= ГЕОХИМИЯ =

УДК 553.41:550.42(571.65)

ЗОЛОТО, ПЛАТИНА И ПАЛЛАДИЙ В РУДАХ НАТАЛКИНСКОГО МЕСТОРОЖДЕНИЯ (ВЕРХНЕ-КОЛЫМСКИЙ РЕГИОН)

© 2003 г. Л. П. Плюснина, член-корреспондент РАН А. И. Ханчук, член-корреспондент РАН В. И. Гончаров, В. А. Сидоров, Н. А. Горячев, Т. В. Кузьмина, Г. Г. Лихойдов

Поступило 27.03.2003 г.

Наталкинское месторождение расположено в 400 км к северо-западу от Магадана в складчатых структурах Аян-Юряхского антиклинория, сложенного песчанистыми аргиллитами, диамиктитами, песчаниками, алевролитами верхнепермского возраста [1, 2]. Оруденение представлено серией сближенных жильно-прожилковых зон в породах преимущественно атканской и омчакской свит. Вмещающие рудные зоны породы окварцованы, серицитизированы и сульфидизированы (вкрапленность пирита и арсенопирита). Платина и палладий установлены во всех золоторудных телах, но максимальное их содержание характерно для интенсивно сульфидизированных жильно-прожилковых блоков пород и кварцсульфидных метасоматитов. На удалении от них содержание ЭПГ ниже предела чувствительности анализа (10⁻⁶ мас.%). Рудные тела прослежены почти на 5 км по простиранию и на 1200 м по падению. Ширина пучка рудных зон варьирует от 100 до 600 м. Сейчас месторождение отработано на глубину немногим более 200 м.

Целью данного исследования служит изучение распределения золота, платины и палладия в рудах месторождения в зависимости от содержания в них углеродистого вещества (УВ) и сульфидных минералов. Эта тема актуальна прежде всего потому, что до сих пор не удалось обнаружить здесь минералы-концентраторы ЭПГ несмотря на повышенное их содержание в рудах [3].

Изучены метасоматиты по диамиктитам из рудных зон 3/62 и 30 на горизонте 600 м. Пробы 1111 и 1113 взяты из апофизы рудной зоны 3(62)

Северо-Восточный комплексный научно-исследовательский институт

Дальневосточного отделения

(рис. 1). Эта зона представляет собой пояс сближенных субпараллельных и пересекающихся прожилков с текстурой суббрекчиевого типа. Арсенопирит-кварцевые прожилки нередко включают видимое золото. Вмещающие породы представлены диамиктитами, песчаниками и алевролитами с тонковкрапленным арсенопиритом (до 3%), доля которого растет по мере приближения к прожилкам. Пробы 1376 и 1377 отобраны на 59-м и 62-м метрах от края рудной зоны 30. Это сильно измененные диамиктиты, рассеченные арсенопирит-кварцевыми прожилками небольшой мощности (0.5-1 см). Вкрапленность арсенопирита в прожилках составляет 3-4 и достигает 5 об.% во вмещающих диамиктитах. Кластическая часть диамиктитов (30-40 об.%) представлена несортированными, окатанными обломками преимущественно изверженных пород сечением от 0.2-0.5 до 7-10 см. Химический состав отобранных проб отличается высоким содержанием SiO₂ при крайне низком Ca, Mg, Fe, что позволяет отнести породы к типу кварцевых метасоматитов (табл. 1, 2). Содержание Сорг в изученных пробах меняется (мас.%) от 0.042 в дайке спессартитов до 3.95 в мелкообломочных диамиктитах на удалении от рудных зон. Анализ ИК-спектров аморфного углерода из диамиктитов обнаружил ароматические и алифатические углеводороды с явным преобладанием первых.

Для выявления связи благородных металлов с УВ и сульфидизацией установлено содержание Au, Pt и Pd в гомогенизированных пробах из рудных метасоматитов, выделенном из них УВ, сульфидном концентрате и в хвостах гравитационнофлотационного обогащения этих проб после отбора сульфидных минералов. Растворимая фракция УВ экстрагирована спиртобензольной смесью на аппарате "Сосклет" [4, 5]. Содержание растворимой фракции УВ, значительную часть которой составляют масла, оказалось низким – от 0.03 до 0.08 мас.% (пр. 1113 и 1377). На ИК-спектрах (FTIR "Vector 22") растворимой фракции присутствуют слабо разрешенные полосы поглощения алифатических (1710 см⁻¹), карбонильных

Дальневосточный геологический институт

Дальневосточного отделения

Российской Академии наук,

Владивосток

Российской Академии наук, Магадан

Рис. 1. Геологическая схема горизонта 600 м месторождения Наталка. *1* – Омчакская свита: аргиллиты, алевролиты с прослоями песчаников; *2* – Атканская свита: диамиктиты, метасоматиты; *3* – рудные зоны и их названия; *4* – места отбора и номера проб.

(1253 см⁻¹) и карбоксильных (1049 см⁻¹) групп. Максимальная интенсивность характеризует полосы поглощения ароматических соединений (904, 800 см⁻¹) и, кроме того, хорошее разрешение отличает полосы 477 см⁻¹ валентных колебаний S–S и S=O.

Методом атомно-эмиссионной спектроскопии с индуктивно связанной ионной плазмой на приборе "Плазмоквант-110" в растворимой фракции УВ пробы 1377 установлено 0.5 и 3.5 г/т соответственно Рt и Au. В пробе 1113 при чувствительности метода 10⁻⁶ мас.% Au и ЭПГ не обнаружены.

Нерастворимое УВ выделено автоклавным разложением проб в концентрированной НГ при 180–200°С за 48–72 ч. Увеличение времени до 72 ч обусловлено необходимостью более полного

извлечения Сорг при его низком содержании в пробах. Продукты разложения включали легкую фракцию всплывшего УВ черного цвета, раствор и осадок на дне стакана. Осадок состоял преимущественно из сероуглеродных соединений и примеси закалочного аморфного кремнезема. В ИКспектрах осадка преобладали полосы поглощения связи C-S (648, 617 и 542 см⁻¹). УВ представлено полосами слабого разрешения ароматических соединений со всеми типами замещений (1669, 1638, 892, 728 см⁻¹). Связи С-S отмечены и на ИК-спектрах исходных углеродистых алевролитов. Следует отметить, что сульфогруппы имеют вакансии отрицательных зарядов и легко присоединяют металлы и другие функциональные группы [6].

ДОКЛАДЫ АКАДЕМИИ НАУК том 391 № 3 2003

№ пробы	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	П.п.п.	Сумма	Сорг
1111	69.36	0.47	11.16	3.98	0.04	1.08	1.01	4.00	3.23	0.07	5.61	100.01	0.088
1113	70.89	0.5	11.54	4.14	0.06	1.26	1.41	4.38	2.47	0.08	3.27	100.00	0.287
1376	65.66	0.83	13.71	4.88	0.10	1.55	1.73	4.40	3.44	0.12	3.59	100.01	0.2
1377	64.89	0.77	13.38	3.97	0.10	1.54	2.43	3.80	2.84	0.11	6.19	100.02	0.323

Таблица 1. Химический состав проб, мас. %

Примечание. Рентгенофлуоресцентный анализ на СРМ-26, аналитик В.И. Мануилова. Определение С_{орг} выполнено по стандартной методике на экспресс-анализаторе АН-7529, аналитик Е.С. Санько, СВКНИИ ДВО РАН.

№ пробы	Pb	Cr	As	W	Мо	Sn	Cu	Ag	Zn	Ni	Со
1111	45.0	9.8	8696.0	2.5	0.45	1.7	13.00	1.40	21.0	7.30	7.70
1113	13.0	10.0	8292.0	2.5	0.57	2.0	12.00	0.57	27.0	12.0	10.0
1376	3.9	6.2	1684.0	1.4	0.21	1.2	8.70	0.11	23.0	3.90	8.40
1377	5.7	11.0	589.0	4.0	0.38	1.5	8.90	0.13	37.0	5.90	13.0

Таблица 2. Элементы-примеси в пробах, г/т

Примечание. Атомно-эмиссионный анализ методом ЭКСА, аналитик Т.П. Козырева, СВКНИИ ДВО РАН.

Концентрация металлов в легкой, тяжелой фракциях УВ и отфильтрованном растворе представлена в табл. 3. Результаты свидетельствуют о постоянном, достаточно высоком содержании Au во всех пробах УВ и в растворе. Платина отмечена только в двух пробах осадка и раствора, полученных из сульфидизированного алевролита, что отражает ее структурную связь с серой. Палладий в количестве до 2.9 г/т присутствует в легкой фракции УВ. Следует заметить, что содержание Au и Pd в растворе намного ниже, чем в легкой фракции УВ.

Содержание благородных металлов в рудных метасоматитах установлено методом ICP-AES (табл. 4). Максимальные содержания Au и Pt отмечены в сульфидах, минимальные в хвостах обогащения и промежуточные в породе. Анализ результатов позволяет сделать вывод о четкой зависимости между содержаниями золота и УВ. В нерастворимой фракции УВ из вмещающих алевролитов и рудных метасоматитов установлено повышенное содержание Аи в сравнении с фоном (0.03 г/т по [3]). Максимальная концентрация Аи в УВ из вмещающих пород (проба 1-16) соответствует сорбционной емкости асфальтенов, установленной при 200°С и 1 кбар экспериментально [5], но значительно уступает содержанию Аи в сульфидах. Если учесть, что при метасоматозе происходит вынос УВ, разрушение металлоорганических соединений с переходом Аи в самородное состояние и дополнительный привнос золота глубинными растворами, то ураганные содержания Аи (до 8 кг/т в отдельных пробах сульфидного концентрата) находят удовлетворительное объяснение.

генный в связи с сульфидизацией и окварцеванием. Распределение Рt отличается от описанного для Au и Pd прежде всего явной приуроченностью Рt к кварц-сульфидным рудам с низким и спорадическим содержанием УВ. Низкая платиноносность УВ не связана с потерями при термической и кислотной обработке проб, поскольку Au и Pd анализировались в одних и тех же растворах, а потери Au, Pd и Pt в ходе кислотно-термического разложения проб близки по данным [7]. Более низкое содержание Pt по сравнению с Pd в рудах месторождения можно объяснить обычным преобладанием в природных системах Pd над Pt. В таком же соотношении они, по-видимому, мигрируют в составе флюидов или гидротермальных растворов, переотлагаясь на геохимических барьерах. Таким образом, очевидно, что основная масса Рt в рудах привнесена. С учетом низких содержаний Сорг в рудах и Pt в УВ переотложение существенных ее количеств из осадочных пород в сульфидные руды гипотетично. Вместе с тем ремобилизация Аи и Pd из вмещающих пород гидротермальными растворами вполне возможна. Тем не менее влияние углерода на отложение

Палладий, подобно золоту, присутствует глав-

ным образом в легкой фракции УВ (табл. 3).

В матриксе диамиктитов содержание его варьи-

рует (табл. 4), что предполагает два источника Pd

и Аи: осадочно-хемогенный за счет биологичес-

кой активности в бассейнах и флюидно-магмато-

Гем не менее влияние углерода на отложение благородных металлов из гидротермальных растворов в условиях околорудного метасоматоза и регионального метаморфизма терригенных осадков несомненно. Оно связано с формированием восстановительного режима в рудообразующей

ПЛЮСНИНА и др.

No moõu	Maaaa T	Ф алинии	A	D+	D4	Условия опыта		
л∘ прооы	Macca, F	Фракции	Au	Pl	Pa	t, °C	τ, ч	
1-16	1.315	л	1.83	-	H.a.	180	4	
		О	0.50	_	»			
		р	0.19	_	»			
1-16	1.84	о	0.32	0.35	»	200	24	
		р	0.17	0.05	»			
1-16	1.11	л	3.79	-	»	200	48	
		о	1.23	0.80	»			
		р	0.19	1.16	»			
1113	1.451	л	17.60	-	2.89	200	72	
		о	-	-	—			
		р	-	-	0.03			
1113	1.59	л	44.66	-	0.73	180	72	
		о	17.00	-	—			
		р	0.35	-	—			
1377	1.66	л	425.32	-	—	180	72	
		о	1573.4	_	—			
		р	0.50	-	0.04			
1377	1.73	л	2695.9	-	2.735	180	70	
		о	1357.8	-	_			
		р	0.173	_	—			

Таблица 3. Благородные металлы (г/т) в УВ и растворе, экстрагированных из алевролитов (1-16) и рудных метасоматитов (1113, 1377)

Примечание. Анализы выполнены методом ICP-AES в ДВГИ ДВО РАН, аналитики В.И. Киселев, Т.В.Кузьмина; л – легкая фракция, о – осадок, р – раствор, н.а.- не анализировался, прочерк – не обнаружен.

№ пробы	Au	Pt	Pd	Состав пробы
1111a	29	0.28	1.40	Метасоматиты по диамиктитам
11116	4300	0.85	< 0.1	Сульфидный концентрат
1111	17	0.47	1.19	Хвосты
1113a	340	0.38	1.13	Метасоматиты по диамиктитам
1113б	6000	1.98	5.27	Сульфидный концентрат
1113в	93	0.13	1.25	Хвосты
1376	293	7.22	9.60	Метасоматиты по диамиктитам
1377	130	0.53	7.48	То же
1-16*	0.38	H.a.	0.66	Углеродсодержащий метасоматит по алевролитам
1-18*	0.02	2.5	0.33	Углеродсодержащий тектонит

Таблица 4. Содержание благородных металлов (г/т) в рудных метасоматитах и сульфидах

Примечание. Анализы Au выполнены методом AAS, Pt и Pd – ICP–AES, ДВГИ ДВО РАН, аналитики В. И. Киселев, Ж. А. Щека. Отклонения от стандартного образца составляют (отн. %) для: Pt (–17.9) и Pd (+15.4). Звездочкой отмечено – нейтронно-активационный анализ с пробирным концентрированием (Ташкент, ИЯФ АН РУз). Н.а. – не анализировалась.

ДОКЛАДЫ АКАДЕМИИ НАУК том 391 № 3 2003

системе путем взаимодействия растворов с углеродсодержащими породами. На стадии инверсии окислительного флюидного режима гидротерм на восстановительный происходит отложение самородных элементов [8]. Термодинамический расчет взаимодействия компонентов с помощью программного комплекса "Селектор-С" [9] в системе H₂O-NaCl-УВ с пирит-пирротин-магнетитовым буфером показал, что Сорг определяет редокс-потенциал системы на уровне $\lg f_{\mathrm{O}_2} = -40$ (при 250°C) даже при содержании ниже 0.01 мас.% [10]. Подобная восстановительная среда гидросульфидов подавляет активность хлоридных комплексов и благоприятствует осаждению металлов из гидротермального раствора. Ранее на основании эксперимента был предложен механизм осаждения Pt из растворов в виде куперита (PtS): Pt(OH)₂ + xH_2S° + yHS^- = (PtS · xH_2S · $\cdot yHS^{-})^{y-} \cdot H_2O + 0.5O_2 = xH_2S + yHS^{-} + PtS\downarrow [11].$ Эта схема реализуется благодаря способности Рt формировать смешанные метастабильные комплексы, которые затем разлагаются с осаждением куперита. Сложный сульфидно-хлоридный состав водных растворов может способствовать появлению в определенных условиях комплексных Рt-содержащих соединений, координационная сфера которых включает несколько различных лигандов. В присутствии мышьяка в системе могут появляться и выпадать в осадок такие фазы, как арсениды и сульфоарсениды Рt, растворимость которых еще ниже, чем у куперита [12]. Это особенно важно для Наталкинского месторождения, где доминантная роль мышьяка как "проводника" золота в системе подчеркивается золотосодержащим арсенопиритом - наиболее распространенным сульфидом рудных зон. Способность Pt к смешанному комплексообразованию может быть причиной ее вхождения в состав различных сульфидных минералов. Неравномерное распределение ЭПГ, установленное в рудах Наталки, можно рассматривать как свидетельство дискретного поступления растворов с Pt и Pd к местам разгрузки. Наиболее вероятными концентраторами ЭПГ могут служить широко распространенные сульфиды железа и мышьяка (пирит, арсенопирит), а также сульфоарсениды никеля и кобальта, встречающиеся в рудах [2].

Таким образом, установлен различный характер связи золота, палладия и платины с УВ. Участие УВ в концентрировании этих элементов подтверждается только для золота и палладия. Полученные результаты позволяют заключить, что промышленная концентрация благородных металлов на месторождении Наталка обусловлена метасоматической проработкой и сульфидизацией углеродсодержащих пород.

Углистое вещество этих пород из-за низкого содержания Pt не могло быть основным ее источником в рудопродуктивных породах. В то же время оно способствовало генерации геохимических барьеров, на которых циркулирующие растворы осаждали Au, Pt и Pd в самородном виде или в составе сульфидов и сульфоарсенидов. Конкретные минералы-концентраторы ЭПГ на Наталкинском месторождении пока не установлены, но можно говорить о типах (простые вещества) и классах (сульфиды, арсениды) минеральных видов, на которые следует обратить особое внимание.

Работа выполнена в рамках интеграционного проекта ДВО–СО РАН "Золото Сибири и Дальнего Востока".

СПИСОК ЛИТЕРАТУРЫ

- 1. Гончаров В.И., Приставко В.А., Сидоров В.А., Ворошин С.В. // ДАН. 1997. Т. 355. № 6. С. 801–804.
- 2. Гончаров В.И., Ворошин С.В., Сидоров В.А. Наталкинское золоторудное месторождение. Магадан: СВКНИИ ДВО РАН, 2002. 250 с.
- Сидоров В.А., Ворошин С.В., Приставко В.А., Санько Е.С. В кн: Платина России. М.: Геоинформмарк, 1999. Т. 4. С. 280–286.
- 4. Плюснина Л.П., Кузьмина Т.В. // Геохимия. 1999. № 5. С. 506–515.
- 5. Плюснина Л.П., Кузьмина Т.В., Некрасов И.Я. // ДАН. 2000. Т. 374. № 4. С. 529–531.
- 6. *Чичибабин А.Е.* Основные начала органической химии. Т. 2. М.: Хим. лит., 1958. 767 с.
- Mit'kin V.N., Galizky A., Korda T. // Geostand. Newsletter. 2000. V. 24. № 2. P. 227–240.
- Летников Ф.А., Савельева В.Б., Аникина Ю.В. // ДАН.1996. Т. 347. № 6. С. 795–798.
- 9. Карпов И.К., Чудненко К.В., Бычинский В.А. и др. // Геология и геофизика. 1995. Т. 36. С. 3–21.
- Плюснина Л.П., Кузьмина Т.В., Щека Ж.А., Авченко О.В. В кн.: Платина России. М., Геоинформмарк.1999. Т. 4. С. 233–237.
- 11. Плюснина Л.П., Лихойдов Г.Г., Некрасов И.Я. // ДАН. 2000. Т. 370. № 1. С. 99–101.
- Некрасов И.Я., Ленников А.М., Октябрьский Р.А. и др. Петрология и платиноносность кольцевых щелочно-ультраосновных комплексов. М.: Наука, 1994. 375 с.