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Abstract

It is hypothesized that the unit impulse response of a linearized kinematic diffusion (KD) model is a probability distribution

suitable for frequency analysis of hydrologic samples with zero values. Such samples may include data on monthly

precipitation in dry seasons, annual low flow, and annual maximum peak discharge observed in arid and semiarid regions. The

hypothesized probability distribution has two parameters, which are estimated using the methods of moments (MOM) and

maximum likelihood (MLM). Also estimated are errors in quantiles for MOM and MLM. The distribution shows an

equivalency of MOM and MLM with respect to the mean value—an important property for ML-estimation in the case of the

unknown true distribution function. The hypothesized KD distribution is tested on 44 discharge data series and compared with

the Muskingum-like (M-like) probability distribution function. A comparison of empirical distribution with KD and M-like

distributions shows that MOM better reproduces the upper tail of the distribution, while MLM is more robust for higher sample

values and more conditioned on the value of the probability of the zero value event. The KD-model is suitable for frequency

analysis of short samples with zero values and it is more universal than the M-like model as its modal value cannot be only

equaled to zero value but also to any positive value.

q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

There exists a multitude of models for flood

frequency analysis (FFA). These models can be

broadly classified into: (1) empirical, (2) phenomen-

ological, and (3) physically based. An excellent

discussion of empirical models is given by Stedinger

et al. (1993) and Rao and Hamed (2000), among

others. Till today these models continue to be most

popular for doing FFA all over the world. Phenom-

enological models employ a set of probabilistic

axioms, which lead to a probabilistic model of one

or more flood characteristics. Examples of these types

of models are those based on the use of random

number of random variables (Todorovic, 1982), the

entropy theory (Singh, 1998), and the like. These

models received a great deal of attention in the 1970s
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and the 1980s but did not become popular, partly

because of their higher mathematical demands.

Physically based models employ dynamical principles

of flood generation. Eagleson (1972) was one of the

first to employ such a model. Despite their appeal,

physically based models have yet to become models

of choice in hydrologic practice. Another example of

such a model is the use of watershed models, as for

example, the stochastic flood model developed by

Schaefer (1998).

Along the lines of physically based models and

recognizing that channels are the dominant conduits

for transmission of flood waters, it is plausible to

develop a model that employs the physics of channel

flow routing and in which no explicit consideration is

given to the hydrologic processes occurring on the land

areas of the watershed. It is well accepted that the

complete linearized Saint Venant equation and its

simplifications provide a reasonable representation of

the physics of channel flow. The connection between

frequency analysis methods and deterministic methods

is not clear yet. Our objective here is to show a

connection through techniques of analysis, not through

concept. It constituted the subject of this paper.

It is then hypothesized that impulse response

function (IRF) of such models can be considered as a

probability density function (PDF) for FFA. Although

the impulse response of a hydrologic system or the

response of an initially relaxed linear deterministic

system for the Dirac-d impulse is a purely determinis-

tic function, the stochastic interpretation of the

impulse response can be explained as follows.

If one imagines that the unit volume of the Dirac-d

impulse consists of an infinite number of particles (or

drops) then the integral of the impulse response
ÐT

0 �

hðx; tÞdt determines the probability that a single

particle passes the outlet at x during time (0, T ),

where hðx; tÞ is the IRF at time t and position x.

Furthermore, the IRF fulfills several requirements

normally expected of the flood frequency models,

namely, (1) semi-infinite lower bounded range with a

non-negative value at the lower bound; (2) positive

skewness and the unit integral over whole range
Ð1

0 �

hðx; tÞdt ¼ 1; and (3) uni-modality, which is the

property of all single component FF distributions.

As an example, the gamma function is used both as

the impulse response of a cascade of equal linear

reservoirs and PDF in FFA.

Because of the practice of applying existing

probability distributions in FFA, emphasis in hydrol-

ogy has been on assessing the accuracy of parameter

estimators using the Monte Carlo simulation tech-

niques. As a result, not much attention has been paid

to the development of physically based probability

distributions taking into account peculiarities of

hydrologic phenomena and the attendant statistical

reasoning. To that end, this study espouses the use of

IRFs as PDFs.

In the frequency analyses of hydrologic data in arid

and semiarid regions, one often encounters data series

that contain several zero values while zero is the lower

limit of the variability range. Examples of such data

may include monthly precipitation in dry seasons,

annual low flow in semi-arid and arid regions, and

flood damage. Frequency analyses of such data have

received relatively less attention. Jennings and

Benson (1969), Woo and Wu (1989) and Wang and

Singh (1995) among others developed empirical

three-parameter models for frequency analysis of

hydrologic data containing zero values. No phenom-

enological or physically based models seem to have

been reported for such data in the hydrologic

literature. Taking into account that short samples are

very common in arid and semiarid regions and that the

constraints with respect to the number of parameters

are very rigid for hydrologic problems (e.g. Landwehr

et al., 1980), even three parameters may be too many

for hydrologic samples with zero values. Hence, the

possibility of using two-parameter models is explored

in this paper.

The main objective of this paper is to hypothesize a

linear kinematic diffusion (KD) model of flow routing

as a probability distribution function for modeling

hydrologic samples with zero values and to evaluate

the validity of this hypothesis. The paper is organized

as follows. Introducing the objective of study in

Section 1, a perspective on frequency modeling of

hydrologic samples with zero values is provided in

Section 2. The KD and rapid flow (RF) models are

briefly revisited in Section 3. The PDF based on the

KD model is presented in Section 4. Also presented in

this section are the properties of this model-based

PDF, the probability of exceedance, estimation of

its parameters by MOM and MLM, accuracy of

estimated parameters and asymptotic standard error of

quantiles. The testing of the model and its comparison
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with the Muskingum-like model is presented in

Section 5. The paper is concluded in Section 6.

2. Modeling hydrologic samples with zero values

From the viewpoint of the probability theory, the

occurrence of zero events can be expressed by placing

a nonzero probability mass on a zero value, i.e. PðX ¼

0Þ – 0; where X is the random variable, and P is the

probability mass. Therefore, the density functions

from which such hydrologic series were drawn would

be discontinuous with discontinuity at the zero value

having a form:

f ðxÞ ¼ bdðxÞ þ fcðx;RÞ x $ 0 ð1Þ

where b denotes the probability of the zero event, i.e.

b ¼ PðX ¼ 0Þ; fcðx;RÞ is the continuous function

such that
Ð1

0 fcðx;RÞdx ¼ 1 2 b; R is the vector of

parameters, dðxÞ is the Dirac delta function.

Obviously, Eq. (1) violates the basic assumption of

continuity made in conventional frequency analyses.

For estimation procedures for a hydrologic sample

with zero events, the total probability axiom has been

employed (Jennings and Benson, 1969; Woo and Wu,

1989; Wang and Singh, 1995). Then, Eq. (1) takes the

form

f ðxÞ ¼ bdðxÞ þ ð1 2 bÞf1ðx; gÞ·1ðxÞ b � g ð1aÞ

where f1ðx; gÞ is the conditional probability density

function (CPDF), i.e. f1ðx; gÞ ; f ðxlX . 0Þ; which is

continuous in the range ð0;þ1Þ with a lower bound of

zero value, and g is the vector of parameters. Wang

and Singh (1995) estimated b and the parameters of

CPDF separately considering the positive values as a

full sample for the purpose. Having estimated g and b,

the conditional distribution can be transformed to the

marginal distribution, i.e. to f ðxÞ; by Eq. (1a). Among

several PDFs with lower bound at zero recognized in

FFA (e.g. Rao and Hamed, 2000), the gamma

distribution was chosen by Wang and Singh (1995)

as an example of CPDF. They applied four estimation

methods to this CPDF, i.e. the maximum likelihood

method (MLM), method of moments (MOM), prob-

ability weighted moments (PWM) and ordinary least

squares method.

In order to find the rationale for separately

estimating the parameters, consider the likelihood

function (L ) of a sample drawn from the discontinu-

ous distribution Eq. (1a):

L ¼ bn1 ·ð1 2 bÞn2

Yn2

j¼1

f1ðxj; gÞ b � g ð2Þ

where n1 and n2 denote the number of zeros and non-

zeros values, respectively. From ML-equations, one

can easily find that the ML-estimate of b is

b̂ ¼
n1

n1 þ n2

ð3Þ

i.e. b and g are estimated by MLM independently.

Moreover, it should be noted that the b-estimate of the

MOM differs from Eq. (3) and to get it by MOM the

whole sample is to be used. It clearly shows that Wang

and Singh (1995) applied the mixed method to the

marginal distribution (1a) as they have used the

estimate given by Eq. (3) in MOM. It reduces by one

the number of moments or L-moments used for

parameter estimation.

3. Kinematic diffusion and the rapid flow model

Physically based models of flow routing in open

channels are based on the St. Venant equation or its

simplifications. The complete linearized Saint Venant

equation is of hyperbolic type and may be written as

a
›2Q

›x2
þ b

›2Q

›x›t
þ c

›2Q

›t2
¼ d

›Q

›x
þ e

›Q

›t
ð4Þ

where Q is the perturbation of flow about an initial

condition of steady state uniform flow, x is the

distance from the upstream boundary, t is the elapsed

time, and a, b, c, d and e are the parameters being

functions of channel and flow characteristics at the

reference steady state condition. Using the lineariza-

tion of the Saint–Venant equation and assuming a

semi-infinite channel, the solution of the upstream

boundary problem was derived by Deymie (1939),

Masse (1939), Dooge and Harley (1967) and Dooge

et al. (1987a,b), among others; a discussion of this

problem is presented in Singh (1996). The solution is

a linear, physically based model with four parameters

depending on hydraulic characteristics of the channel

reach at the reference level of linearization. However,

the complete linear solution is complex in form and is

relatively difficult to compute (Dooge et al., 1987a,b;
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Singh, 1996). A number of models of simplified forms

of the complete St. Venant equation have been

proposed in the hydrologic literature.

If all three of the second-order terms on the left-

hand side of Eq. (4) are neglected, the linear kinematic

wave model is obtained. Expressing the second and

the third second-order term in terms of the first on the

basis of the linear kinematic wave approximation

leads to the convective diffusion equation, i.e. the

linear convective diffusion analogy model (CD). If the

diffusion term is expressed in terms of two other terms

using the kinematic wave solution, one gets the RF

equation, which is of parabolic-like form (Strupc-

zewski and Napiorkowski, 1990a). Therefore, it filters

out the downstream boundary condition. It provides

the exact solution for a Froude number equal to one

and consequently can be used for river flows with

large values of the Froude number. If the alternative

approach is taken as one of expressing all the second-

order terms as cross-derivatives, one gets the equation

representing the diffusion of kinematic waves (Light-

hill and Witham, 1955). The linear KD model, being

of the parabolic-like form, fits satisfactorily the

solution of the complete linearized Saint Venant

equation only for small Froude number and slow

rising waves (Strupczewski et al., 1989).

For flood routing, i.e. the prediction of flood

characteristics at a downstream section on the basis

of the knowledge of flow characteristics at an upstream

section, two simpler forms of the linear channel

downstream response are recognized in the hydrologic

literature: (1) linear convective diffusion analogy

model (CD), and (2) linear RF model. These

correspond to the limiting flow conditions of the linear

channel response, i.e. where the Froude number is

equal to zero (Hayami, 1951; Dooge, 1973) and where

it is equal to one (Strupczewski and Napiorkowski,

1990a,b).

Although RF and KD models correspond to quite

different flow conditions, the structure of their

impulse response is similar (Strupczewski et al.,

1989; Strupczewski and Napiorkowski, 1986, 1989,

1990a,b). For both models, the impulse response is

expressed as:

hðx; tÞ ¼ P0ðlÞdðt2DÞþ
X1
i¼1

PiðlÞ·hi

t2D

a

� �
·1ðt2DÞ

ð5Þ

where

PiðlÞ ¼
li

i!
expð2lÞ ð6Þ

is the Poisson distribution and

hi

t

a

� �
¼

1

aði2 1Þ!

t

a

� �i21

exp 2
t

a

� �
ð7Þ

is the gamma distribution and 1(t ) is the unit step

function. Parameters a, l and D are functions of both

channel geometry including the longitudinal variable

(x ) and flow conditions, which differ for the two

models. Furthermore, there is no time lag (D ) in the

IRF of the KD model.

Strupczewski and Napiorkowski (1986, 1989) and

Strupczewski et al. (1989) showed that for a finite

river reach the infinite multiply Muskingum model

with physically based parameters is equivalent to the

KD model. Similarly, the RF model happens to be

identical with the distributed delayed Muskingum

model (Strupczewski and Napiorkowski, 1990b).

Eq. (5) can be represented as a network of cascades

of conceptual elements, namely, linear reservoirs and

a linear channel commonly used in hydrology. The

upstream boundary condition is delayed in the RF

model by a linear channel with time lag, D, divided

according to a Poisson distribution with mean l, and

then transformed by parallel cascades of equal linear

reservoirs (with time constant a ) of varying lengths.

Note that l is the average number of reservoirs in a

cascade.

Einstein (1942) introduced the function given by

Eq. (5) as the mixed deterministic-stochastic model

for bed load transport. It has also been applied with

D ¼ 0 as the probability distribution function of the

total rainfall depth on the assumption that storm

arrivals follow the Poisson process and storm depths

the exponential distribution (Eagleson, 1978). Thus,

the function in Eq. (5) is considered to be the flood

frequency model in this study.

4. KD probability density function

Since our interest is in frequency estimation for

samples lower-bounded at zero and containing zero

values, the KD model is more adequate then the RF

model, while the RF model can serve to model an
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incomplete sample censored by the D-value. There-

fore equating the delay (D ) to zero in Eq. (5) and

renaming t as x, one gets a two-parameter probability

distribution function of the form:

f ðxÞ ¼ Pðz ¼ 0Þ·dðxÞ þ
X1
i¼1

Pðz ¼ iÞ·hi

x

a

� �
·1ðxÞ ð5aÞ

where z is the Poisson distributed random variable

Pðz ¼ iÞ ; PiðlÞ ¼
li

i!
expð2lÞ ð6aÞ

and x is the gamma distributed variable

hi

x

a

� �
¼

1

aði 2 1Þ!

x

a

� �i21

exp 2
x

a

� �
ð7aÞ

and 1(x ) is the unit step function. Note that Eq. (5a)

differs from Eq. (1a) since its second term cannot be

expressed as the product of the probability of non-zero

value, i.e. ð1 2 PoðlÞÞ; and the CPDF, i.e. f1ðx; gÞ with

b � g; where b ¼ expð2lÞ while g ¼ ½a;b� in the

KD distribution function. Having in mind the doctrine

of parameter parsimony, b [ g better serves the

purpose of estimation of upper quantiles than b � g in

Eq. (1a), which is focused on the estimation of the

probability of non-occurrence of event (see Eq. (3)).

The second term of the PDF, i.e.

fcðxÞ ¼
X1
i¼1

PiðlÞ·hi

x

a

� �
ð8Þ

can be expressed by the 1st order modified Bessel

function of the 1st type, I1(·) (see Appendix A, Eq.

(A1)):

fcðxÞ ¼ exp 2l2
x

a

� � ffiffiffiffiffi
l

ax

r
I1 2

ffiffiffiffiffi
lx

a

r !
·1ðxÞ: ð8aÞ

Thus, Eq. (5a) can be expressed as

f ðxÞ ¼ PoðlÞdðxÞ þ exp 2l2
x

a

� � ffiffiffiffiffi
l

ax

r
I1

� 2

ffiffiffiffiffi
lx

a

r !
·1ðxÞ ð5bÞ

which is the KD-PDF.

4.1. Properties of KD-PDF

It is interesting to look at some useful properties of

the KD-PDF.

4.1.1. Modal value

The modal value can be obtained from the solution

of ›fcðxÞ=›x ¼ 0; or equivalently of ›fcðyÞ=›y ¼ 0;

where y ¼ x=a: It gives:

I0ð2
ffiffiffi
ly

p
Þ

I1ð2
ffiffiffi
ly

p
Þ
¼

ffiffiffi
y

l

r
þ

ffiffiffiffiffi
1

ly

s
ð9Þ

for l $ 2, where I0ð·Þ is the 0th order modified Bessel

function of the 1st kind. The modal value (ymod) as the

function of l is shown in Fig. 1. As one can see, the

maximum of fcðyÞ and consequently of fcðxÞ is for

l , 2 at the origin of y-axis.

4.1.2. Cumulants and moments

The Rth order cumulant of the KD model was

expressed by Strupczewski and Napiorkowski (1989)

as

kR ¼ R!aRl: ð10Þ

Using the relations between moments and cumulants

(Kendall and Stuart, 1969, p. 70) and Eq. (10) the

expression for the first four moments of Eq. (5b) are

given below:

m0
1 ¼ al ð11Þ

m2 ¼ 2a2l ð12Þ

m3 ¼ 6a3l ¼
3m2

2

2m0
1

ð13Þ

m4 ¼ k4 þ 3k2
2 ¼ 12a4lð2 þ lÞ

¼ 3c4
vðm

0
1Þ

4ðc2
v þ 1Þ: ð14Þ

4.1.3. Dimensionless coefficients

For Eq. (5b), the coefficient of variation is

cv ¼

ffiffiffi
2

l

r
: ð15Þ

The coefficient of skewness for the KD is:

cs ¼
m3

ðm2Þ
3=2

¼
3ffiffiffiffi
2l

p ¼
3

2
cv ð16Þ

while for the gamma distribution is cs ¼ 2cv:
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The coefficient of kurtosis is

Kurtosis ¼
m4

ðm2Þ
2
¼ 3

2

l
þ 1

� �
¼ 3ðc2

v þ 1Þ: ð17Þ

4.1.4. Shape of the density function

For cv ! 0 the distribution tends to be sym-

metric like lognormal (LN), convective diffusion

(CD) and gamma distributions for cv ! 0: Typical

graphs of the distribution for some selected values

of l vs y ¼ x=a are presented in Fig. 2. Note that

a is the scale parameter. For increasing l-value the

maximum of f ðxÞ decreases and shifts along the y-

axis. The value of l defines from Eq. (6a) the

probability of no-occurrence of the event, i.e.

PoðlÞ:

4.1.5. Probability of exceedance

The quantile corresponding to the probability of

exceedance p, xp, is obtained by integrating Eq. (5b)

as

xp ¼ a·tpðlÞ ð18Þ

where tpðlÞ is the lower limit of the integral:

p ¼
ð1

tp

expð2l2 yÞ

ffiffiffi
l

y

s
I1ð2

ffiffiffi
ly

p
Þdy ð19Þ

and p must be less than 1 2 e2l, otherwise tp ¼ 0.

Some values of tp for given l and p are listed in

Table 1.

4.2. Estimation of parameters by the maximum

likelihood method

Let the sample contain n1 zeros and n2 positive

values. The likelihood function L of the density

function Eq. (5b) can be written as follows:

L ¼ ðe2lÞn1

Yn2

j¼1

e2l2xj=a

ffiffiffiffiffiffi
l

axj

s
I1 2

ffiffiffiffiffiffi
lxj

a

s0
@

1
A

0
@

1
A: ð20Þ

Fig. 1. The modal value ðymod ¼ xmod=aÞ vs the parameter l.
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So the log-likelihood function ln L will be:

ln L ¼ 2ln 2
1

a

Xn2

j¼1

xj þ
n2

2
ln l2

n2

2
ln a2

1

2

�
Xn2

j¼1

ln xj þ
Xn2

j¼1

ln I1 2

ffiffiffiffiffiffi
lxj

a

s0
@

1
A: ð21Þ

Denoting for convenience

zj ¼ 2

ffiffiffiffiffiffi
lxj

a

s
: ð22Þ

Fig. 2. Graphs of fcðxÞ (Eq. (8a)) for a ¼ 1 and some values of l. P0 denotes the probability of zero-value. P0 ¼ e2l (see Eq. (6)).

Table 1

KD quantile tpðlÞ for given values of l and probability of exceedance p

p (%) l

0.5 1 1.5 2 3 4 5 6 7 8 9 10

50 0.000 0.396 0.950 1.469 2.483 3.487 4.490 5.492 6.493 7.494 8.495 9.496

40 0.000 0.764 1.394 1.980 3.111 4.215 5.305 6.385 7.458 8.524 9.588 10.65

30 0.350 1.226 1.939 2.599 3.857 5.065 6.248 7.410 8.559 9.698 10.83 11.95

20 0.871 1.861 2.673 3.420 4.823 6.156 7.446 8.706 9.945 11.17 12.37 13.57

10 1.749 2.906 3.860 4.728 6.333 7.836 9.275 10.67 12.03 13.37 14.68 15.98

5 2.616 3.918 4.989 5.956 7.729 9.371 10.93 12.44 13.90 15.33 16.74 18.12

2 3.750 5.216 6.420 7.500 9.460 1.259 12.96 14.59 16.17 17.71 19.21 20.69

1 4.597 6.178 7.468 8.622 10.71 12.61 14.41 16.12 17.77 19.38 20.95 22.49

0.5 5.439 7.122 8.494 9.716 11.91 13.91 15.79 17.58 19.31 20.98 22.61 24.21

0.2 6.542 8.352 9.820 11.13 13.46 15.58 17.56 19.44 21.25 23.00 24.71 26.38

0.1 7.372 9.269 10.81 12.17 14.60 16.80 18.85 20.80 22.67 24.47 26.23 27.95
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One obtains the MLM equations:

› ln L

›l
¼2nþ

n2

2l
þ

1

2l

Xn2

j¼1

zj

› ln I1ðzÞ

›z

����
z¼zj

¼ 0 ð23Þ

› ln L

›a
¼

1

a2

Xn2

j¼1

xj 2
n2

2a
2

1

2a

Xn2

j¼1

� zj

› ln I1ðzÞ

›z

����
z¼zj

¼ 0: ð24Þ

Denoting

B¼
Xn2

j¼1

Bj ¼
Xn2

j¼1

zj

› ln I1ðzÞ

›z

����
z¼zj

ð25Þ

one obtains after a little manipulation:

22nlþn2 þB¼ 0 ð26Þ

2

a

Xn2

j¼1

xj 2n2 2B¼ 0: ð27Þ

Adding Eqs. (26) and (27), one can eliminate B:

la¼
1

n

Xn2

j¼1

xj ¼ �x ð28Þ

which means that this MLM equation is the same as its

MOM equivalent given by Eq. (11).

The second MLM equation is different and its

solution requires some numerical manipulation. Using

Eq. (A4), one gets B as

B ¼
Xn2

j¼1

zj

I0ðzjÞ

I1ðzjÞ
2 n2: ð25aÞ

Then, substituting it into Eq. (26) we have

Xn2

j¼1

zjI0ðzjÞ

I1ðzjÞ
2 2nl ¼ 0 ð29Þ

where

zj ¼ 2

ffiffiffiffiffiffi
lxj

a

s
¼ 2l

ffiffiffiffi
xj

�x

r
: ð22aÞ

For an iterative procedure of solution one can get an

initial value by combining Eqs. (3) and (6a) for i ¼ 0:

l̂ ¼ 2lnðn1=nÞ ð30Þ

or use the MOM estimate of l from Eq. (47).

4.2.1. Accuracy of estimated parameters

To get the asymptotic variance of quantiles the

asymptotic variance–covariance matrix of the KD-

parameters should be derived as the inverse of the

expected information matrix (e.g. Kendall and Stuart,

1973):

½covðl;aÞ� ¼ 2E
›2 ln L

›l›a

 !" #21

ð31Þ

where E represents the expected values.

Taking the second-order derivatives of ln L func-

tion given by Eq. (21), one obtains

2
›2 ln L

›l›a

" #

¼

n

4l2
ðA þ 2lÞ 2

n

4al
ðA 2 2lÞ

2
n

4al
ðA 2 2lÞ

n

4a2
ðA þ 2lÞ

2
664

3
775 ð32Þ

where

A ¼
n2

n
2

D

n
ð33Þ

while

D ¼
Xn2

j¼1

Dj ¼
Xn2

j¼1

z2
j

›2 ln I1ðzÞ

›z2

������
z¼zj

: ð34Þ

The inverse of the symmetric matrix Eq. (32) is:

2
›2 ln L

›l›a

" #21

¼

ðA þ 2lÞl

2An

ðA 2 2lÞa

2An

ðA 2 2lÞa

2An

ðA þ 2lÞa2

2Aln

2
6664

3
7775: ð35Þ

The asymptotic value of A, i.e. E(A ), has been

derived in Appendix B. It is given by Eq. (B5)

and shown in Fig. B1(b) for various values of l.

Substituting it into matrix (35), one can get

the asymptotic variance – covariance matrix of
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the KD-parameters, Eq. (31) as:

½covðl;aÞ� ¼ E

ðA þ 2lÞl

2An

ðA 2 2lÞa

2An

ðA 2 2lÞa

2An

ðA þ 2lÞa2

2Aln

2
6664

3
7775: ð36Þ

In particular, the asymptotic coefficient of correlation

of ML estimators of l and a is:

rðMLMÞ
l;a ¼

A 2 2l

A þ 2l
: ð37Þ

4.2.2. Asymptotic standard errors of quantiles

To derive the asymptotic error of quantiles defined

by Eq. (18), the logarithmic transformation of Eq. (18)

is obtained as

yp ¼ ln xp ¼ ln aþ ln tpðlÞ ð38Þ

then

D2ðypÞ ¼ D2ðlÞ
›yp

›l

� �2

m
þD2ðaÞ

�
›yp

›a

� �2

m
þ2rl;aDðlÞDðaÞ

�
›yp

›l

� �
m

›yp

›a

� �
m

ð39Þ

where DðlÞ and DðaÞ are elements of the covariance

matrix (36) while from Eq. (38)

›yp

›l
; G ¼

› ln tpðlÞ

›l
ð40Þ

›yp

›a
¼

1

a
ð41Þ

and the index m indicates that the estimators of l and

a should be replace by their mean values in the partial

derivatives.

The function (40) is derived in Appendix B, given

by Eq. (B8) and displayed in Fig. B2 for various

values of p and l. Substitution of the terms of matrix

equations (36), (40) and (41) into Eq. (39) yields

D2ðypÞ ¼
1

n
jðMLMÞðl; pÞ ð42Þ

where

jðMLMÞðl;pÞ¼
1

2A

A

l
ðl·Gþ1Þ2þ2ðl·G21Þ2

� �
ð43Þ

and A is the function of l defined by Eq. (B5). Then,

xu
p¼exp½ypþDðypÞ� and xl

p¼exp½yp2DðypÞ�: ð44Þ

From Eqs. (38) and (42), one obtains the quantile

relative error, DðxpÞ=xp; is

DðxpÞ

xp

¼
1ffiffi
n

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðMLMÞðl;pÞ

q
: ð45Þ

The
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðMLMÞðl;pÞ

p
function vs p is presented in Fig. 3

for selected values of l. The values of this function

can also be found in Table 2.

4.3. Parameter estimation by the method of moments

Solving Eqs. (11) and (12) for parameters a and l,

one gets

a ¼
m2

2m0
1

¼
m0

1

2
c2

v ð46Þ

l ¼
2ðm0

1Þ
2

m2

¼
2

c2
v

: ð47Þ

Eqs. (46) and (47) are used in MOM to estimate

parameters a and l from sample moments. Note the

equivalency with MLM-estimate of the mean given

by Eq. (28).

4.3.1. Error in quantiles with the mean (m ) and

variance (v ) as parameters

The variances and covariances of the moments m

and v are given among others by Kendall and Stuart

(1969), Kaczmarek (1977) and Kite (1988). Substitut-

ing into them the KD-moments given by Eqs. (12)–

(14), one can get the variance–covariance matrix in

the form

½covðm; vÞ� ¼

m2

n

m3

n

m3

n

m4 2 m2
2

n

2
664

3
775

¼

v

n

3v2

2mn

3v2

2mn

v2

n

3v

m2
þ 2

� �
2
66664

3
77775: ð48Þ

Hence, the coefficient of correlation of MOM
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Fig. 3. Graphs of the MLM-estimated quantile relative error
ffiffi
n

p
DðxpÞ=xp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðMLMÞðl; pÞ

p
(c.f. Eq. (43)) as function of p for some values of l.

Table 2

MOM and MLM estimated quantile relative error
ffiffi
n

p
DðxpÞ=xp ¼

ffiffiffiffiffiffiffiffi
jðl; pÞ

p
for selected values of l and probability of exceedance p

p (%) l

0.5 1 1.5 2 3 4 5 6 7 8 9 10

50 MOM – 4.673 1.929 1.363 0.968 0.795 0.692 0.621 0.568 0.527 0.494 0.466

MLM – 3.566 1.700 1.271 0.939 0.782 0.685 0.617 0.565 0.525 0.492 0.465

40 MOM – 2.406 1.419 1.116 0.855 0.724 0.640 0.581 0.536 0.500 0.471 0.446

MLM – 2.116 1.362 1.097 0.851 0.723 0.640 0.581 0.536 0.500 0.471 0.446

30 MOM 6.221 1.642 1.188 0.997 0.801 0.692 0.620 0.567 0.526 0.493 0.466 0.443

MLM 4.874 1.603 1.186 0.997 0.800 0.690 0.618 0.565 0.524 0.491 0.464 0.441

20 MOM 2.531 1.371 1.102 0.958 0.792 0.694 0.626 0.576 0.537 0.506 0.479 0.457

MLM 2.431 1.367 1.087 0.940 0.774 0.679 0.615 0.567 0.529 0.499 0.473 0.451

10 MOM 1.851 1.326 1.110 0.981 0.825 0.730 0.663 0.614 0.575 0.543 0.516 0.493

MLM 1.811 1.247 1.033 0.912 0.772 0.690 0.633 0.590 0.555 0.527 0.502 0.481

5 MOM 1.835 1.363 1.151 1.022 0.866 0.771 0.704 0.654 0.614 0.581 0.554 0.530

MLM 1.673 1.210 1.019 0.909 0.784 0.710 0.658 0.618 0.585 0.557 0.533 0.512

2 MOM 1.893 1.417 1.203 1.073 0.916 0.819 0.752 0.701 0.660 0.627 0.598 0.574

MLM 1.612 1.193 1.017 0.916 0.803 0.737 0.690 0.652 0.621 0.594 0.571 0.550

1 MOM 1.934 1.452 1.236 1.106 0.948 0.851 0.783 0.731 0.690 0.656 0.628 0.603

MLM 1.593 1.189 1.020 0.924 0.817 0.755 0.711 0.675 0.645 0.619 0.595 0.575

0.5 MOM 1.969 1.482 1.265 1.135 0.976 0.879 0.810 0.758 0.717 0.683 0.654 0.629

MLM 1.583 1.188 1.023 0.931 0.830 0.772 0.730 0.696 0.666 0.641 0.618 0.598

0.2 MOM 2.007 1.515 1.297 1.167 1.008 0.911 0.842 0.789 0.748 0.713 0.684 0.659

MLM 1.575 1.189 1.029 0.941 0.846 0.792 0.753 0.720 0.692 0.666 0.644 0.624

0.1 MOM 2.031 1.536 1.318 1.188 1.029 0.932 0.863 0.810 0.768 0.734 0.704 0.679

MLM 1.572 1.190 1.033 0.948 0.857 0.805 0.768 0.736 0.708 0.684 0.662 0.642
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estimators of m and v is

rðMOMÞ
m;v

¼
3cv

2
ffiffiffiffiffiffiffiffiffiffi
3c2

v þ 2
p : ð49Þ

A high value of cv leads to a high value of r between m

and v. For cv ¼ 1, the coefficient of correlation equals

0.67.

Substituting Eqs. (46) and (47) into Eq. (42), one

gets

yp ¼ ln xp ¼ ln v 2 ln m þ ln tpðlÞ2 ln 2 ð50Þ

where

l ¼
2m2

v
: ð47aÞ

The derivatives of yp with respect to the mean and

variance are:

›yp

›m
¼ 2

1

m
þ G

›l

›m
¼ 2

1

m
þ

4m

v
G ð51Þ

›yp

›v
¼

1

v
þ G

›l

›v
¼

1

v
2

2m2

v2
G ð52Þ

where G is given by Eq. (B8).

The variance of quantile yp equals:

D2ðypÞ ¼ D2ðmÞ
›yp

›m

� �2

m
þD2ðvÞ

�
›yp

›v

� �2

m
þ2rm;vDðmÞDðvÞ

�
›yp

›m

� �
m

›yp

›v

� �
m

ð53Þ

where index m indicates that the partial derivatives are

evaluated at ðm; vÞ ¼ ðEðm̂Þ;Eðv̂ÞÞ:

Substituting Eqs. (51) and (52) into Eq. (53) and

the respective terms of matrix of Eq. (48), one gets

D2ðypÞ ¼
jðMOMÞðl; pÞ

n
ð54Þ

where

jðMOMÞðl; pÞ ¼
2

l
½ðlþ 1ÞðlG 2 1Þ2 þ lG� ð55Þ

where G ¼ Gðl; pÞ is given by Eq. (B8).

The asymptotic relative standard error, DðxpÞ=xp;

can be expressed by Eq. (45) where jðMLMÞðl; pÞ is

replaced with jðMOMÞðl; pÞ:The
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðMOMÞðl; pÞ

p
function

vs p is presented in Fig. 4 for selected values of l.

Also, the values of this function are presented in

Table 2. The relative efficiency (RE) of MOM is

shown in Fig. 5.

5. Application of KD model

Annual peak flow discharge data for 44 flow

gauging stations located in arid regions of the United

States were selected from the USGS data bank to

evaluate the performance of the KD-model. Some

basic characteristics of the data and the river regime,

such as drainage area, length of records (n ), number

of zero values (n1), average peak flow [E(x )],

coefficient of variation (cv), and skewness coefficient

(cs) are given for each gauging station in Table 3. The

skewness of coefficient was plotted against the

coefficient of variation as shown in Fig. 8. This

scatter diagram indicates a positive correlation of the

two moment characteristics. Obviously, the values of

the both characteristics for ephemeral streams are

much greater than for perennial rivers.

5.1. Comparison of parameter estimates by MOM

and MLM

Using MOM equations (46) and (47) and MLM

equations (28) and (29), the values of parameters l

and a for the KD-distribution were calculated as given

in Table 4. With the exception of Series No. 9, MOM

resulted in lower values of l and greater values of a

than did MLM. Consequently, the MOM gave greater

values of the upper quantiles estimates than did MLM

as shown in Column 8 by the ratio of the respective

estimates of x1%. Recognizing the differences between

the MOM-estimates (Columns 4 and 5) and MLM-

estimates (Columns 6 and 7), and noting from Eq. (6a)

that

Pðx ¼ 0Þ ¼ expð2lÞ ð56Þ

one can deduce that the empirical probability of

zero values (Column 3) was better reproduced by

MLM than was by MOM. In fact, MLM was more

robust for higher sample values than was MOM

and more conditioned on the value of Pðx ¼ 0Þ ¼

n1=n: It is worth remembering that for a probability

distribution of the form in Eq. (1a) MLM exactly
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Fig. 4. Graphs of the MOM-estimated quantile relative error
ffiffi
n

p
DðxpÞ=xp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðMOMÞðl; pÞ

p
(c.f. Eq. (55) as function of p for some values of l.

Fig. 5. Relative efficiency RE ¼ jðMOMÞðl; pÞ=jðMLMÞðl; pÞ of MOM quantiles, vs probability of exceedance p.
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Table 3

Relevant information on data used in study

Series No. USGS code Location of Gauge, State River or Creek Drainage area

(km2)

Record length n

(yr)

No. of zeros n1 EðxÞ

(m3/s)

cv cs

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 11063680 nr San Bernardino, CA Devil cyn Ck 14.2 79 2 7.118 2.376 4.511

2 11028500 nr Ramona, CA Santa Maria Ck 149.0 61 4 28.99 2.257 4.283

3 11042000 Oceanside, CA San Luis Rey Rv 1441 70 18 116.5 3.008 5.951

4 11012500 nr Campo, CA Campo Ck 219.8 64 7 5.110 1.690 2.280

5 11012000 nr Dulzura, CA Cottonwood Ck abv Tecate 801.8 64 5 24.58 2.568 3.750

6 10259300 Indio, CA Whitewater Rv 2775.0 32 4 58.69 1.742 1.993

7 10259200 nr Palm Desert, CA Deep Ck 79.1 39 1 23.74 1.717 3.065

8 10258500 nr Palm Springs, CA Palm Cyn Ck 240.8 66 2 30.54 1.352 1.860

9 10264675 Edwards Afb, CA Rogers Lk trib 4.5 11 2 0.127 0.866 0.53343

10 11042631 Temecula, CA Pechanga Ck 35.7 11 1 10.78 2.307 2.718

11 11046250 San Onofre, CA San Onofre Ck 109.1 23 8 17.00 1.415 1.260

12 08404000 Blv Avalon Dam, NM Pecos R 46,761 48 9 149.1 2.021 3.088

13 09520500 Dome, AZ Gila Rv 149,622 96 10 367.3 2.231 3.782

14 09519800 Painted Rock Dam, AZ Gila Rv 131,672 40 2 59.11 2.487 4.826

15 09513860 nr Phoenix, AZ Skunk Ck 167.1 39 2 71.85 1.220 1.363

16 09484500 Tucson, AZ Tanque Verde Ck 566.4 31 1 132.9 1.119 1.888

17 09502000 Stewart Mountain, AZ Salt Rv 16,118 65 1 190.7 1.789 3.209

18 09517000 nr Arlington, AZ Hassayampa Rv 3802.0 37 1 139.0 1.463 3.161

19 13132500 nr Arco, ID Big Lost Rv 3647 51 5 17.60 1.009 1.000

20 06713000 Cherry Creek Lake, CO Cherry Ck 995.8 50 8 11.07 1.061 1.374

21 07126140 nr Tyrone, CO Van Bremer Arroyo 341.4 17 3 3.819 1.161 0.9372

22 07126480 At mouth nr Timpas, CO Bent Canyon Ck 145.4 14 1 12.50 1.854 2.022

23 06846500 Cedar Bluffs, KS Beaver Ck 4185 56 1 21.90 1.711 3.605

24 06846000 Ludell, Ks Beaver Ck 3649 45 1 20.31 1.170 2.105

25 06866900 nr Wakeeney, KS Saline Rv 1800 31 1 72.08 1.416 1.658

26 06870300 nr Gypsum, KS Gypsum Ck 310.4 40 1 75.06 0.9211 1.505

27 06871800 Kirwin, KS Nf Solomon R v 3536 70 1 87.11 2.530 4.596

28 06873200 Bl Webster Re, KS Sf Solomon Rv 2974 44 3 10.32 1.249 2.280

29 07139000 Garden City Arkansas Rv 70,016 78 1 179.4 2.534 6.051

30 07139500 Dodge City, KS Arkansas Rv 79,143 59 3 123.8 2.640 5.316

31 07140850 nr Burdett, KS Pawnee Rv 2822 19 2 21.70 1.235 2.617

32 07141200 Rozel, KS Pawnee Rv 5556 76 1 86.79 0.9869 2.113

33 07141780 Nekoma, KS Walnut Ck 3083 31 1 1494 0.9270 1.496

34 07155590 nr Elkhart, KS Cimarron Rv 7498 29 2 75.15 1.590 3.094

35 08128400 Tankersley, TX Middle Concho Rv 5390 40 1 109.0 1.052 1.138

36 08129300 Tankersley, TX Spring Ck 1098 40 1 136.4 2.840 4.680

37 08134000 nr Carlsbad, TX N Concho Rv 3274 76 1 330.0 1.600 2.450

38 08155300 Austin, TX Barton Ck at loop 360 300.0 26 1 191.5 1.252 2.253
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reproduces the empirical probability of the zero

event and the weighting factor b is then determined

by the ratio n1=n (Eq. (3)). It is the only one of six

terms in log L function of KD in Eq. (21), which is

a function of x and at the same time of both

parameters.

5.2. Comparison of distribution functions

The KD cumulative distribution functions

(CDF’s) were computed and are presented for

four sample series in Fig. 6a–d. Also presented are

the empirical CDFs defined as FempðxðiÞÞ ¼ i=ðn þ

1Þ; where x(i ) is the ith element of the sample

arranged in ascending order. The respective MOM

and MLM-estimated PDFs are shown in Fig. 7. In

nine out of 44 series, i.e. the samples No. 11, 19,

20, 21, 26, 33, 35, 42 and 44, both methods of

parameter estimation were in satisfactory agree-

ment. For other 35 series, there are noticeable

discrepancies between the two methods.

Obviously, the estimate of the two methods

(Table 4) should asymptotically converge if the

chosen PDF is the true one. When dealing with a

finite sample, the discrepancy between the esti-

mates of the two methods might be caused both by

the incorrect choice of the distribution function and

by the sampling error. In practice, the assumed

model always differs from the true one. Therefore,

no model can properly reproduce the data set in its

entire interval of variability. This fact should be

taken into account when selecting the estimation

method. In FFA, the practical interest is in

the upper quantiles estimation. Dealing with the

two-parameter lower bounded model and recalling

the sampling properties of the first two moments

(Curetan, 1968; Wallis et al., 1974; Cunnane,

1989), it seems reasonable to base here on the

MOM-estimates rather than on MLM.

If the KD model does not satisfactorily fit the data,

then two possibilities may be considered: (1) replace-

ment by another two-parameter model, which may be

the only reasonable solution in case of a short sample,

or (2) extension of the model to a three-parameter

form, i.e. to the 3-KD, or replacement by another

three-parameter model.T
ab
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Table 4

Fitting KD and M-like models to the data

No. USGS No. n1/n Kinematic difussion (KD) Muskingum-like (M-like)

MOM MLM x̂ðMOMÞ
1% =x̂ðMLMÞ

1% MOM MLM x̂ðMOMÞ
1% =x̂ðMLMÞ

1%

l̂ â l̂ â b̂ ĝ b̂ ĝ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

1 11063680 0.0253 0.354 20.09 1.723 4.13 2.44 0.6990 23.65 0.0253 7.303 2.41

2 11028500 0.0656 0.392 73.84 1.559 18.59 2.18 0.6719 88.34 0.0656 31.02 2.19

3 11042000 0.2571 0.221 527.2 1.070 108.9 2.53 0.8010 585.5 0.2571 156.9 2.59

4 11012500 0.1094 0.700 7.29 1.553 3.29 1.54 0.4813 9.851 0.1094 5.737 1.51

5 11012000 0.0781 0.303 81.04 1.424 17.25 2.43 0.7367 93.34 0.0781 26.66 2.53

6 10259300 0.1250 0.659 89.02 1.478 39.71 1.56 0.5042 118.4 0.1250 67.07 1.54

7 10259200 0.0256 0.679 34.98 1.882 12.61 1.73 0.4934 46.86 0.0256 24.37 1.65

8 10258500 0.0303 1.094 27.92 2.023 15.1 1.37 0.2929 43.19 0.0303 31.50 1.28

9 10264675 0.1818 2.665 0.05 1.870 0.07 0.84 2 .1426 0.1115 0.1818 0.1558 p

10 11042631 0.0909 0.376 28.66 1.423 7.57 2.13 0.6836 34.05 0.0909 11.85 2.20

11 11046250 0.3478 0.999 17.02 1.032 16.47 1.02 0.3339 25.53 0.3478 26.07 0.98

12 08404000 0.1875 0.490 304.2 1.298 114.9 1.73 0.6065 378.8 0.1875 183.5 1.72

13 09520500 0.1042 0.402 914.1 1.443 254.6 2.06 0.6654 1098 0.1042 410.0 2.09

14 09519800 0.0500 0.323 182.8 1.577 37.48 2.46 0.7217 212.4 0.0500 62.22 2.49

15 09513860 0.0513 1.344 53.45 2.056 34.94 1.24 0.1961 89.38 0.0513 75.74 1.14

16 09484500 0.0323 1.597 83.16 2.372 56.01 1.21 0.1119 149.6 0.0323 137.3 1.07

17 09502000 0.0154 0.625 305.0 2.006 95.06 1.87 0.5238 400.4 0.0154 193.7 1.74

18 09517000 0.0270 0.934 148.8 2.154 64.51 1.54 0.3633 218.3 0.0270 142.8 1.39

19 13132500 0.0980 1.963 8.97 2.097 8.39 1.03 0.0094 17.77 0.0980 19.51 0.93

20 06713000 0.1600 1.778 6.23 1.810 6.11 1.01 0.0589 11.76 0.1600 13.18 0.92

21 07126140 0.1765 1.368 2.65 1.595 2.27 1.08 0.1478 4.481 0.1766 4.637 1.02

22 07126480 0.0714 0.572 20.99 1.612 7.45 1.77 0.5491 27.73 0.0714 13.46 1.75

23 06846500 0.0179 0.699 31.89 2.082 10.7 1.79 0.4910 43.02 0.0179 22.30 1.63

24 06846000 0.0222 1.508 14.52 2.460 8.9 1.27 0.1555 24.06 0.0222 20.78 1.11

25 06866900 0.0333 1.046 71.14 1.975 37.69 1.39 0.3347 108.3 0.0323 74.48 1.30

26 06870300 0.0270 2.810 28.86 3.292 24.63 1.07 2 .0820 69.37 0.0250 76.98 p

27 06871800 0.0143 0.312 278.9 1.591 54.76 2.53 0.7299 322.5 0.0143 88.38 2.62

28 06873200 0.0682 1.281 8.06 2.172 4.75 1.30 0.2191 13.22 0.0682 11.08 1.15

29 07139000 0.0128 0.311 576.0 1.708 105.0 2.62 0.7305 665.8 0.0128 181.8 2.63

30 07139500 0.0509 0.287 431.3 1.542 80.27 2.62 0.7491 493.3 0.0509 130.4 2.68

31 07140850 0.1053 1.311 16.56 2.010 10.79 1.24 0.2083 27.41 0.1053 24.25 1.10

32 07141200 0.0132 2.053 42.27 3.115 27.86 1.21 20.0131 85.67 0.0132 87.95 p

33 07141780 0.0323 2.327 18.18 2.903 14.57 1.11 20.0756 1389 0.0323 1544 p

34 07155590 0.0690 0.791 94.99 1.810 41.51 1.56 0.4332 132.6 0.0690 80.72 1.46

35 08128400 0.0250 1.807 60.27 2.364 46.07 1.14 0.0506 114.8 0.0250 111.7 1.02

36 08129300 0.0250 0.248 549.8 1.511 90.22 2.83 0.7793 618.0 0.0250 139.9 2.98

37 08134000 0.0132 0.781 422.4 1.954 168.9 1.63 0.4382 587.5 0.0132 334.4 1.54

38 08155300 0.0385 1.276 150.1 2.180 87.85 1.31 0.2211 245.9 0.0385 199.2 1.18

39 08180500 0.0435 0.446 213.4 1.539 61.79 2.00 0.6355 260.9 0.0435 99.42 2.07

40 08185000 0.0546 0.722 481.4 1.728 201.2 1.60 0.4694 655.4 0.0546 367.8 1.56

41 08190500 0.0357 0.309 3015 1.588 587.7 2.54 0.7320 3482 0.0357 967.8 2.59

42 08197500 0.1837 1.209 514.3 1.562 398.0 1.14 0.2467 8251 0.1837 761.4 1.06

43 08200700 0.1500 1.161 315.7 1.675 218.9 1.21 0.2654 499.0 0.1500 431.3 1.12

44 08202700 .1951 1.192 255.8 1.493 204.3 1.13 .2531 408.4 .1951 379.0 1.06
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PDFs used to model the annual peak flows of

perennial rivers have a semi-infinite lower bounded

range with a non-negative value at the lower bound.

For ephemeral streams, there is a non-zero probability

mass on a zero value in a data series. Consequently,

one can expect a non-zero density at the lower bound

of the continuous part of the function in Eq. (1). Low

values of the l-parameter (Table 4, Columns 4 and 6)

Fig. 6. Empirical and two theoretical (estimated with MOM and MLM) KD cumulative distribution functions (CDFs). (a) The Big Lost River,

Arco, ID; (b) Cherry Creek, Cherry Creek Lake, CO; (c) The Palm Cyn River, Palm Springs, CA; (d) Pecos River, Avalon Dam, NM.
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seem to validate the above hypothesis. Furthermore, a

majority of the data series used shows the value of

l , 2: According to Eq. (9), the maximum of the

function in Eq. (8) is for l # 2 at the zero lower

bound.

5.3. Muskingum-like distribution and its comparison

with KD model

Having defined the general properties for the

function in Eq. (1), one can acknowledge that one

Fig. 6 (continued )
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plausible alternative within the family of two-

parameter distributions for discontinuous samples

with zero values may be the Muskingum-like

probability distribution function (M-like). Therefore,

once again the unit impulse response of the Musk-

ingum flood routing model

hðtÞ ¼ 2
a

1 2 a
dðtÞ þ

1

Kð1 2 aÞ2

exp 2
t

Kð1 2 aÞ

� �
ð57Þ

was selected as the probability distribution for

modeling hydrologic samples with zero values. It

has been shown by Strupczewski and Kundzewicz

(1980) and Dooge et al. (1982) that modeling flood

routing along a short reach of a lowland river might

result in negative values of a. Then,

0 # 2
a

1 2 a

� �
# 1 ð58Þ

where K is the average travel time along a reach,

and a is a parameter. Denoting 2a=1 2 a ¼ b and

K=1 2 b ¼ g and mapping from time t to x, one

gets a two-parameter probability distribution func-

tion:

f ðxÞ ¼ bdðxÞ þ
ð1 2 bÞ

g
expð2x=gÞ: ð59Þ

The PDF given by Eq. (59) is a weighted sum of

two functions: a delta function and an exponential

function. It is interesting to note that in this

function parameter b is a weighting factor and

parameter K ¼ ð1 2 bÞg becomes the average of X.

Thus, the original expressions of the weighting

factor and the average travel time are modified

somewhat under mapping, but the conceptual

meaning of the modified expressions remains

more or less intact.

The parameter estimation for Eq. (59) is given

in Appendix C. Using MOM equations (C7) and

Fig. 7. Two theoretical KD PDFs for the four selected flow gauging stations estimated with MOM and MLM.
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(C8) and ML equations (C5) and (C6), the values

of parameters b and g for the M-like distribution

were calculated as shown in Table 4. It is

interesting to note a similarity to the KD pattern

in the relation between MOM (Columns 9 and 10)

and MLM estimated values (Columns 11 and 12).

MOM for the M-like model resulted in greater

values of b and greater values of g than did MLM

in 36 of 44 series. It led to greater values of upper

quantiles of MOM than of MLM as shown in

Column 13 by the ratio of estimates of x1%. For the

M-like model, MOM (Table 4, Columns 9 and 10)

and MLM (Table 4, Columns 11 and 12) parameter

values were in satisfactory agreement for only five

out of 44 data series, i.e. for samples No. 11, 19,

21, 42 and 44. For these five samples, the same

behavior was observed in case of the KD model as

well.

Inverting MOM-relation (C7):

cv ¼

ffiffiffiffiffiffiffiffiffi
1 þ b

1 2 b

s
ð60Þ

and recalling the admissible range of the weighting

factor b [ ð0; 1Þ; it is seen that the coefficient of

variation is limited to the range cv [ ð1;1Þ: Note that

the cv range of the KD model is ð0;1Þ for l $ 0

(Eq. (15)). Therefore, the cv interval (0,1) is not

covered by the M-like model. In fact, the cv-values of

four of the 44 series (Table 3, Column 9) are less than

unity and an attempt to apply MOM resulted in a

negative probability, i.e. b̂ ¼ Pðx ¼ 0Þ , 0 for these

series (Table 4, Series marked by ‘ p ’ in Column 13).

According to Eq. (15) cv , 1 corresponds to l . 2;

i.e. to the positive modal value.

For the M-like distribution, the coefficient of

skewness is related to the coefficient of variation as

cs ¼
3

2
cv þ

1

2c3
v

ð61Þ

which is shown in Fig. 8. The scatter band of ðcv; csÞ

points indicates small preference of the KD over the

M-like distribution for the given data. A comparison

of Eqs. (16) and (61) shows that for cv . 2 (or for

l , 1=2) the difference in cs values is less than 1/16.

Then, both models are deemed equally good if

measured by the moment-ratio criterion. In fact,

there are 14 of 44 data series with cv . 2 (Table 3,

Column 9).

The basic problem of selecting from a set of

competing models one that best describes the data lies

in the appropriate choice of the selection criterion.

A flexible approach to model discrimination is

Fig. 8. Relationship between coefficient of variation and coefficient of skewness for KD and M-like probability distributions and for the

empirical data.
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the Akaike information criterion (Akaike, 1974),

which builds on the log L function, makes allowance

for different numbers of model parameters. In

practical situations, the assumed models are always

different from reality. Therefore, selecting a criterion

applicable for FFA, it seems reasonable to choose one,

which is sensitive to a fit of a model in the upper part

of a sample. If so, it automatically eliminates the

criterion based on the likelihood function, as its value

highly depends on the range of the main probability

mass.

The ratio of x1% for MOM and MLM estimates

is used here for the purpose. In fact, it can serve

not only for the selection of a better-fitted model

but also for the assessment of the goodness of fit of

the upper tail at the same time. Obviously, in the

case of the true distribution function the x1% ratio

should be close to one. Arbitrarily taking the

admissible interval as 0:5 # xðMOMÞ
1% =xðMLMÞ

1% # 2 one

can find in Table 4, that as many as 12 samples out

of 44 and 13 out of 40 are above the upper limit

for the KD and M-like distributions, respectively.

Neither sample was beyond the lower limit for both

distributions. Therefore, the criterion indicates a

slight superiority of KD over M-like model,

confirming the result of the moment-ratio compari-

son (Fig. 8). Narrowing the interval down to

^25% of the difference, one finds 14 samples

within the interval both for KD and M-like

distributions. There are one and three samples,

which produce the value of the ratio less than the

unit for KD and M-like models, respectively. Since

the same samples fall to the same range of the

ratio for both assumed distributions, no consider-

able improvement can be expected by replacing

one model by the other. Both the high range of the

x1% ratio variability and the asymmetry of the x1%

ratio values around the unit value point out a need

to enlarge a set of competitive models. Due to a

lack of candidates within the two-parameter models

family, the three-parameter options should be

considered, provided a sample size legitimates it.

6. Conclusions

The following conclusions are drawn from this

study:

(a) The impulse response of the linear KD model is a

promising model for frequency analysis of

hydrologic samples with zero values. It is easy

from a computational point, particularly if the

MOM is applied.

(b) Being a two-parameter model, the KD distri-

bution is especially attractive in case of short

samples, which is common in arid and

semiarid regions, especially in developing

countries.

(c) With its two parameters, the KD model can

reproduce a variety of probability density

forms encountered in nature (Fig. 2).

(d) For the KD distribution, the MLM estimate of

the mean is equivalent to that of the MOM,

i.e. it is arithmetic mean, which is especially

attractive, one recognizes, when applying the

ML-method, that the true distribution function

is unknown.

(e) A comparison of both methods (Fig. 6a–d) shows

that MOM better reproduces the upper tail of the

distribution, while MLM is more robust for higher

sample values than MOM and more conditioned

on the value of PðX ¼ 0Þ:

(f) The KD distribution represents flood frequency

characteristics of arid zones quite well, as seen

from the use of the USGS data.

(g) The M-like model can be considered as an

alternative of the KD model in frequency

analysis of samples with zero values.

(h) For larger samples, an extension of the models

to three-parameter forms is advisable as shown

by the discrepancies between MOM and MLM

estimates.
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Appendix A. The modified Bessel function

The nth order modified Bessel function of the 1st

kind (e.g. Korn and Korn, 1961, Sec. 21.8):

InðzÞ ¼
X1
i¼1

1

ði 2 1Þ!ðn þ i 2 1Þ!

z

2

� �2ði21Þþn

ðA1Þ

as the solution to the differential equation

z2 ›
2y

›z2
þ z

›y

›z
2 ðz2 þ n2Þy ¼ 0: ðA2Þ

The InðzÞ is sometimes known as hyperbolic Bessel

function. It fulfills the recursive equation:

Inþ1ðzÞ ¼ In21ðzÞ2
2n

z
InðzÞ

¼ 2
d

dz
InðzÞ2 In21ðzÞ ðA3Þ

which for n ¼ 1 gives

›

›z
I1ðzÞ ¼ I0ðzÞ2

I1ðzÞ

z
: ðA4Þ

Appendix B. Asymptotic variance of
the KD-quantiles estimates got by MLM

To get the asymptotic variance–covariance

matrix (31), the asymptotic value of A in matrix

(35) should be derived. Its sampling value is given

by Eq. (33) and consists of the two terms.

The expected value of its first term can be found

from Eq. (6a) as

E
n2

n

� �
< 1 2 Pi¼0ðlÞ ¼ 1 2 expð2lÞ ðB1Þ

while the second term

EDðZÞ < lim
n!1

1

n

Xn2

j¼1

Dj ¼
ð1

0
DðzÞf ðzÞdz

¼
ð1

0
DðzÞfcðz; lÞdz ðB2Þ

or substituting DðzÞ from Eq. (34) into Eq. (B2)

and the continuous term of the PDF got from Eqs.

(8a) and (22a), i.e.

fcðz;lÞ ¼ exp 2l2
z2

4l

 !
I1ðzÞ ðB3Þ

one gets

EDðzÞ <
ð1

0
z2ðln I1ðzÞÞ

00I1ðzÞ

� expð2l2 z2
=4lÞdz

ðB4Þ

which was integrated numerically (Fig. B1(a)).

Hence, substituting Eqs. (B1) and (B4) into Eq.

(33), one gets the required asymptotic value of A as

shown in Fig. B1(b).\eqalign{

EAðzÞ < 1 2 expð2lÞ2
ð1

0
z2ðln I1ðzÞÞ

00I1ðzÞ

� expð2l2 z2
=4lÞdz:

ðB5Þ

Substituting it into Eq. (36), the asymptotic variance–

covariance matrix is obtained.

To get the asymptotic variance of quantiles yp

defined by Eq. (39), the derivative (40) should be

obtained. Note that the function

tp ¼ wðl; pÞ ðB6Þ

does not exist in an explicit form. Its derivative

with respect to l can be obtained by the method of

implicit partial differentiation. Using Eq. (19), one

gets

›tpðlÞ

›l
¼

ffiffiffiffi
tp

l

r
I0ð2

ffiffiffiffi
ltp

p
Þ

I1ð2
ffiffiffiffi
ltp

p
Þ

ðB7Þ

and therefore,

G ¼
› ln tpðlÞ

›l
¼

1

tpðlÞ

›tpðlÞ

›l

¼
1ffiffiffiffi
tpl

p I0ð2
ffiffiffiffi
ltp

p
Þ

I1ð2
ffiffiffiffi
ltp

p
Þ:

ðB8Þ

Fig. B2 displays the function G for various values

of p and l.
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Appendix C. Parameter estimation of the M-like

probability distribution

MLM. As before, let the sample contains n1 zeros

and n2 positive values. We determine the likelihood

function of Eq. (59) in the form:

L ¼ ðbÞn1

Yn2

j¼1

ð1 2 bÞ

g
exp 2

xj

g

� �
: ðC1Þ

So the log-likelihood function ln L will be:

ln L ¼ n1 ln bþ n2 lnð1 2 bÞ2 n2 ln g2
1

g

Xn2

j¼1

xj:

We get the MLM equations:

› ln L

›b
¼

n1

b
2

n2

1 2 b
¼ 0 ðC3Þ

Fig. B1. Asymptotic values of the conditional D and A vs the l parameter.

Fig. B2. Function G vs the l parameter in log scale. Vertical dotted lines for p ¼ 0.1 and 0.5 define the left bound of intervals where G exists.
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› ln L

›g
¼ 2

n2

g
2

1

g2

Xn2

j¼1

xj ¼ 0 ðC4Þ

and therefore

b̂ ¼
n1

n1 þ n2

¼
n1

n
ðC5Þ

ĝ ¼
1

n2

Xn2

j¼1

xj: ðC6Þ

MOM. Matching the first two theoretical and sampling

moments we get

b̂ ¼
c2

v 2 1

c2
v þ 1

ðC7Þ

ĝ ¼
m0

1

1 2 b̂
: ðC8Þ
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