) and volcanic andesitic–dacitic rocks of two age ranges (2.95–3.05 and 2.85–2.90 Ga) [2].

Based on facies-formational analysis, ancient andesite associations of the Hautavaara make up a series of central-type paleovolcanoes (Nyal'mozero, Ignoila, Hautavaara, and Chalka) formed in a shallow marine environment [3]. The U–Pb zircon dating yielded an age of 2995 ± 20 Ma for subvolcanic andesidacite from the Ignoila neck [4], 3000 ± 40 Ma for subvolcanic andesites from the Palasel'ga structure, and 3020 ± 10 Ma for subvolcanic stock from the Oster structure [5].

The most complete section of the oldest basaltic andesite–andesite–dacite association crops out in the Chalka paleovolcanic zone in the northern part of the Hautavaara structure [6, 7]. Volcanic structures are preserved in the studied rocks owing to metamorphism of the epidote–amphibolite facies (andalusite–sillimanite type).

The vent zone of the Chalka paleovolcano consists of two necks, which are rimmed by boulder and agglomerate tuffs of the facies of explosive eruptions and agglomerate flows, and lenticular intercalations of flows of coarse pillow lava, clastolava, and massive

Pushkinskaya ul. 11, Petrozavodsk, 185610 Karelia, Russia

lava. The latter is characterized by lumpy and amygdaloidal structures, as well as the presence of pillow breccia and various (boulder, agglomerate, and lapilli) tuffs. The lenticular beds are from 15 to 50–70 m thick and 500–700 m long.

The northern neck consists of microporphyritic andesites in the central part, coarse-porphyritic and glomeroporphyritic andesites in the marginal parts, and agglomeratic andesites at the southern margin. The coarse-porphyritic andesidacites grade into clastolavas and pillow lavas.

The southern neck of massive fine-grained andesites is confined to tuffs. The vent zone includes numerous dikes of andesites, dacites, and less common rhyolites and diorites.

With increasing distance from the vent zone, lavas become more homogeneous and acid. Massive and amygdaloidal varieties, which prevail in the distal zone, intercalate with lapilli and psammitic tuffs. The lava flows are from a few meters to 40–60 m thick, where the tuff interbeds are 0.5–1.5 m thick.

The total thickness of the reconstructed section of the Chalka paleovolcano is 2.5 km. The facies composition of eruption products suggests that this structure is a polygenic stratovolcano with nearly equal proportions of lavas and tuffs.

In order to carry out precision geochemical study, we took the least altered samples of different facies from the entire section of the paleovolcano. The major elements were analyzed by the XRF method on a VRA-33 analyzer at the Geological Institute, Karelian Research Center. The measurement error was <3% for elements with a concentration of >0.5 wt % and 5% for elements with a concentration of <0.5 wt %. Trace and rare earth elements were analyzed by the ICP-MS method in the Analytical Laboratory of the Institute of Geology and Geochemistry, Ural Division, Russian Academy of Sciences. The measurement error was less than 2%. Classification diagrams presented in this work include previously published data on Chalka paleovolcano (80 analyses) and Ignoila paleovolcano (140 analyses) [3, 7].

Institute of Geology, Karelian Research Center, Russian Academy of Sciences,

Fig. 1. $(Na_2O + K_2O)$ vs. SiO₂ plot for rocks of the oldest andesite association of the Vedlozero–Segozero greenstone belt. (1) Massive lava, (2) tuff, (3) subvolcanic adakite. Fields: (I) volcanic and subvolcanic rocks of the Chalka paleovolcano [3, 7], (II) volcanic and subvolcanic rocks of the Ignoila paleovolcano [3, 7]. (B) Basalt, (BA) basaltic andesite, (A) andesite, (D) dacite, (RD) rhyodacite, (R) rhyolite.

In terms of SiO₂ and $(Na_2O + K_2O)$ contents, lavas and tuffs of the Chalka paleovolcano can be classified as basaltic andesites, andesites, and less common rhyodacites of moderate alkalinity (table, Fig. 1). The rocks are most differentiated (from basalts to rhyolites) in the Ignoila structure. Volcanic rocks are characterized by the predominance of Na over K, which is typical of the island-arc andesite series [8]. They exhibit high Cr and Ni contents in primary melts and high Co, Zr, and Y contents in late differentiates.

The Sr/Y (<12), Ce/Nb (<4.5), and Th/Nb (<0.72) ratios in Chalka volcanic rocks are close to those of

island arc-series. The lavas show LREE-rich patterns $((\text{La/Sm})_n = 1.67 \pm 0.98)$ with nearly flat HREE patterns $((\text{Gd/Yb})_n = 1.26 \pm 0.14, (\text{Ce/Yb})_n = 2.75 \pm 1.69)$. The tuffs are also characterized by a similar REE distribution, but the background REE content is higher (Fig. 2). The Eu anomaly is insignificant.

The PM-normalized [9] spidergrams for volcanic rocks and tuffs of the Chalka paleovolcano are similar to those for the basalt–andesite–dacite–rhyolite series of the Archean Kamennoe Ozero structure in eastern Fennoscandia [10] and the Kuril–Kamchatka island arc [11].

Subvolcanic rocks of the Chalka paleovolcano belong to the adakite series and differ from calc-alkaline dacites by very high contents of the following elements (ppm): Ba (470), Sr (480), Zr (218), and Cs (7.28). Contents of HREE and other elements are low (ppm, unless otherwise stated): MgO (1.7–1.9 wt %), Ni (200), Co (10), V (63–66), Nb (4.8–5.2), Y (9–11), Sc (5-6), and Ta (0.25-0.35) (table). The studied subvolcanic rocks correlate with adakites from the Circum-Pacific ocean-continent transitional zones of Kamchatka, Japan, Ecuador, and Costa Rica [12]. These adakites are characterized by the following geochemical features: $SiO_2 > 56$ wt %; $3.5 < Na_2O < 7.5\%$; high Ba and Sr contents; and low Ni, Y, Nb, Ta, and HREE contents. In the Sr/Y-Y and $(La/Yb)_n$ -Yb_n diagrams (Fig. 3), data points of subvolcanic rocks are plotted in the field of typical adakite series (near adakites of the Southeast Japanese volcanic arc). Data points of dikes in Ignoila and Hautavaara taken from the previous works also belong to the adakite series. As compared to

Fig. 2. PM-normalized [9] spidergram for andesite association of the Chalka paleovolcano. (1) Massive lava; (2) tuff; (3) adakite; (4) average composition of the basalt–andesite–dacite association of the Kamennoe Ozero structure [10]; (5) average adakite from Cook Island [12].

ent	103-5	101-1	C556-1	111-3	104-1	104-5	101-2	110-8	102-2	105-1	103-2	105-7
pone	Island-arc basaltic andesite and andesite									Adakite		
Com	М	М	М	MP	PT	ATF	ATF	ATF	РТ	PT	D	D
SiO ₂	58.78	58.04	60.76	53.16	59.94	54.14	57.40	63.80	55.32	56.32	65.66	65.78
TiO ₂	0.45	0.76	0.87	0.83	0.64	1.82	0.86	1.40	0.99	0.88	0.74	0.63
Al_2O_3	14.83	15.00	16.02	18.31	15.26	15.10	16.64	15.72	15.22	13.87	14.26	16.37
Fe_2O_3	3.44	1.73	0.81	2.33	1.56	3.52	1.41	1.76	1.36	2.08	2.07	2.52
FeO	4.46	7.62	6.55	7.71	4.88	4.74	6.11	2.72	9.30	7.84	3.88	1.87
MnO	0.140	0.200	0.130	0.170	0.14	0.320	0.130	0.180	0.300	0.366	0.070	0.053
MgO	4.96	3.88	3.27	4.00	4.94	3.61	4.77	1.17	6.55	5.23	1.76	1.90
CaO	5.32	6.17	3.58	7.29	7.86	11.20	6.17	5.88	4.06	9.55	4.76	4.14
Na ₂ O	4.66	3.27	2.23	1.55	3.02	2.56	2.56	3.71	1.28	0.51	3.86	4.48
$\tilde{K_2O}$	1.48	0.98	1.50	1.48	0.65	1.30	2.00	1.80	2.41	0.39	1.72	1.30
H ₂ O	0.11	0.09	0.26	0.13	0.09	0.10	0.08	n.d.	0.06	0.08	0.11	0.11
P.p.p.	1.23	1.96	3.83	2.86	1.15	1.24	1.62	1.28	2.85	2.30	0.72	0.66
Total	99.86	99.70	99.81	99.82	100.13	99.93	99.75	99.42	99.70	99.70	99.62	99.81
$\frac{1000}{Cr}$	302	272	380	106	236	180	5/1	165	610	614	202	201
CI Ni	157	150	112	130	250	86	18/	36	540	363	202	201
Co	25 /	22.2	195	20.1	582	237	30.5	15.2	949 81.0	15 2	00	0.6
V V	140	121	10.5	29.1	188	120	29.5	13.2	01.9 252	205	9.9	9.0
v Dh	7.05	7 20	6 5 5	11.62	776	7 00	2.52	0.85	2.02	205	00	24.60
FU Dh	11.62	1.30	0.55	55.04	20.61	1.00	3.39	9.05	5.02 8.02	9.05	61.57	42 27
KU Do	170.62	9.92	245.91	212.05	20.01	43.32	40.37	32.20	8.02 69.27	70.12	01.37	45.57
Da Sr	179.05	200.87	226 16	218.00	190.01	260.04	140.00	295 57	26.51	79.12	470.91	447.77
SI Nh	273.40	299.87	230.40	218.99	238.32	405.85	146.65	202.27	0747	2/0.00	4/2.21	480.92
NU 7.	9.302	0.149	125 72	0.324	0.407	190 51	0.990	100 00	9.747	120.09	219.25	4.770
Zľ	137.34	133.51	155.75	165.55	140.17	160.51	131.73	100.99	1/3./0	129.08	218.55	101.90
I Th	27.00	24.82	19.02	24.98	2 806	10.08	25.34	21.50	49.09	20.11	8.90 7.940	11.09
	3.333	2.995	2 2 2 1	0.280	2.890	0.092	2.337	0.98/	22 215	2.273	16 904	4.238
La	10.057	3.390	2.331	28 470	21.415	50.221	9.465	20.710	40.402	10.955	10.894	42 272
Ce D	28.320	12.799	/.115	38.479	4/.1/5	59.220	25.400	59.554	49.402	20.409	35.048	42.575
Pr NJ	3.234	1.010	0.861	4.849	5.435	0.10/	2.498	0.227	0.995	3.240	3.600	4.702
Na	12.834	8.391	5.//1	17.819	21.802	29.080	11.8//	24.201	50.5/1	15.550	15.442	21.942
Sm E	3.30/	2.726	2.675	3.8/3	5.375	5.399	3.349	5.019	5.803	3.530	2.807	4.326
Eu	0.903	0.835	0.722	1.155	1.235	1.338	0.740	1.025	1.817	0.970	0.821	0.975
Ga	3.641	3.006	2.601	3.959	5.330	3.5//	3.990	4.389	0.602	3.352	1./68	2.922
10 Dec	0.051	0.595	0.405	0.019	0.910	0.548			0.908		0.302	0.438
Dy	4.066	4.128	3.128	3.901	5.100	2.884	4.844	3.444	1.1//	3.047	1.521	2.117
H0 E	0.902	0.931	0.706	0.850	1.504	0.650	1.2//	0.866	1.468	0.812	0.349	0.433
Er	2.445	2.109	1./32	2.385	4.208	1.406	3.498	2.362	3.772	2.275	0.841	1.013
Im	0.374	0.313	0.259	0.374	0.533	0.186	0.439	0.264	0.624	0.290	0.095	0.122
Yb	2.355	2.104	1.769	2.202	4.440	1.381	3.528	2.099	3.541	2.201	0./13	0.868
	0.341	0.261	0.235	0.332	0.663		0.515		0.539	0.320	0.090	0.112
U	0.732	0.654	0.898	1.3/1	0.605	1.465	0.586	1.313	0.707	0.431	1.207	1.093
Ga	15.55	1/.54	15.20	27.25	17.57	19.57	14.03	17.36	15.97	15.70	18.06	19.59
50	21.04	19.14	1/.11	24.22	31.07	14.42	37.56	15.42	52.57	24.77	0.58	5.19
HI	3.655	5.417	3.291	4.880	2.797	3.991	3.051	4.162	4.491	2.864	4.476	3.809
Ta C	0.503	0.536	0.414	0.528	0.440	0.395	0.395	0.520	0.527	0.381	0.283	0.340
Cs D	1.54	0.81	0.87	2.79	1.66	3.26	4.27	2.53	0.76	0.57	7.28	2.90
Ве	1.01	0.87	0.85	1.48	1.16	1.84	0.64	1.21	1.17	0.89	1.76	1.44

Chemical composition of rocks of the andesite association in the Chalka paleovolcanic zone (oxides are given in wt %; others, in ppm)

Notes: Structural varieties: (M) massive lava, (PC) pillow core, (MP) massive porphyric, (ATF) agglomerate tuff fragment, (PT) psammitic tuff, (D) subvolcanic rock. (n.d.) Not detected.

Fig. 3. (a) Sr/Y vs. Y and (b) $(La/Yb)_n$ vs. Yb_n plots for andesite association of the Chalka paleovolcano. (1) Massive lava; (2) tuff, (3) adakite. Fields: (I) typical adakites [13], (II) adakites of southeastern Japan [13], (III) island-arc andesite–dacite–rhyolite association, (IV) subvolcanic rocks of the Hautavaara paleovolcano [3, 7], (V) subvolcanic rocks of the Ignoila paleovolcano [3, 7].

present-day adakites, adakites of the Chalka paleovolcano are enriched in Cr (up to 200 ppm).

At present, adakites are known in many areas of Archean greenstone belts, such as Lumbi Lake and Red Lake (2.9-3.0 Ga) [13] and Birch Uchi $(2739 \pm 2 \text{ Ma})$ [14] in the northern Superior Craton (Canada), upper BADR association $(2875 \pm 2 \text{ Ma})$ in the Kamennoe Ozero structure (eastern Fennoscandia), and some others [10].

Based on the lithology, cross section, and geochemical characteristics, differentiated basaltic andesite– andesite–dacite–rhyodacite series and subvolcanic adakitic rocks of the Chalka structure are relicts of the oldest volcanic arc in eastern Fennoscandia. The development of this arc (3.05–2.85 Ga ago) resulted in the formation of the Vedlozero–Segozero greenstone belt.

ACKNOWLEDGMENTS

We are grateful to I.V. Semenov (Institute of Geology and Geochemistry, Ural Division, Russian Academy of Sciences) for support of investigations, Yu.A. Ronkin for analytical works, and A.I. Svetova (Institute of Geology, Karelian Scientific Center, Russian Academy of Sciences) for help in field study of objects and discussion of data.

This study was supported by the Program "Archean Magmatic Systems of Ocean–Continent Transitional Zones in Fennoscandia" (Institute of Geology, Karelian Scientific Center) and the Russian Foundation for Basic Research, project nos. 01-05-64228 and 02-05-97507.

REFERENCES

1. Svetov, S.A., Komatiit-toleitovye assotsiatsii Vedlozersko-Segozerskogo zelenokamennogo poyasa Tsentral'noi Karelii (Komatiite–Tholeiite Associations of the Vedlozero–Segozero Greenstone Belt), Petrozavodsk: Karel. Nauch. Tsentr Ross. Akad. Nauk, 1997.

- 2. Svetov, S.A., Svetova, A.I., and Huhma, H., *Geochem. Int.*, 2001, vol. 39, Suppl. 1, pp. s24–s38.
- Svetova, A.I., Arkheiskii vulkanizm Vedlozersko-Segozerskogo zelenokamennogo poyasa Karelii (Archean Volcanism of the Vedlozero–Segozero Greenstone Belt), Petrozavodsk: Karel. Nauchn. Tsentr Ross. Akad. Nauk, 1988.
- 4. Sergeev, S.A., Geology and Isotope Geochronology of Archean Granite–Greenstone Complexes in Central and Southeastern Karelia, *Extended Abstract of PhD.* (*Geol.–Miner.*) Dissertation, Leningrad, 1989.
- Lobikov, A.F., in *Problemy izotopnogo datirovaniya* protsessov vulkanizma i osadkoobrazovaniya (Problems of the Isotope Dating of Volcanism and Sedimentation), Kiev, 1982, pp. 90–91.
- Vulkanizm arkheiskikh zelenokamennykh poyasov Karelii (Volcanism in Archean Greenstone Belts of Karelia), Sokolov, V.A., Ed., Leningrad: Nauka, 1981.
- 7. Stratigrafiya dokembriya Karelii: Opornye razrezy verkhnearkheiskikh otlozhenii (The Precambrian Stratigraphy in Karelia), Rybakov, S.I., Ed., Petrozavodsk: Karel. Nauchn. Tsentr Ross. Akad. Nauk, 1992.
- 8. Bogatikov, O.A. and Tsvetkov, A.A., *Magmaticheskaya* evolyutsiya ostrovnykh dug (Magmatic Evolution of Island Arcs), Moscow: Nauka, 1988.
- Sun, S.S. and McDonough, W.F., Geol. Soc. Spec. Publ., 1989, vol. 42, pp. 313–345.
- Puchtel, I.S., Hofmann, A.W., Amelin, Yu.V., *et al.*, *Geochim. Cosmochim. Acta*, 1999, vol. 63, pp. 3579– 3595.
- 11. Kepezhinskas, P., McDermott, F., Defant, M.J., et al., Geochim. Cosmochim. Acta, 1997, vol. 3, pp. 577–600.
- 12. Matrin, H., Lithos, 1999, vol. 46, pp. 411-429.
- 13. Hollings, P., Wyman, D., and Kerrich, R., *Lithos*, 1999, vol. 46, pp. 137–161.
- 14. Hollings, P. and Kerrich, R., *Contrib. Mineral. Petrol.*, 2000, vol. 139, pp. 208–226.

DOKLADY EARTH SCIENCES Vol. 389 No. 2 2003