= ГЕОЛОГИЯ =

УДК 552.16

ГИПЕРСТЕН В АССОЦИАЦИИ С СИЛЛИМАНИТОМ И КВАРЦЕМ КАК ИНДИКАТОР УСЛОВИЙ МЕТАМОРФИЗМА

© 2003 г. К.К.Подлесский

Представлено академиком А. А. Маракушевым 03.09.2002 г.

Поступило 10.09.2002 г.

Ассоциация гиперстена с силлиманитом издавна рассматривается петрологами как признак глубинного формирования содержащих ее гранулитов и даже дала название соответствущей метаморфической фации [5], а повышенное содержание Al_2O_3 в ортопироксене (>7–8 мас. %) считается индикатором так называемого сверхвысокотемпературного метаморфизма (900-1100°C [10]). Согласование термодинамических свойств минералов постоянного состава и конечных членов твердых растворов со свойствами смешения в системе FeO-MgO-Al₂O₃-SiO₂ (FMAS), проведенное в работах [8, 9, 11, 15], дает возможность уточнить положение границ устойчивости этого парагенезиса и характер влияния температуры на глиноземистость гиперстена.

Если не учитывать реакций с участием сапфирина, которые будут рассмотрены чуть позже, в краевой системе $MgO-Al_2O_3-SiO_2$ (MAS) область устойчивости ассоциации Opx + Sil + Qtz ограничивается реакциями^{*}

$$Prp + Qtz = Opx + Sil(Ky)$$
 (I)

верхний предел по давлению и

$$Opx + Sil(Ky) + Qtz = Crd$$
 (II)

нижний предел (рис. 1). В широкой полосе *PT*-условий между этими реакциями глиноземистость ортопироксена регулируется реакцией

$$\mathrm{Al}_{2}\mathrm{O}_{3}^{\mathrm{Opx}} + \mathrm{SiO}_{2}^{\mathrm{Qtz}} = \mathrm{Al}_{2}\mathrm{SiO}_{5}^{\mathrm{Sil}}, \qquad (\mathrm{A})$$

если пользоваться моделями твердого раствора ортопироксена [8, 9], или реакцией

$$MgAl_2SiO_6^{Opx} + SiO_2^{Qtz} = Mg_2SiO_6^{Opx} + Al_2SiO_5^{Sil} (B)$$

Институт экспериментальной минералогии Российской Академии наук, Черноголовка Московской обл. для модели [11, 15]. Соответствующие изоплеты $N_{\rm OK}$ на *PT*-диаграмме имеют весьма крутой наклон, что свидетельствует о зависимости глиноземистости гиперстена в парагенезисе с силлиманитом и кварцем главным образом от температуры. Хорошее разрешение изоплет демонстрирует возможность использования реакции (A) или (B) в качестве геотермометра.

В системе FMAS нижняя по давлению граница устойчивости ассоциации Opx + Sil + Qtz определяется реакцией

$$Opx + Sil + Qtz = Grt + Crd$$
 (III)

при относительно низкой температуре и реакцией

$$Opx + Sil = Spl + Crd + Qtz$$
 (IV)

в высокотемпературной области. В относительно низкотемпературных условиях в отсутствие кварца устойчивость Орх + Sil определяется реакцией

$$Opx + Sil = Grt + Spl + Crd.$$
 (V)

Рис. 1. Фазовые отношения гиперстен-силлиманитовых ассоциаций в системе FMAS, рассчитанные по [9] без учета реакций с сапфирином. Здесь и далее реакции пронумерованы, как в тексте, и обозначены жирными линиями. Изоплеты для Grt + Opx + Sil + Qtz – сплошные тонкие линии, значения $N_{\rm OK}$ заключены в ромб, $N_{\rm Mg}$ – необведенные; Crd + Opx + Sil + Qtz – $N_{\rm OK}$ в овале; Spl + Opx + Sil + Qtz – NOK в треугольнике. Тонкие точечные линии – изоплеты $N_{\rm OK}$ (в квадрате) для Opx + Sil + Qtz в MAS.

⁶ Обозначим минералов и компонентов твердых растворов, как в работах [6, 9, 13, 14]. Параметры состава Охр: магнезиальность $N_{Mg} = 100 Mg/(Mg + Fe)$; глиноземистость, $N_{OK} = 100 Al/(Al + 2Mg + 2Fe)$.

Рис. 2. Границы устойчивости Орх + Sil + Qtz, рассчитанные при $N_{Mg} = 80$ по [9]. Верхний по давлению предел – изоплета для Grt + Орх + Sil + Qtz (значение N_{Mg} заключено в ромб), нижний – Crd + Орх + Sil + Qtz (N_{Mg} в овале). Линии постоянной глиноземистости гиперстена сплошные, в квадрате – N_{OK} . Точечные линии – как на рис. 1.

Рис. 3. Фазовые отношения гиперстен-силлиманитовых ассоциаций в системе FMAS, рассчитанные по [9] с учетом реакций с Fe-содержащим сапфирином (по [14]) и влияния флюида на стабилизацию кордиерита. Линии постоянной глиноземистости гиперстена: для Crd + Opx + Sil + Qtz значения $N_{\rm OK}$ в овале; Spr + Opx + Sil + Qtz – в шестиугольнике. Звездочка – расчет с водонасыщенным кордиеритом (штрихпунктир), с верним штрихом – Crd · 0,5H₂O (пунктир).

Рис. 4. Сравнение границ устойчивости Орх + Sil + + Qtz, рассчитанных при N_{Mg} = 80 по [9] – сплошные линии, по [8] – штрих-пунктир, по [11, 15] – пунктир. Обозначения изоплет – как на рис. 2.

В отличие от системы MAS, где состав ортопироксена в ассоциации Орх + Sil + Qtz фиксирован при фиксированных *PT*-условиях, что позволяет отразить его изменение с помощью изоплет на двухмерной *PT*-диаграмме, для системы FMAS такое возможно лишь для ассоциаций Grt + Opx + Sil + Qtz, Crd + Opx + Sil + Qtz и Spl + Opx + Sil + Qtz (рис. 1). Поле устойчивости Орх + Sil + Qtz, таким образом, делится реакцией (II), ограничивающей стабильность кордиерита, и реакцией

$$Grt + Sil = Opx + Spl + Qtz,$$
 (VI)

которая разграничивает гранат- и шпинель-содержащие ассоциации. Очевидно, что в таких ассоциациях четырех минералов изменение глиноземистости ортопироксена сопряжено с изменением его магнезиальности и составов других Fe-Mg-фаз, и зависимость этого изменения с температурой и давлением имеет более сложный характер. В частности, важно обратить внимание на сужение поля устойчивости Opx + Sil + Qtz и смещение в низкотемпературную область изоплет N_{OK} при снижении магнезиальности (рис. 2). При анализе условий образования гранулитов следует учитывать, что относительно более железистый гиперстен в парагенезисе с силлиманитом и кварцем неустойчив ниже определенных глубин и его высокая глиноземисть не обязательно говорит о сверхвысокой температуре метаморфизма - по крайней мере, не такой высокой, как требует стабильность чисто магнезиального ортопироксена.

Картина еще меняется, если ввести в круг рассматриваемых минералов сапфирин и учесть влияние флюида на стабилизацию кордиерита (рис. 3). В системе MAS реакция

$$Opx + Sil = Spr + Qtz$$
 (VII)

определяет нижний по давлению предел устойчивости ортопироксена с силлиманитом при относительно высокой температуре (в низкотемпературной области – это реакция (II)). В системе FMAS, если пользоваться предварительными (недостаточно обоснованными экспериментально) данными по термодинамике Fe-содержащего сапфирина [14], шпинельсодержащие реакции (IV) и (V) нестабильны и сменяются реакциями

$$Opx + Sil = Grt + Spr + Qtz$$
 (VIII)

И

$$Opx + Sil = Grt + Spr + Crd,$$
 (IX)

которые, сужая поле стабильности Opx + Sil, обусловливают появление соответствующих полей сапфирин-содержащих ассоциаций – в частности, Spr + Opx + Sil + Qtz в области относительно высоких температур. Поле этой ассоциации отделяется от поля Crd + Opx + Sil + Qtz реакцией

$$Spr + Qtz = Opx + Sil + Crd.$$
 (X)

ДОКЛАДЫ АКАДЕМИИ НАУК том 389 № 1 2003

ГИПЕРСТЕН В АССОЦИАЦИИ С СИЛЛИМАНИТОМ

№ п.п.	№ обр.	Другие минералы в образце	$N_{\rm Mg}$	N _{OK}	T_1	T_2	T_3
Алданский щит, Сутамский комплекс							
1	Е-1252-б	Grt-Crd-Bt-Kfs-Rt	63.3 ^{a)}	7.4 ^{a)}	815 ± 9	915 ± 6	795 ± 12
2	»		63.5 ⁶⁾	5.2	737 ± 3	810 ± 4	685 ± 9
3	»		63.7 ^{в)}	6.3	777 ± 4	865 ± 5	743 ± 10
4	»		65.1 ^{r)}	9.3	882 ± 16	1001 ± 8	895 ± 13
5	E-1571/11	Crd-Bt-Kfs-Rt	68.0	8.2	858 ± 12	955 ± 8	855 ± 12
6	E-1571-23	Grt-Bt-Pl-Rt	66.3	8.1	849 ± 12	949 ± 7	842 ± 12
7	E-395	Grt-Crd-Bt-Pl-Kfs	73.6	9.9	935 ± 18	1034 ± 11	960 ± 13
8	Сут-28	Grt-Crd-Bt-Pl-Kfs	68.7	8.3	863 ± 13	959 ± 8	861 ± 12
9	»		70.4	7.7	851 ± 11	936 ± 8	843 ± 12
10	Сут-61	Grt-Bt-Pl-Kfs-Rt	73.8	8.2	881 ± 13	962 ± 9	882 ± 12
11	»		77.4	8.1	891 ± 13	962 ± 10	894 ± 12
12	»		77.6	7.8	880 ± 12	946 ± 9	878 ± 12
13	»		78.9	8.3	901 ± 14	969 ± 10	907 ± 13
	B-114/3	Grt-Bt-Pl-Kfs	73.7	9.9	937 ± 18	1037 ± 11	963 ± 13
15	»		74.5	9.1	912 ± 15	1000 ± 10	926 ± 13
Анабарский щит, р. Б. Куонамка							
16	И-568/3а	Crd–Bt–Kfs	74.5	9.4	924 ± 16	1016 ± 10	943 ± 13
Балтийский щит, Центрально-кольский комплекс							
17	231/11	Spr-Spl-Crd-Bt-Kfs	72.3	5.2	762 ± 5	813 ± 6	721 ± 9
18	231/5	Spr–Spl–Crd–Bt–Kfs	73.3	8.0	871 ± 12	951 ± 9	869 ± 12
19	»		72.2	8.4	883 ± 13	970 ± 9	886 ± 13
Становая складчатая область, Чогарский комплекс							
20	Чог-б	Grt-Crd-Bt-Pl-Kfs	71.9	5.8	787 ± 7	846 ± 6	754 ± 10
21	»		74.5	6.1	806 ± 8	862 ± 7	780 ± 11
22	Чог-бб	Grt–Crd–Bt–Pl–Kfs	75.4	8.9	910 ± 15	994 ± 10	922 ± 13
23	»		76.1	9.5	935 ± 17	1023 ± 11	956 ± 13
24	Г-621-Е	Grt-Crd-Pl-Kfs-Rt	75.2 ^{д)}	10.9	974 ± 21	1079 ± 12	1014 ± 14
25	»		76.4 ^{e)}	10.0	950 ± 18	1042 ± 11	978 ± 13
26	»		79.9 ^{ж)}	7.8	885 ± 13	946 ± 10	886 ± 12
27	Ток-18	Grt–Crd–Bt–Pl–Kfs	71.8 ³⁾	11.3	972 ± 22	1092 ± 12	1018 ± 14
28	»		72.0 ^{M)}	8.7	891 ± 14	982 ± 9	$898 \pm 13*$

Таблица 1. Оценка температуры по составу гиперстена в ассоциации с силлиманитом и кварцем из гранулитов некоторых метаморфических комплексов России

Примечание. 1–7 – по данным [4], 8–13, 20–23 – по [12], 14–16 – по [3], 17–19 – по [1], 24–26 – по [2], 27–28 – по [6], $N_{\rm Mg}$ и $N_{\rm OK}$ пересчитаны из микрозондовых анализов, приведенных авторами. T_1 – расчет при 0.75 ГПа по реакции (А) с использованием данных [9], T_2 – то же с данными [8], T_3 – по реакции (В) с данными [11, 15], разброс значений соответствует изменению давления ±0.25 ГПа. ^{а)} из Орх–Сгd-каймы вокруг Grt у контакта с Grt, ^{б)} из внешней части Орх–Сгd-каймы вокруг Grt, ^{в)} из середины Орх–Сгd-каймы вокруг Grt, ^{г)} из сростков с Sil, ^{д)} центр крупного зерна, ^{е)} край крупного зерна, ж) край зерна в контакте с Sil, ³⁾ средний из 5 анализов центральных частей крупных зерен, ^{и)} средний из 8 анализов в краях у контакта с Sil и Qtz.

Учитывая близость положения линий реакций (V) и (IX) на *PT*-диаграмме, необходимо соблюдать осторожность при экстраполяции результатов подобного расчета на наблюдаемые в природе соотношения минералов. Достаточно небольшого изменения активности компонентов твердых растворов Spl или Spr (например, как в [13] за счет несколько отличной термодинамики Spr), чтобы топология диаграммы изменилась и появилась область устойчивости Opx + Sil + Qtz и с сапфири-

ДОКЛАДЫ АКАДЕМИИ НАУК том 389 № 1 2003

ном, и с шпинелью. Значительное влияние могут оказать примеси таких компонентов, как Zn и Cr, а также степень окисления Fe [10].

Важная особенность смены гиперстен-силлиманитовых ассоциаций альтернативными кордиеритсодержащими состоит в том, что она связана не только с изменением РТ-условий, но и сильно подвержена влиянию флюида. Это, с одной стороны, усложняет парагенетический анализ соответствующих гранулитов, но, с другой, позволяет делать выводы относительно флюидного режима метаморфизма, а не только оценивать температуру и давление – здесь помогает рассмотрение различных реакций, которые могут протекать одновременно [6]. Стоит отметить, что в "сухих" условиях - в отсутствие флюида или при весьма низкой активности летучих – область устойчивости ортопироксена с силикатом глинозема весьма широка, не ограничивается только высоким давлением и температурой и позволяет рассматривать как стабильный даже экзотический парагенезис Орх + And, обнаруженный в метаморфических породах Центральной Австралии [7]. Лишь в условиях достаточно высокой активности воды, когда резко расширяется поле стабильности кордиерита, гиперстен-силлиманитовые ассоциации смещаются в область повышенного давления и более магнезиального состава ортопироксена.

Вряд ли требует пояснений, что оценка температуры метаморфизма гранулитов по глиноземистости гиперстена в парагенезисе с силлиманитом и кварцем на основе реакции (А) (или (В)) в немалой степени связана с параметрами термодинамической модели твердого раствора ортопироксена. Влияние их выбора иллюстрируют рис. 4 и табл. 1: для одного и того же состава Орх значения температуры, рассчитанные по моделям [8, 9] и [11, 15], могут отличаться на 100°С и более. Тем не менее очевидно преимущество этого геотермометра перед индикаторами условий метаморфизма, которые основаны на распределении компонентов между ортопироксеном и другими фазами переменного состава: в реакции (A) (или (B) участвует только один твердый раствор, и, следовательно, исключаются ошибки, связанные с описанием изменения состава других минералов.

Исследование выполнено при поддержке РФФИ (грант 00–05–64881). Использованы также данные, полученные при поддержке фонда им. А. фон Гумбольдта.

СПИСОК ЛИТЕРАТУРЫ

- Авакян К. Х., Геология и петрология Центрально-Кольской гранулито-гнейсовой области архея, М., Наука, 1992.и 168 с.
- Авченко О.В. Минеральные равновесия в метаморфических породах и проблемы геобаротермометрии. М.: Наука, 1990. 181 с.
- Кицул В.И., Берёзкин В.И., Дамаскина Г.Д., Шкадинский В.В. Таблицы химических составов и кристаллохимических формул минералов из метаморфических пород и гранитоидов Алданскогощита, Якутск: ЯФ СО АН СССР, 1983. 360 с.
- Кориковский С.П., Кислякова Н.Г. В кн.: Метасоматизм и оруденение, М.: Наука, 1975. С. 314–341.
- 5. Маракушев А.А., Кудрявцев В.А. // ДАН. 1965. Т. 164. № 1. С. 179–182.
- Aranovich L.Ya., Podlesski K.K. / In: Evolution of Metamorphic Belts, Oxford: Blackwell Sci. Publ. 1989. P. 45–62.
- Ballevre M., Hensen B.I., Reynard B. // Geology. 1997. V. 25. № 3. P. 215–218.
- 8. *Berman R.G., Aranovich L.Ya.* // Contrib. Mineral. and Petrol. 1996. V. 126. № 1/2. P. 1–24.
- Gerya T.V., Perchuk L.L., Podlesskii K.K., Kosyakova N.A. // Experim. Geosci. 1996. V. 5. № 2. P. 24–28.
- Harley S.L., In: What Drives Metamorphism and Metamorphic Reactions? Oxford: Blackwell Sci. Publ., 1998. P. 81–107.
- Holland T.J.B., Powell R. // J. Metamorph. Geol. 1998.
 V. 16. № 3. P. 309–343.
- 12. Perchuk K.L., Oranovich L.Ya., Podlesskii K.K. // J. Metamorph. Geol. 1985. V. 3. № 3. P. 265–310.
- 13. *Podlesskii K.K.* // Bochum. Geol. and Geotech. Arb. 1995. H. 44. S. 269–274.
- 14. *Poldesskii K.K.* / Experim. Geosci. 1997. V. 6. № 1. P. 22–23.
- 15. *Powell R., Holland T.J.B.* // Amer. Miner. 1999. V. 84. № 1/2. P. 1–14.

^{**}Здесь не рассматриваются реакции с участием других водосодержащих минералов, безусловно, в этих условиях еще более ограничисающие устойчивость ассоциации Opx + Sil + Qtz в области более низкой температуры.