
 1

Quantifying and Correcting Errors 
Derived from Apparent Dip in 

the Construction of Dip-Domain Cross-Sections 
O. Fernández, J.A. Muñoz, P. Arbués 

Dept. de Geodinàmica i Geofísica, Facultat de Geologia, Universitat de Barcelona, 

08028 Barcelona, SPAIN 

 

 
Abstract 

This paper deals with the errors introduced in the construction of cross-sections due to the use of apparent dips 

and thicknesses when projecting data onto the plane of section. These errors are analyzed under the perspective of 

cross-sections constructed with the dip-domain method. A method to evaluate variations of unit thicknesses due 

to distortion during projection is presented, and modifications to the dip-domain method are proposed to account 

for them, including the use of apparent bisectors. Methodology is discussed for inclined section planes, and the 

equations to calculate apparent thickness on inclined sections are presented. An analytical definition of 

cylindrical folding is also derived. 

 

1. Introduction 

The construction of geological cross-sections implies the need to project data onto the plane of 

section, and to interpolate between these points of known information. The projection is 

generally performed according to a vector of structural significance, and yields a set of data 

(apparent dips and thicknesses) on the cross-section plane. Interpolation between these points 

can then be carried out by different methods (e.g. Suppe, 1985, Wojtal, 1988, Groshong, 

1999). The concepts in this paper will be discussed under the perspective of cross-section 

construction with the dip-domain method, but are also applicable to other methods in most 

cases. 

Natural deviation from ideal geometrical models, as well as simplifications made by the 

geologist during section construction can lead to the appearance of certain errors that are 

frequently overlooked and not accounted for. The most important of these aspects is the 
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variation of apparent thickness of units throughout the cross-section, an inevitable result of the 

projection of field and well data onto the plane of section.  

This paper provides the tools to evaluate the error associated to variations of apparent 

thickness on the plane of section, as well as the mathematical methods to account for these 

variations. Cases of both vertical and inclined sections are discussed, and the manner of 

calculating apparent thicknesses on inclined sections is defined. 

 

2. Basic considerations 

As has been mentioned, for the present analysis, the case of cross-sections constructed with 

the dip-domain method will be considered. The planar dip-domain method (Suppe, 1985, 

Wojtal, 1988, Groshong, 1999) is widely used in the construction of cross-sections through the 

brittle domain of the Earth’s crust and is very easily applied either by hand, with the use of 

CAD software or with the use of specialized geological software. Furthermore, cross-sections 

constructed in this manner permit an easy length and area balance. 

 The basic assumptions to the dip-domain method are: 

a) unit or bedding thickness is constant throughout the section. It is possible to apply the dip-

domain method in cases where the thickness of units varies along the cross-section due to 

stratigraphic geometry or internal strain, with a slight modification, as described by Suppe 

(1985), Wojtal (1988), and Groshong (1999); 

b) folds are kinkoidal, which means the limbs are planar dip-domains, the hinge zone is 

reduced to the actual hinge line or axis, and the axial surface is planar. Folds of complex 

geometry can be broken down into as many planar dip-domains as necessary, separated by 

as many axial planes; and 
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c) the axial plane bisects the angle formed by both limbs, and neatly distinguishes two 

domains of constant dip. 

These conditions imply that on a cross-section, limbs of a fold are represented as straight lines, 

and the axial surface is the bisector of the angle formed by both lines. By this means, thickness 

is preserved from one dip-domain to the next. 

One can also deduce from condition (b) that adjacent dip domains behave as a cylindrical fold 

(as described by Wilson, 1967), their hinge line –which is the intersection of both limbs– 

being the generatrix and fold axis. To effectively preserve thickness of layers throughout the 

section, fold axes must be perpendicular to the section plane, such that dip directions of all the 

dip-domains and axial planes are contained within the section plane. 

For a more thorough treatment of the dip-domain method, the reader is referred to Suppe 

(1985), Wojtal (1988), and Groshong (1999). 

 

TABLE 1 

 

3. Apparent dips, thicknesses and bisectors 

Geological structures will rarely adjust perfectly to a geometrical model, as these models are 

mere approximations to physical reality. When applying the dip-domain method, we are 

assuming we can break down structures into a finite amount of planar dip-domains. This 

operation means we are sacrificing precision for the sake of simplification, and therefore 

introducing a certain error in our interpretation. This error is sometimes small enough as to be 

negligible. 

For the ideal application of the dip-domain method, we must be able to assume the conditions 

considered in Section 2. Furthermore, the proper use of this method requires for the plane of 



 4

section to be perpendicular to all fold axes, such that thickness and angular relations between 

fold limbs and axial planes are effectively preserved on the plane of section. 

If we consider a vertical section plane
*
 perpendicular to all fold axes, then the dip direction of 

all the dip-domains is contained within the plane of section. The same happens with the dip 

direction of axial planes. We know the apparent dip (β’) of these dip-domains and axial planes 

on the section will be equal to their real dip (β), according to the following equation (see Fig. 

1): 

tan β’ = tan β ·  cos θ   (1) 

and apparent thickness of the units on the section (t’) will be equal to their real thickness (t) 

(equation from Coates, 1945, see Fig. 1): 

t’ = t ·  (1 - sin
2β  ·  sin

2θ)
-1/2

  (2) 

as θ=0 for both cases, where θ is the horizontal angle formed by the dip direction of the dip-

domains (α) and the strike of the cross-section (δS), and is defined as: 

θ = α - δS    (3) 

FIGURE 1 

In a case such as this, the dip-domain method will prove perfectly valid, as unit thickness 

remains constant for all the dip-domains, and always equal to the real thickness. Apparent dips 

of layers will also be equal to their real dips, and bisecting axial planes will be represented on 

section as lines bisecting the angle formed by adjacent dip-domains. 

However, these ideal conditions are rarely found. Most frequently we face cases where the 

plane of section is not perpendicular to all fold axes because: 

a) fold axes are not parallel among themselves, i.e. the structure is not perfectly cylindrical; 

                                                 
*
 From now on, we will work with vertical section planes to make calculations and concepts easier to express. 

The case of inclined section planes is considered in a latter section. 
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b) the section is deliberately built so as not to be perpendicular to the axes.  

Therefore, angle θ will not necessarily be θ = 0, nor constant, for all dip-domains. This has 

two major consequences: 

a) apparent dips of dip-domains will not be equal to real dips. The same will happen for axial 

planes, as their dip direction need not be contained in the section. Thus, axial planes 

projected onto the cross-section will not necessarily bisect the angle between adjacent dip-

domains. The projection of axial planes onto the section are what we will call apparent 

bisectors; 

b) dip-domains with different values of θ will have different apparent thickness. This change 

in apparent thickness is accounted for by the fact that apparent bisectors do not bisect the 

angle between dip-domains on the section, and therefore thickness varies across them.  

 

4. Importance of apparent bisectors and thicknesses 

The construction of a cross-section requires us to accept certain premises and simplify reality 

to a certain extent, as well as to rely on measurements and calculations performed to input the 

basic data onto the cross-section. The whole process implies the need to deal with errors, 

which in some cases may be negligible. The sources of error may be diverse and we will only 

discuss errors derived from the incorrect use of the dip-domain method in section construction. 

In case of units or beds of constant thickness, the correct application of the dip-domain method 

requires these units to maintain constant thickness throughout the cross-section. This will only 

occur when the plane of section is oriented perpendicular to all fold axes in an area. When this 

cannot be achieved we will have departures from the ideal geometry that will prevent 

thickness from being preserved between different dip-domains. Each dip-domain will present 
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different geometrical relationships with the cross-section plane, yielding different apparent 

thicknesses when projected. 

The resulting variations in apparent thickness from one dip-domain to another can often be 

overlooked as being too small to significantly alter a proper interpretation. However, such an 

assumption could sometimes lead to introduction of significant errors in a cross-section, and 

would require a more careful geometrical analysis. 

The best way to estimate the possible error derived from this assumption is to observe the 

variations in apparent thickness between the different dip-domains in the section. We know 

that the relative difference in apparent thickness between two dip-domains can be defined as 

follows, according to Eq. (2): 

t1’ / t2’ = (1 - sin
2β2 ·  sin

2θ2)
1/2

 / (1 - sin
2β1 ·  sin

2θ1)
1/2

 (4) 

Ideally, this calculation should be performed for all possible combinations of dip domains 

along the section to find out what the maximum variation in apparent thickness will be.  

For a general case in which we assume a perfectly cylindrical structure projected onto a 

vertical plane, we can calculate apparent thicknesses for beds belonging to that structure. The 

minimum apparent thickness for any family of beds will correspond to that which has a value 

of θ=0º. Maximum apparent thickness will be displayed by that bedding with a value of 

θ=90º
*
. For a certain cylindrical structure (defined by the orientation of its fold axis), we can 

find the orientation of the beds with values of θ=0º and 90º using Eq. 6 (see section 6), and 

considering δ=0 for a general case. 

The results of calculating maximum variation thickness for different fold axis orientations are 

shown in Fig. 2. Given is the maximum variation in apparent thickness (expressed as 

                                                 
*
 This can be easily proven by taking the first derivative of Eq. 2 (dt'/dθ). Relative maxima and minima will occur 

at values of θ=n*π/2, where n is a whole number. 
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[maximum possible apparent thickness - true thickness]/true thickness) as a function of the 

orientation of the fold axis relative to the section plane (δ) and its plunge (β0). 

FIGURE 2 

 

5. Evaluating errors and obtaining apparent bisectors 

An aspect to bear in mind is what the maximum acceptable tolerance for apparent thickness 

variation is. This is a decision that will depend largely on: 

a) the  precision required and expected from the cross-section; 

b) the degree of complexity one is wishing to tackle in calculations; 

c) the precision of the original measurements (field data: dips, unit thicknesses); 

d) the variability of dips within the dip domains defined; and 

e) the variability of the original stratigraphic thicknesses. 

If variations in apparent thickness are small enough (say, for example, under 5% or 10% 

maximum variation), then we may choose not to represent these variations when constructing 

our cross-section. In such a case, we can use the regular dip-domain method, and build our 

section with dip-domains separated by bisectors, assuming constant thickness. 

However, when these variations are relevant enough to be represented on the cross-section, 

they should be depicted by separating dip-domains with apparent bisectors. This section deals 

with the different ways in which we can determine the angular relations between dip-domains 

and apparent bisectors on the plane of section. 

 

5.1. From thickness variations 

When apparent thickness is well known for the different dip-domains, and is known to vary 

across axial surfaces –either because of real thickness variations (due to stratigraphy or strain), 
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or if apparent thickness of a unit changes along the section– we can determine the dip of the 

apparent bisector through the following equation (Groshong, 1999): 

t2’ = t1’ ·  sin(β2’ - βB’) / sin(βB’ - β1’)  (5) 

where t1’ and t2’ are the apparent thicknesses on both sides of the axial surface, β1’ and β2’ the 

corresponding dips, and βB’ the apparent dip of the axial surface or apparent bisector. 

 

5.2. From real dip-domains 

When we know the real dip of the dip-domains we want to separate with an apparent bisector, 

the geometrical problem posed is simple. All we need to do is calculate the orientation of the 

axial surface bisecting these dip-domains and then project it onto the section plane to find its 

apparent dip (Eq. 1). 

There are two ways of obtaining the orientation of the axial surface. The most straightforward 

way consists in using a stereoplot as is described in most manuals of structural geology (e.g. 

Marshak and Mitra, 1988, Leyshon and Lisle, 1996). 

The second possibility, more useful for larger amounts of data, is calculating the orientation 

numerically (method adapted from Groshong, 1999). This process implies a certain 

complexity as it requires converting regular dip direction – dip measurements into 3D 

vectorial coordinates. For a description of the process look into Appendix 1. 

 

5.3. From apparent dips on the cross-section 

One last way to calculate the apparent dip of the bisectors is from data already projected onto 

the section plane, through the assumption of a perfectly cylindrical folding. If we can make 

such an assumption (even if it is only for two adjacent planar dip-domains), we can consider 

our fold as a family of planes defined by the orientation of the fold axis (with plunge β0, 
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direction α0). We can therefore define any plane in the cylindrical fold (with dip direction α1, 

dip β1, Fig. 3) as:  

    cos(α1 - α0) = tan(β0) / tan(β1) (6) 

FIGURE 3 

From combining Eqs. (1) and (3) we get: 

    tan β1 = tan β1’ / cos(α1 - δS)  (7) 

and solving Eq. (6) we find that: 

    tan β1 = tan β0 / cos(α1 - α0)  (8) 

Knowing the values for α0, β0, and δS, for any dip-domain on the cross-section with a certain 

apparent dip (β1’) we can calculate the orientation of the real plane which corresponds to such 

an apparent dip. 

Repeating this process we can obtain the real dips for the two dip-domains we mean to bisect, 

and can proceed to repeat the steps outlined in Section 5.2. 

 

6. Non-vertical section planes 

As has been mentioned, all previous calculations took into consideration a vertical cross-

section plane. In case the section plane is not vertical, the equations applicable to calculate 

apparent dips and thicknesses vary considerably. However, the concepts mentioned in this 

paper are still the same. 

To obtain the apparent dip of any plane (dip direction α, dip β) on an inclined section, one 

must apply the following equations (DePaor, 1988) instead of Eq. (1): 

NOTE: The system of equations posed (Eqs. 7 and 8) cannot be solved either by substitution or by the more 

frequent iterative processes. One possible way around this problem is by substituting in for α1, values in intervals of 

0.5º or 1º until both equations yield the same result. This can be done either with a spreadsheet or with a simple 

BASIC program. 
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   tan β’ = sec βS / L   (9) 

   L = [(sec θ ·  tan βS) / tan β] - tan θ (10) 

where βS is the dip of the section plane, and θ is defined according to Eq. (3), where: 

    δS = αS - 90º    (11) 

As for the apparent thickness of units on inclined sections, the reader is referred to Appendix 

2, where a new method to obtain apparent thickness on an inclined section is proposed. No 

general formula is presented, rather a sequence of steps that can easily be performed with a 

spreadsheet or a simple BASIC program. 

However, for evaluation of errors, due to the complexity of calculations in the case of an 

inclined section, it is recommended to rotate the section plane to a vertical position, and all the 

data accordingly (this process can be done easily using structural geology software). Once this 

has been done, evaluation of errors due to variations of apparent thickness can be easily 

performed as for a vertical section plane (Section 4). Computation and projection of axial 

planes and apparent bisectors can then be done with the original orientation data (Section 5). 

 

7. Illustrative example 

To complete the discussion, an example is provided showing the application of apparent 

bisectors in the construction of cross-sections. A hypothetical case has been chosen, following 

the geometrical models of Suppe & Medwedeff (1990) for fault-propagation folding. In this 

case, a model considering a ramp dipping 30º to the right and horizontal flat has been 

constructed (Fig. 4a). The model considers 5 layers (A, B, C, D, and E; Fig. 4a) folded into 5 

different dip-domains (I, II, III, IV, and IV; Fig. 4a), and contains projected surface dip data 

and dip data from two wells. Fig. 4a is a cross-section parallel to transport direction, i.e. 
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perpendicular to the fault-propagation fold axis, and therefore represents the real dips and 

thicknesses of the depicted units. 

The structure is assumed to be laterally continuous, that is, the fault and fold geometry is 

preserved along strike (which is a direction perpendicular to the plane of section in Fig. 4a). 

With this assumption in mind, two cross-sections with strike at 45º to Fig. 4a have been 

constructed (Figs. 4b and 4c). The dip data and wells have been projected onto the new cross-

section plane horizontally along strike (perpendicular to the section in Fig. 4a), and apparent 

dips have been calculated with Eq. 1 (with a value of θ=45º). 

FIGURE 4a,b,c 

The cross-section in Fig. 4b has been constructed considering the apparent dip of the bisecting 

planes. Therefore, thickness varies along the section up to 30% with respect to the real 

thickness of units. As can be observed, section in Fig. 4b is equivalent to that in Fig. 4a, 

applying a horizontal exaggeration factor of 1.414 (cosine of 45º). 

The cross-section in Fig. 4c, on the other hand, has been constructed using the geometrical 

bisectors of the projected dip-domains (bisecting the angles formed by the apparent dips). It is 

impossible to generate a proper cross-section with such a geometrical construction, and what 

is shown is an attempt to adjust to the given data as best as possible. This section has been 

constructed assuming a fault-propagation fold geometry, to establish the overall distribution of 

axial surfaces. By placing the axial surfaces between dip-domains I and II and IV and V, the 

base of the ramp and the tip of the fault can be found, assuming the ramp to dip parallel to the 

backlimb of the fold. Subsequently, the position of the other axial surfaces can be found. 

However this produces the following errors: 

a) dips that should be in domain III fall into dip-domains II and IV; 
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b) the tip of the fault reaches into unit B; 

c) the crest of the anticline rises with respect to its original position (the well located on the 

crest has been projected at the same height as in Fig. 4a); 

d) the well on the crest of the anticline cuts through the fault, when it originally didn't; 

e) displacement along the fault (along transport direction) increases by 45% with respect to 

the displacement along the section in Fig. 4a; 

The case which has been presented is intended for illustrative purposes, and as such, 

conditions have been exaggerated to accentuate errors in section construction. However, 

similar errors (although less spectacular) will also be observed constructing sections with 

lower obliquity to transport direction. 

 

8. Conclusions 

The errors that can arise from the use of the dip-domain method, with dip-domains separated 

by angle bisectors instead of apparent bisectors on the plane of section, can sometimes be 

negligible. However, it is important to evaluate the possible error involved (by means of the 

possible variation in apparent thicknesses) before engaging in the construction of the cross-

section. The use of apparent bisectors will account for variations in thickness, of either 

stratigraphic or deformative origin, or due to distortions introduced by projection. 

When working with inclined section planes, the considerations are the same. However, it is 

suggested that in these cases the section plane be rotated to a vertical position along with the 

data. Once error evaluation has been performed, all other steps can be performed with the 

original orientations. 
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Appendix 1. Finding the bisecting planes for two planar dip-domains 

For any two given planar dip-domains of known orientations (α1, β1 and α2, β2), we must 

firstly calculate the direction cosines for their poles (i.e. the cosine of the angles formed by the 

planes’ poles and the x, y and z axes). They are defined as follows: 

l = sin β ·  sin α   (12.1) 

m = sin β ·  cos α   (12.2) 

n = cos β    (12.3) 

The vectors so obtained are of unitary length. Addition (or subtraction) of two vectors of equal 

length results in a vector that will bisect the angle they form. Thus, to find the pole of the 

plane bisecting the angle between the two dip-domains, all we need to do is add the two 

vectors obtained with Eqs. (12.1, 12.2, 12.3). 

    lB1 = (l1 + l2) / KB1   (13.1) 

    mB1 = (m1 + m2) / KB1   (13.2) 

    nB1 = (n1 + n2) / KB1   (13.3) 

Where KB1 is the length of the bisecting plane’s pole: 

    KB1 = (lB1
2
 + mB1

2
 + nB1

2
)
1/2

  (14) 
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To obtain the vector parallel to the maximum dip for the bisecting plane, all we need to do is 

first make sure the plane is “upright”, i.e. the pole points upwards. Therefore, if nB1<0 we need 

to reverse the signs on all the direction cosines (lB1, mB1, nB1). Next we must find the dip of the 

bisecting plane (βB1): 

    βB1 = arccos(nB1)   (15) 

The dip direction of the bisecting plane (αB1) is: 

    αB1’ = arctan(lB1 / mB1)  (16) 

which must be corrected according to the following table. 

αB1 = 180 + αB1’ if mB1<0 

αB1 = 360 + αB1’ if mB1>0 and lB1<0 

αB1 = αB1’ if mB1>0 and lB1>0 

However, there is a second possible bisecting plane, which will be perpendicular to this first 

plane. Of the two bisecting planes, one will bisect the acute angle formed by the dip-domains, 

while the other will bisect the obtuse angle. It is up to the geologist to decide which of the two 

is suitable in each case. 

The operation to obtain the second bisecting plane is now the same as in the first case except 

that Eqs. (13.1, 13.2, 13.3) are replaced by subtractions: 

    lB2 = (l1 - l2) / KB2   (17.1) 

    mB2 = (m1 - m2) / KB2   (17.2) 

    nB2 = (n1 - n2) / KB2   (17.3) 

And we repeat all the following steps until we obtain the orientation of the second bisector 

(αB2 and βB2). 

For a more complete description of the mathematical basis of the process, the reader is 

referred to Chaps. 2 and 4 of Groshong (1999). 
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Appendix 2. Apparent thickness on inclined section planes 

This section describes two possible methods to obtain the apparent thickness of a unit with 

known orientation, on an inclined section plane. The first consists in rotating the section plane 

and the unit so the section is in a vertical position. Having thus preserved the angular relation 

between both, the apparent thickness can be estimated with Eq. (2). 

However, an analytical solution is also possible, and preferrable, as it requires simpler 

calculations. It is as follows. First we must generate a vertical plane containing the line of 

maximum dip of the bedding (we will call this vertical plane π). We project onto it the cross-

section plane and calculate its apparent dip (Eqs. 1 and 3): 

    tan βS’ = tan βS ·  cos(αS - α1)  (18) 

On plane π we generate a segment perpendicular to the bedding with the length of the real 

thickness of the unit (t). We project this segment onto a line with the apparent dip of the plane 

of section (Fig. 5a). The length of the projected segment (tπ) is defined: 

    tπ = t / sin(βS’ - β1)   (19) 

FIGURE 5a,b 

We now work on the plane of section (Fig. 5b). We calculate the apparent dip of segment tπ 

(which is the same as the apparent dip of plane π, βπ’) on the plane of section. For this we 

combine Eqs. (3, 9, 10 and 11) to find the apparent dip (β’) of a plane on an inclined section: 

    tan β’ = sec βS / L   (20) 

  L = [(sec(α - δS) ·  tan βS) / tan β] - tan(α - δS) (21) 

    δS = αS - 90º    (22) 
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where βS is the dip of the section, δS its strike (defined by Eq. 22), and β is the dip of the plane 

we are projecting and α its dip direction (Eqs. 20 and 21 after DePaor, 1988). 

For plane π, these equations simplify to: 

    tanβπ’ = - secβS / tan(δ1 - δS)  (23) 

as βπ = 90º, and απ = δ1. 

The apparent dip of the layer on the plane of section can be found using the same equations 

(Eqs. 20 and 21): 

tanβ1’ = secβS / [(sec(α1 - δS) ·  tan βS) / tan β1  -  tan(α1 - δS)] (24) 

The thickness of the unit perpendicular to the apparent dip of the layer on the plane of section 

(apparent thickness) can then be defined (Fig. 3b): 

t’ = tπ ·  sin(βπ’ - β1’)   (25) 
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Table 1. Notation used in text: 
Variables: 

α azimuth of dip direction/plunge 

β angle of dip/plunge 

β’ angle of apparent dip on section plane 

δ strike 

θ horizontal angle between a line and the 

strike direction of section plane 

t thickness of layer 

t’ apparent thickness of layer on section 

plane 

 

Subindices: 

0 corresponding to fold axis 

1, 2 corresponding to dip-domains/bedding 

B, B1, B2 corresponding to bisecting planes (axial planes) 

S  corresponding to section plane 

π  corresponding to plane π (Appendix 2) 

 
no subindex indicates a general case (any 

subindex is applicable) 
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Figure 1. Maximum possible variation in apparent thickness throughout a N-S plane of 

section in function of orientation of fold axes. The structure has been interpreted as 

cylindrical, and the corresponding family of planes has been constructed for each axis 

orientation (Eq. 6). The apparent thickness for each possible plane in the family of planes has 

been calculated, and the maximum and minimum values have been compared ([maximum 

thickness – minimum thickness]/minimum thickness). Note that this graph includes axis 

plunges up to 60º (not depicted as the corresponding curve appears only in the right uppermost 

corner), and plunges over 60º will always present maximum possible variations in thickness 

beyond 100%. For axis azimuths 90º<α<180º, the graph is symmetrical across the y-axis. 
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Figure 2. Construction used to derive Eq. (6). In gray is a plane belonging to a cylindrical fold. The fold axis and 

dip vector of the plane are depicted. We know h = l0 ·  tan(β0) = l1 ·  tan(β1) ; and l1 = l0 ·  cos(α1 – α0). 
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Figure 3. (a) construction used to derive Eq. (19). This corresponds to a view of plane π onto which the section 

plane and the bedding have been projected (b) construction used to derive Eq. (25). This corresponds to a view of 

the plane of section onto which the bedding and plane π have been projected. 
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