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Abstract

During deformation of an inclusion-matrix system, the velocity fields around individual inclusions mutually interfere with one another.
Such interacting inclusions rotate at slower rates than non-interacting, single inclusions. This paper presents a theoretical model that
describes the flow pattern of matrix (viscous) material around interacting rigid inclusions of spherical shape in bulk simple shear deforma-
tion. Numerical simulations based on the velocity functions reveal that the volume concentration of inclusions is a crucial parameter
controlling the flow pattern around rotating inclusions under interacting conditions. At low volume concentrations (p, < 0.01, where
py = (a/b)’, 2a: inclusion diameter and 2b: mean inter-inclusion distance) the flow is characterized by an eye-shaped separatrix, which,
with increase in volume concentration (p, > 0.1), transforms into a pattern with a bow-tie shaped separatrix. At a large volume concentration
(py = 0.4) the separatrix assumes the geometry of a super-ellipse. We also present numerical models that illustrate the influence of volume
concentration on the (1) nature of strain distribution, (2) distortion patterns of passive foliations ,and (3) mantle structures around inclusions
in an interacting state. Based on this theory, it is shown that the rotational retardation of the inclusions slightly enhances the bulk viscosity of
the inclusion-matrix system. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The studies on the deformation behavior of inclusion-
matrix rock systems deal with three principal aspects: (1)
rigid rotation and deformation of individual inclusions, (2)
flow-field around inclusions, and (3) bulk viscosity of the
system. It has been revealed that the shape and orientation of
the inclusion controls its rotation, in addition to the bulk
vorticity (Gay, 1968; Reed and Tryggvason, 1974; Ghosh
and Ramberg, 1976; Ferguson, 1979; Freeman, 1985;
Fernandez, 1987; Passchier, 1987; Masuda et al., 1995;
Jezek et al., 1996; Mandal et al., 2001). There is also a
radically different proposition which states that inclusions
in certain circumstances may not rotate even when the bulk
deformation is non-coaxial (Bell, 1985; Johnson, 1993;
Stewart, 1997; Hickey and Bell, 1999; Stallard and Hickey,
2001). As far as the flow field around rigid inclusions is
concerned, both theory and experiments show that the
deformation of matrix in the neighborhood of individual
inclusions is always heterogeneous (Gay, 1968; Ghosh,
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1975; Masuda and Ando, 1988; ten Brink and Passchier,
1995; Masuda and Mizuno, 1996; Jezek et al., 1999; Mandal
et al., 2001). All these studies, however, consider a single
inclusion floating in an infinitely extended, continuous
medium and are thus applicable to rocks with very low
volume concentrations of inclusions. If inclusions are
present in a rock in higher proportions, they are likely to
interact with one another affecting the rotation of individual
inclusions as well as the surrounding matrix flow, as
revealed in analog model experiments (Ildefonse et al.,
1992, 1993). Experimental studies also demonstrate that in
inclusion-matrix systems interaction may set in due to tiling
of the inclusions during progressive shear, even when the
volume concentration is low, and the finite rotation of inclu-
sions deviates from that predicted by Jeffery’s theory on
single inclusion systems (Tikoff and Teyssier, 1994; Arbaret
et al., 1996). The mechanical interaction of inclusions also
modifies the bulk viscosity of inclusion-matrix systems
(Happel, 1957), in addition to other factors such as geome-
trical and rheological properties of the phase components
(Treagus, 2002, and references therein).

The purpose of this paper is to investigate the effects
of mutual interaction of equant inclusions in a multiple
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Fig. 1. Successive stages of simple shear (dextral) deformation of model
(plan view) containing equant inclusions in a slab of pitch (viscous). Note
that closely spaced inclusions in the row have rotated smaller than the
inclusion located at a large spacing. The ratio of inclusion diameter to
inter-inclusion distance (a/b) was 0.79. Scale bar = 2 cm.

inclusion system on the rotation of, and flow field around,
individual inclusions, and the bulk viscosity of the inclu-
sion-matrix system. Simple experiments were performed to
study how the presence of inclusions in the neighborhood
could retard the rotation of an equant inclusion. The paper
also presents a theoretical model that derives the rotation
rate of rigid inclusions and the velocity functions for the
matrix flow in a multiple inclusion system, under simple

shear taking into account the effects of interactions of
surrounding inclusions. The derived equations are used to
run numerical experiments to investigate the influence of
mean distance or volume concentration of inclusions on
the flow pattern, strain shadow, foliation drag and mantle
structure around rigid inclusions. Finally, the paper explores
the effects of rotational retardation of rigid inclusions on the
bulk viscosity of inclusion-matrix systems.

2. Rotation of interacting inclusions: experimental
observations

We performed a set of experiments on viscous models in
simple shear to study the rotational behavior of rigid inclu-
sions disposed with spacing allowing mutual interference of
the velocity fields around them. The model consisted of
three circular cylindrical (wooden) inclusions floating in a
viscous (pitch) slab. The viscosity of pitch was about
5% 10° Pas at room temperature (30 °C). The inclusions
were placed in a row along the central shear plane with
their axes along the direction of no-strain to avoid an overall
rotation of the inclusion row. The inter-inclusion distance in
the row was set between 1.15 and 1.30 (values normalized to
inclusion diameter) to obtain a discernible effect of mutual
interaction. In order to compare the rotational behavior of
the inclusions in an interacting state with that under non-
interacting conditions, one inclusion was placed in the same
row, but at a large distance from the three interacting
inclusions. The experiments were run in simple shear
(1.5% 107%/s) at room temperature. During deformation
the model base was lubricated with liquid soap to minimize
the basal friction in order to obtain largely homogeneous
simple shear in the model. Marker lines were drawn parallel
and perpendicular to the shear direction to find the finite
bulk shear at any stage of deformation in the model.
Experiments with specific configurations of the inclusions
were repeated under the same conditions to test their repro-
ducibility.

In the experimental runs, the closely spaced inclusions
always rotated slower than that located away from them.
Among the three closely spaced inclusions, the central one
rotated at the slowest rate (Fig. 1) due to mechanical
coupling exerted by the rotating inclusions on its either
side. We measured the amount of finite rotation of the inter-
acting inclusions at different stages of progressive shear,
and compared it with that of the far-field one and predicted
from the theory discussed in the following section (Fig. 2).
The results clearly indicate that, at any stage of deformation
the finite rotation of each inclusion in the row is smaller than
the far-field one. Experimental runs with different inter-
inclusion distances again reveal that the difference between
the rotation rates of closely spaced inclusions and the far-
field one is larger for smaller inter-inclusion distance. These
simple experiments demonstrate that there may be a
discernible retardation in the rotational motion of rigid
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Fig. 2. Plots of finite rotation of inclusions versus bulk shear, as obtained from the test model shown in Fig. 1. Note that: (i) the rotations of inclusions occurring
in the row are less than that of the isolated (far-field) one and (ii) the rotation of the central inclusion with the bulk shear is closer to that obtained from the

present theoretical model.

inclusions due to mechanical interaction, even when the
inclusions are equant in shape. The following section
presents a theoretical model describing the flow field around
such interacting spherical inclusions in simple shear.

3. Theoretical considerations
3.1. The model

The physical model under consideration consists of
uniformly distributed rigid, spherical inclusions of radius
a within a Newtonian viscous matrix (Fig. 3a). We assume
a non-slip condition at the matrix-inclusion interfaces. The
model is subjected to simple shear at a rate y. We set a
Cartesian reference frame (xyz) with the x axis parallel to
the shear direction and y axis normal to the shear plane (Fig.
3b). The bulk shear flow (), for the sake of mathematical
derivation, is resolved into distortion (e,,) and rotation ({)
parts, where e,, = y/2and { = /2. For a homogeneous
shear flow, i.e. in the absence of inclusions, the velocity
components (#, v, w) along x, y and z directions for the
distortion and rotation parts are represented, respectively,
as:

up = %y; vh = %x, wp =0 (la)
Ug = Ey, VR = — Ex, WR = O (1b)

The subscripts D and R stand for distortion and rotation,
respectively. The flow perturbations due to the presence of
inclusions are determined separately for the distortion (e,y)
and rotation ({) components of the bulk shear flow, which
are added to that of the homogeneous shear flow (Egs. (1a)
and (1b)) to obtain the flow field around an individual

inclusion. Appendix A provides the details of the deriva-
tions, and an outline is given below.

Considering the distortion part (e,,) of the bulk shear,
Happel (1957) derived the expressions of the velocity
components of the flow perturbation in terms of spherical
co-ordinates (Fig. 3c; Eq. (A2) in Appendix A). As our
numerical simulations are developed in two dimensions on
a section at right angle to the direction of no bulk strain, we
consider the velocity components in terms of Cartesian
co-ordinates on the xy-plane (i.e. z=0) as:

2 2

up = v’[ﬁ(r) —fz(r)(Z - ;)]xr
x2 x2 X

vp = 7[f1(”)(1 - 7) +f2(”)(27 - 1)]; (2)

L 2

where
6 3D
and

falr) = (5r3A + 1B+ ?4)

A, B, C and D are constants, which are dependent on the
ratio of inclusion diameter and inter-inclusion distance (a/b)
(see Eq. (A3)).

In order to estimate the flow perturbation for the rota-
tional part ({) of the bulk shear flow, we need to consider
the rotational behavior of individual inclusions in an inter-
acting state. Experiments reveal that interacting spherical
inclusions rotate at slower rates compared with non-inter-
acting ones rotating at rates close to y/2 (Fig. 2). It can be
shown (Eq. (A9) in Appendix A) that the instantaneous
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Fig. 3. (a) Model under theoretical consideration. The circles represent the
inclusions floating in a matrix. The circle with a shell of matrix (shaded) in
its surrounding represents the inclusion around which the flow is modeled
taking into account the effects of the neighboring inclusions. (b) Enlarged
view of the inclusion shown in (a) showing the choice of Cartesian coordi-
nate reference frame (xyz) with origin at the center of the inclusion and x
axis parallel to the shear direction, and y axis normal to the shear plane. A
shell (shaded) of radius b is considered around the inclusion, on the surface
of which the boundary conditions for mechanical interaction with its neigh-
boring inclusions are imposed (see text for details). (c) Relation between
the Cartesian frame xyz and spherical coordinate system under considera-
tion.

rotation rate of the rigid spherical inclusion in an interacting
state is:

W'=1-a)Y 3)
2
« is the ratio of inclusion diameter (2a) and inter-inclusion

distance (2b). Eq. (3) shows that the rotation rate of sphe-
rical inclusions (w’) increases with inter-inclusion distance

(Fig. 4), and assumes a value of /2, when b tends to infinity
or « tends to be zero, i.e. when rigid inclusions occur in a
very low volume concentration to be in a non-interacting
state, as obtained from the hydrodynamic theory (Jeffery,
1922). On the other hand, when b=a, ' becomes zero,
implying that interacting inclusions cannot rotate indepen-
dently if they are in contact with one another. It has been
inferred from field observations (Bell, 1985) that under
certain circumstances porphyroblasts rotate little in non-
coaxial deformation, and the rotational component of the
bulk deformation has been partitioned in the matrix. Our
theoretical analysis suggests that such non-rotational
behavior of the porphyroblasts might have resulted from
mutual mechanical coupling due to their large volume
concentration.

From Eq. (A10) in Appendix A, the flow perturbation in
the matrix in response to the rotational part of the bulk shear
flow can be expressed as:

y a
UR = — = —=27
R= 725357
. 6
Y a
VR:§b3r3x (4)

By adding the velocity components in Egs. (1a), (1b), (2)
and (4), we obtain the flow field around a spherical inclusion
on the xy-plane of the Cartesian coordinate system as:

6 2 2
u=[(l - bzr3 )y+{f1(r)—fz(r)(2_ :_2)});_3)}]7

1 d : ’
y= [(5%>x+ {fl(r)(l - ):—2) +f2(r)(2):—2 - 1)};]7

&)

Eq. (5) represents the velocity field around an individual
spherical rigid inclusion surrounded by identical inclusions
in an interacting state (Fig. 3a), which is valid in the regime
r < b (Fig. 3b). This equation can thus be used to study the
flow pattern around individual mechanically interacting
inclusions within a multiple inclusion system under simple
shear. In this analysis we will use a parameter p,, where
pv= (a/b)3, as a measure of volume concentration of
inclusions.

N[ —

3.2. Flow patterns around interacting inclusions

The flow patterns around spherical rigid inclusions are
principally of two types: one with eye-shaped separatrix
and the other with bow-tie shaped separatrix. It has been
shown that the type of flow depends on the matrix rheology
(Passchier, 1994; Pennacchioni et al., 2000) and the nature
of bulk deformation (Mandal et al., 2001). Numerical simu-
lations, based on the velocity functions in Eq. (5) indicate
that the flow pattern depends also on the volume concentra-
tion parameter of inclusions p,. At p, <0.01 the flow
pattern is characterized by an eye-shaped separatrix with a
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Fig. 4. Non-linear variation of rotation rate (w’) of inclusions with inter-inclusion distance as obtained from theoretical calculations. Note that for large inter-

inclusion distances (e.g. a/b < 0.1) the rotation rate of inclusion is close to y/2.

finite dimension only across the shear plane (Fig. 5a; cf.
Masuda and Ando, 1988; Mandal et al., 2001), which is
similar to that around a non-interacting inclusion. With
increase in p,, two stagnation points appear on either side
of the inclusion, defining finite dimensions of the separatrix
(Fig. 5b). At p,=0.1 the flow assumes a typical pattern
with a bow-tie shaped separatrix (Fig. 5c; cf. Passchier,
1994). The separatrix is nearly elliptical in shape with its
long dimension lying along the shear direction. With further
increase in volume concentration the stagnation points
defining the long dimension of the separatrix shift towards
the surface of the rigid inclusion reducing the size of the
separatrix (Fig. 5d). The shape of the separatrix bounding
the close particle paths also varies with increasing volume
concentration of inclusions. At a low volume concentration
the shape is defined by an ellipse, which tends to assume the
geometry of a super-ellipse (Lisle, 1988) with increase in
volume concentration (Fig. 5a and d).

4. Geological implications
4.1. Strain distributions

Based on the above theory, numerical model experiments
were run to investigate the influence of volume concentra-
tion of rigid inclusions on the nature of strain distribution in
the matrix around an inclusion. The initial models had
small circular markers in a Cartesian grid. The model was
deformed by incremental shear strain according to the velo-
city functions in Eq. (5), following the same procedures
described in an earlier publication (Mandal et al., 2001).
The shapes and orientations of the deformed markers reveal
the nature of strain heterogeneity around a rigid inclusion in
an interacting state. When the volume concentration of rigid
inclusions is low (p, < 0.01), the strain distribution (Fig.
6a) is similar to that observed around a non-interacting,

single inclusion in numerical as well as physical model
experiments (Masuda and Ando, 1988; Ildefonse et al.,
1992; Mandal et al., 2001). With increase in p,, there is
an overall increase in finite strain around an inclusion
under the same finite bulk shear. At a large value of p,
(= 0.4) models show a strongly heterogeneous strain distri-
bution, forming curved zones of large finite strain on either
side of the rigid inclusion (Fig. 6d). In addition, the XY
planes of finite strain ellipses away from the inclusion
verge antithetically with respect to the shear direction
(Fig. 6d).

4.2. Distortion patterns of passive foliations

Previous studies reveal that the initial orientation of the
foliation and the ratio of pure shear and simple shear rates
control the distortion pattern of the foliation around an
inclusion (Ghosh, 1975; Masuda and Ando, 1988; Mandal
et al., 2001). Our numerical models indicate that the volume
concentration of rigid inclusions is an additional factor that
could control the distortion pattern to a large extent. At low
volume concentrations (p, < 0.01) the distortion pattern is
characterized by inwardly convex curvatures of the passive
foliation (Fig. 7a), as observed in earlier numerical and
physical model experiments (Ghosh, 1975; Masuda and
Ando, 1988; Mandal et al., 2001). With increase in p,
there is an overall back rotation of the foliations with respect
to the bulk shear direction (Fig. 7b and c). At large volume
concentrations tight folds, verging synthetically to the shear
sense, develop near the surface of the rigid inclusion (Fig.
7d). Secondly, the foliations show a large-scale S-like
distortion (Fig. 7d).

It can be noted that the external foliations may be
entrapped by growing porphyroblasts, giving rise to diverse,
complex types of inclusion trail structures reported from
many metamorphic terrains (e.g. Hickey and Bell, 1999).
Earlier theoretical and numerical studies indicate that the
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Fig. 5. Contrasting flow patterns around inclusions with increasing values of p,, (where p, = a’/b°, 2a: inclusion diameter and 2b: mean inter-inclusion
distance). (a) Flow pattern with eye-shaped separatrix, (b) flow pattern with two stagnation points (0) lying on the central shear plane, on either side of the
inclusion, (c) pattern with typical bow-tie shaped separatrix (cf. Passchier 1994), and (d) pattern with the separatrix approximating the geometry of a super-

ellipse.

initial orientation of foliation, the shape and orientation of
inequant porphyroblasts and the bulk vorticity of deforma-
tion or the geometry of overprinting crenulations are the
principal factors governing the inclusion trail structure
(Samanta et al., 2002, and references therein). The present
study suggests that the volume concentration of porphyro-
blasts is an additional factor determining the distortion
pattern of the external foliation and thereby the inclusion
trail patterns within the growing porphyroblasts.

4.3. Mantle structures around porphyroclasts

Several physical factors, such as clast-size reduction rate,
nature of bulk deformation, clast-shape etc., have been

recognized to control the development of different types
of mantle structures around porphyroclasts (Passchier and
Simpson, 1986; Passchier, 1994; Bjornerud and Zhang,
1995; Masuda and Mizuno, 1996; Mandal et al., 2000b).
In this section we investigate the development of mantle
structures in multiple porphyroclast systems. A set of
experiments was conducted under simple shear by varying
the volume concentration of porphyroclasts at a constant
clast-size reduction rate. When the volume concentration
is low (p, = 0.01), the mantle structures develop with inci-
pient o-type tails (Passchier and Simpson, 1986), which
with progressive increase in bulk shear turns into a typical
0, and the mantle finally becomes composite, showing 6—¢
tails (Fig. 8a). With increase in volume concentration the
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Fig. 6. Variations in the strain distributions around an inclusion for different values of p, at same bulk shear (y = 1). Note that with increase in volume
concentration the finite strain around the inclusion increases. Also, note in (d) that the vergence of long axis of the strain ellipse away from the inclusion (lower
part of top-right and upper part of bottom-left corners) becomes antithetic to sense of bulk shear.

mode of mantle development varies discernibly. At
py= 0.1, the mantle at the initial stage is nearly of ¢-type
(Passchier, 1994), that turns into a typical &-structure in
the course of progressive bulk shear (Fig. 8b). When the
volume concentration is large (p, = 0.2), the mantle struc-
ture shows single ¢-type tails on either side of the
porphyroclast throughout the deformation (Fig. 8c). We
performed another set of experiments at a higher size
reduction rate of porphyroclast. In this case at a low
volume concentration (p,=0.01) the mantle develops
with o-type tails, as seen in earlier physical and numer-
ical experiments (Passchier and Simpson, 1986; Bjornerud
and Zhang, 1995; Mandal et al., 2000b). With progressive
increase in p, the tail structures tend to be symmetrical,
and attain a ¢-type geometry (Fig. 9). In both sets of
experiments, for higher values of volume concentration

the tails show an overall distortion at a large finite bulk
shear (Figs. 8c and 9).

5. Bulk viscosity of rocks containing rigid inclusions

Treagus (2002) has recently presented a theoretical
model, based on the principles of self consistent mechanics
(SCM) of composites, giving the expression of bulk viscos-
ity of two-phase viscous mixtures as a function of phase
viscosities and shape and concentration of particles or
clasts. In this section we show that the theoretical analysis
given in Section 3 can also be utilized to derive the bulk
viscosity of suspensions containing mechanically interact-
ing spherical rigid inclusions (cf. Mandal et al., 2000a). Gay
(1968) gave a mathematical equation for measurement of
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Fig. 7. Distortion patterns of passive foliations (initially parallel to the shear direction) in the neighborhood of an inclusion. Note that the distortion pattern at
low values of p, is exactly similar to those obtained from models based on single-inclusion system (Masuda and Ando, 1988; Mandal et al., 2001), but

becomes increasingly complex at higher values of p, (y = 1).

bulk viscosity using an interaction factor, given by Happel
(1957). The factor, however, has been formulated by consid-
ering only the distortion part of the bulk deformation, where
the effect of mechanical coupling of rotational motion of
rigid inclusions has not been taken into account. It is evident
that such a coupling is likely to develop additional resistive
forces in the flow and thereby modify the bulk viscosity, as
outlined below.

The calculation of viscosity requires estimation of energy
involved in the flow of the bulk volume under consideration
(Jeffery, 1922). In our case we consider strain energies asso-
ciated with distortional and rotational parts of the bulk
shear, as expressed in the velocity functions in Eqgs. (A2)
and (A10) in Appendix A. By taking the volume integrals
over the strain components in the perturbed matrix flow the
energy required per unit time can be obtained from the

following equation.

b rm (T
E=Vny*+ 4V~r]J J J [ef, + €9 + €44
alO0 Jo
(6)
+ %(yf,, + s+ y%,d,)] r?sinfdrdodé

The second part of Eq. (6) represents the energy asso-
ciated with the perturbed flow field around rigid inclusions.
Utilizing Eq. (A10), we get the strain components of the
flow perturbation due to the rotational interaction, and
after substituting their expressions in Eq. (6) have:

. 3 K ’
Ex=v307(5) (1— j;) ™

It is evident from Eq. (7) that the energy developing due
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Fig. 8. Progressive development of mantle structures around porphyroclasts under varying clast concentration. The size reduction rate of porphyroclasts was

kept constant at 0.125 unit/s (1 unit = 10> X initial radius of porphyroclast).

to rotational interaction tends to be zero as the inter-inclu-
sion distance b becomes large, and will not affect the bulk
viscosity of rocks containing rigid inclusions in low volume
concentrations. Considering the strain components for flow
perturbation due to the distortion component e,,, as in Eq.
(A6), one can have after Happel (1957):

Ep = Vny’

» 55 a_3 A(alb)” + 10 — (84/11)(alb)*
10 5 \ 10(1 — (a/b)™®) — 25(a/b)’(1 — (alb)*)

®)
Now, the energy required for the bulk flow is:
E, = Vn,y’ ©)

where 7, is the bulk viscosity of the rock. Balancing E),with

Fig. 9. Transition from o- to ¢-type geometry of mantle structures with
increasing volume concentration. The size reduction rate of porphyroclast
was 0.75 unit/s.

the total energy involved in the perturbed and unperturbed
flow (Egs. (7)-(9)), we get the expression of the bulk
viscosity as:

M = (1 + 5.5p,¢; + 1.5p,4,) (10)

where | and ¢, are interaction factors, which have the
following expressions.

40" + 10 — (84/11)a?

V1= 100 = %) — 2500(1 — o)’

Y, = oz6(1 — a3)

Y, and ¢, represent interaction factors corresponding to
distortional and rotational parts of the bulk shear,
respectively. In the absence of rotational interaction, i.e.
Y, =0, the expression of bulk viscosity would be:
1, = n(l + 5.5p,), as given by Happel (1957). It may
be noted that this expression of the bulk viscosity differs
from the classical one: n, = m(1 + 2.5p,) (Einstein, 1911;
Jeffery, 1922; Taylor, 1932). This discrepancy has been
discussed in detail by Happel (1957). The present study is,
however, intended to show the effect of rotational interac-
tions on the bulk viscosity of rocks undergoing rotational
deformation. The analysis reveals that the bulk viscosity of
inclusion-matrix systems varies non-linearly with the
volume concentration parameter p, (cf. Treagus, 2002),
and the variation follows closely that predicted by Happel
(1957). However, the rotational interaction factor i,
slightly enhances the bulk viscosity (Fig. 10).

6. Summary and conclusions

Our analysis confirms that, in multiple-inclusion systems
the volume concentration of inclusions has a significant
control on the flow pattern and deformational features
around individual inclusions, as revealed from physical
model experiments (Ildefonse et al., 1992, 1993; Arbaret



218 S. Kumar Samanta et al. / Journal of Structural Geology 25 (2003) 209-221
9
v
,/
v
//
8 - i
///
7 A p // z
= //’
> P
= s
6 P
///
5 == ”
4 =" , ; ; . -
0.3 0.325 0.35 0.375 0.4 0.425 0.45
P,

Fig. 10. Non-linear variation of bulk viscosity of rocks, normalized to matrix viscosity (1,/n) with volume concentration parameter p, (= a’/b®). The
calculated plots based on the present model lie slightly above that obtained from Happel’s model (dashed line).

et al., 1996). When the present model is applied to a system
with low volume concentrations (p, <0.01), it yields
results similar to those obtained from single inclusion
models (e.g. Masuda and Ando, 1988; Bjornerud, 1989;
Mandal et al., 2001).

The flow pattern around an inclusion in a multiple-inclu-
sion system is characterized by an eye-shaped separatrix at
low volume concentrations (p, < 0.01), which is identical
to that around a single, equant inclusion under simple shear
(e.g. Mandal et al., 2001). With increase in volume concen-
tration the effect of mechanical interactions sets in, giving
rise to a pattern with a bow-tie shaped separatrix, which is
phenomenologically similar to the influence of pure shear
component in the general type of non-coaxial deformations
(e.g. Mandal et al., 2001). In the present case, however, the
stagnation points in the flow, defining the long dimension of
the separatrix always lie on the central shear plane (cf.
Passchier, 1994), which is not the case in single inclusion
system under general deformations (Mandal et al., 2001).
Separatrix of super-elliptical shape is another characteristics
of interaction. The effect of mutual mechanical interaction
is also evident from the overall distortion of structures, like
porphyroclast tails, foliations around the inclusions (Figs.
7d and 8c), which cannot be explained by models based on
single inclusion systems.

Our analysis is valid for rock systems containing equant
inclusions. Earlier studies show that the flow patterns and
strain distribution around inequant inclusions are much
more complex (Ildefonse, 1992, 1993; Mandal et al.,
2001). Again, the shape of the inclusions affects the rotation
behavior, and the mechanical interactions of inequant
inclusions are thus likely to be significantly different from
that predicted from the present model. The other limitations
of the present study are: (1) the matrix is considered as

Newtonian viscous, and mechanically isotropic in the theo-
retical model; (2) a non-slip condition prevails at the matrix-
inclusion interfaces; (3) in the multiple inclusion system the
inclusions are assumed to be non-clustering, and float as
isolated bodies, which, however, may cluster at large finite
shear in progressive deformation (Arbaret et al., 1996) when
the present theory will not be applicable; and (4) the theo-
retically derived rotation of interacting inclusions do not
exactly match with that obtained from physical experi-
ments, which is probably due to differences in the numerical
and experimental set-ups.
The main conclusions of the present study are:

1. Lamb’s (1932) hydrodynamic theory can be utilized to
study the deformation of rock systems containing multi-
ple spherical inclusions that may mechanically interact
with one another.

2. The volume concentration of rigid inclusions is found to
be an important physical parameter controlling the flow
pattern around individual inclusions. At low volume
concentrations the flow pattern around an inclusion is
characterized by an eye-shaped separatrix, which is
replaced by a bow-tie shaped separatrix with increase
in volume concentration. At large volume concentrations
the separatrix, enclosing the closed particle paths,
assumes the geometry of a super-ellipse.

3. For a given bulk shear the strain distribution around a
spherical rigid inclusion becomes increasingly heteroge-
neous with volume concentration, which conform to
earlier experimental observations (Ildefonse et al., 1992).

4. For a given rate of size reduction, the mantle structures of
equant porphyroclasts change with increasing volume
concentration. When the size reduction rate is low, the
mantle is characterized by composite 6—¢ tails at a low
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volume concentration, which becomes typical § tails at
larger volume concentration. At higher size reduction
rates, o-type tails form when the volume concentration
is low. The tail structure transforms into ¢-type with
increasing volume concentration.

5. In simple shear deformation the mechanical interaction
of rigid inclusions retards their rotational motion which
slightly enhances the bulk viscosity of the inclusion-
matrix system.
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Appendix A. Derivation of velocity functions
The general expressions of the velocity components in the

flow perturbations around a spherical rigid inclusion are as
follows (Lamb, 1932):

1 P2 p,
"= 52{2(2n+ D) ox

+
nr2n 3

+ 9 P }
(n+ DC2n+ 1D)2n + 3) dx r*!

D
+Z<(9 n+Z(9Xn _yﬁXn)
ox dy 0z

_ 1 r p,
' 52{2(2n+ D oy
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D d d
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We obtain the solution of velocity components (Eq. (A1))
in two steps: one for the distortion part, and the other for the
rotational part of the bulk shear flow. In obtaining the flow
perturbation in response to the distortion part (€,,) of the
bulk shear flow we follow the mathematical approach of
Happel (1957). Consider a spherical coordinate system (r,
0, ¢) with the origin at the center of the spherical inclusion
under consideration (Fig. 3c), which has the relation with
the Cartesian space as: x = rcosf, y =r cos¢ sinf and z =
r sing sin#.

Employing the following condition: x{, + y{, + z{, = 0,
where £, {,, and . are the components of vorticity vector at
a point on a spherical surface around the inclusion, Happel
has given a solution of Eq. (A1) in terms of the spherical
coordinates as:

6 3D
v, = (6r3A +2rB+ - C— —4)700sd> sinf cos@
r r

D
Vg = <5r3A +rB + F)j/cosd) (cos26 — sin26) (A2)
D
Vg = (—5r3A —rB — —4)§fsinqb cosf
r

A, B, C and D are constants and their expressions are as
follows:

5 o 5(4+10a’ 1
A=—-——V|—" 18 B="—T"|B- =,
2a2(10+4a7)B 4(10+4a7)B 2

54° 54°
C=-"B D=——"—

P 10+ 40P

(A3)
where
B= 10 + 4o’
—10(1 — @'%) — 2543(1 — o)

and o = a/b.

We now consider the flow perturbation that develops in
response to the rotational part ({) of the bulk shear flow. The
fluid in the shell under consideration experiences concentric
motion due to the rigid rotation, following the condition:
xu + yv + zw = 0. This is satisfied if p, and ¢, in Eq. (A1)
are taken to be zero. In that case:

X X,
u= ZZWH —y—";

9z
X 24
= - ; A4
DI (Ad)

w= Zy &Xn —x &Xn
ox dy

The perturbation is phenomenologically similar to that

develops around a rotating rigid inclusion within a stationary

fluid medium. The expression of y,, is chosen in such a manner
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that the perturbation decreases with increasing distance from
the surface of inclusion. Following Lamb’s (1932) approach,
we choose the expression of the solid harmonic function y, as:
X—» = KZIr*, K is a constant term, the expression of which
needs to be determined by using boundary conditions. Substi-
tuting the expression of y, in Eq. (A4), we find:

uz—f—3y; V:r£3X; w=0 (AS)

It can be shown from Eq. (AS5) that the motion develops a
flow field around an inclusion rotating at an angular velocity
/2 in a stationary medium, the velocity components of
which are:

3. 2
rcosd; Ve = — —
> ¢ 3

a
Vg = —¢
r

rcos@sing

(A6)

v, =0;

|
(SIS

We are now in a position to determine the angular
velocity of mechanically interacting spherical inclusions,
utilizing the mathematical functions in Eq. (A6). Consider
the spherical volume as in Fig. 3a. In the absence of any
mechanical interaction the velocity components in the fluid
at the surface of the shell (r = b) due to rotational compo-
nent { in terms of the spherical co-ordinates are:

o __ . o __ ‘y . o __ y :
v, =0; Vg = Ebcosdx V= — Ebsmdmos(ﬁ (A7)

The tangential velocity component in Eq. (A7) acts
oppositely to retard the body rotation of the fluid shell.
From Egs. (A6) and (A7), we can then write:

. 3 .
w'bcosd = - beosd — a_g Y beoseh (A8)
2 b 2
where o' is the effective rate of rotation of the inclusion at
the center of the shell.
The equation finally takes a simple form:

3 .
a)/:(l—Z—S)% (A9)

Eq. (A9) shows that the inclusion rotates at a slower rate
than single inclusions rotating at a rate of /2. The perturba-
tion due to rotational interaction can be considered as the
velocity differences in the matrix developing due to the
difference in the rotation rate. It then follows from Eq. (AS):

.6
—_ 0 _Yy 4 .
v, = 0; VR = 5 Wcosq'),
(A10)
.6
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