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Abstract

Flow and transport in soil is governed by the binary geometry of solid and void. This may be described at typical length scales

of some millimeters, and even less. In contrast, the problems which are supposed to be solved in soil physics are related to a

scale of some meters, the typical distance between soil surface and groundwater. A quantitative understanding of flow and

transport, based on measurements of hydraulic properties and transport parameter at a given scale, requires the transfer of

information in space, time, and across scales. This is the major challenge in heterogeneous soils and this has motivated many

concepts for the organization of heterogeneities, including macroscopic homogeneity, discrete hierarchy and fractal geometry.

We propose a conceptual approach termed ‘the scaleway’ to predict flow and transport in structured materials, whatever the

scale, and whatever the specific type of structural organization. This is based on the explicit consideration of structure that is

assumed to be present at the scale of interest, while the microscopic heterogeneities are replaced by averaged, effective

descriptions. The three ingredients needed are: a representation of the structure, a process model at the scale of interest, and

corresponding effective material properties. We demonstrate the scaleway for one example of solute transport in a soil column

and discuss implications for future research.
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1. Introduction

Water flow and solute transport through structured

soil is still far from being understood quantitatively. It

is a challenge to develop models having predictive

power, and which concern phenomena such as fast

transport through macropores, preferential flow due to

the spatial variability of hydraulic properties, or the

instability of wetting fronts which results in fingering

flow. On the other hand, models are highly required

for a sustainable management of the environment

including the pollution of groundwater by agrichem-

icals, the construction of waste disposal sites or the

remediation of contaminated soils.

Despite several decades of intense research on flow

and transport in porous media, and the considerable

knowledge on the physical processes, there is no

simple answer to the problem: given some specific site

and some specific distribution of solutes, what can

presently be said of the distribution at some later

time? The answer to this question is highly sensitive

to the structure of the porous medium which is not

typically homogeneous, irrespective of the scale of

observation. The importance of heterogeneity of soil,

and variation in its physical properties have been

clearly recognized by Nielsen et al. (1973). Since

then, this topic has moved to the center of research in

the field of soil physics.

On one hand essential information on hydraulic

material properties and transport parameters can be

measured at fixed points for a certain set of boundary

0022-1694/03/$ - see front matter q 2002 Elsevier Science B.V. All rights reserved.

PII: S0 02 2 -1 69 4 (0 2) 00 2 57 -3

Journal of Hydrology 272 (2003) 95–106

www.elsevier.com/locate/jhydrol

* Corresponding author.

E-mail address: hjvogel@iup.uni-heidelberg.de (H.-J. Vogel).

http://www.elsevier.com/locate/jhydrol


conditions. On the other hand the continuous

heterogeneous structure of these properties for the

range of possible boundary conditions is required as

soon as the soil is not homogeneous. This demands the

necessity to transfer information in space, time, and

across scales and forms the major difficulty for a

predictive modeling of flow and transport.

In this paper we start by describing a few examples

of spatial heterogeneity in soil, and we define the

related terms. Then, we briefly discuss different

approaches to incorporate the phenomenon of spatial

heterogeneity to modeling flow and transport. Next

we propose a concept we term ‘the scaleway’, which

is based on the explicit consideration of spatial

structure. We suggest it is a promising tool for

predictive modeling of flow and transport in the

subsurface, at any scale. This concept is demonstrated

for the prediction of a breakthrough curve in an

undisturbed soil column using structural information

from two different scales. Finally, we discuss the

implications for the application of our approach at

larger scales.

2. Spatial heterogeneity—direct observations and

experimental evidence

Fig. 1 shows the visual appearance of a silty soil

(Orthic Luvisol) obtained with different instruments at

different scales of observation. The size of the

different fields-of-view differ by about one order of

magnitude. The variable measured at the largest scale

using an optical camera is color, for the smaller scales

it is the density of electrons as measured by X-ray

tomography. From the example of Fig. 1, it is obvious

that there may be some sort of structure at any scale of

observation. Fig. 1 may be extended in both direc-

tions. At the larger scale we may detect patterns of

different soil types which themselves are part of

regional soil associations, and so forth. The same is

true towards smaller scales where we may detect the

structure of intra-aggregate pores and the arrangement

of mineral grains. Such a structural organization

seems to be typical for terrestrial systems, and this has

been described for both aquifers (Anderson, 1997)

and soils (Wagenet, 1998).

Fig. 1. Structure at different scales in a silty soil obtained with different instruments. Top left: photograph of a vertical profile, width <1 m. Top

middle: X-ray tomography of the A-horizon, width <0.1 m, resolution 0.5 mm/pixel, gray values are proportional to bulk density (pores are

dark). Top right: X-ray micro-tomograph, width <0.01 m, resolution 0.04 mm/pixel (pores are dark). Below, the images are segmented into the

structural units at the corresponding scales. Bottom left: two different horizons. Bottom middle: dense aggregates (gray) within a loose matrix

(white) and a few macropores (black). Bottom right: pores (gray) within a porous matrix.
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At this point we wish to introduce a few terms

which are used to describe the characteristic lengths

and the features of spatial heterogeneity at different

scales.

The linear extent of the entire investigated region is

denoted as the scale of observation. The notion of

macroscopic and microscopic is that macroscopic

means ‘of similar size’ and microscopic means ‘very

much smaller’ compared to the scale of observation.

By analogy, we distinguish between structure and

texture, where the structure is composed of form-

elements comparable in size with the scale of

observation, while the textural elements are very

much smaller. In that way the terminology used is

independent of the scale considered. The notion of

structure and texture is used here in a broader sense

than in common textbooks of soil science where

texture refers to the size distribution of soil particles,

and structure to their aggregation into larger units.

Some examples are given in Fig. 1 where the

structural elements for the three different scales of

observation are shown (Fig. 1, lower row). The

macroscopic structural elements may be of different

origins which, for the specific cases in Fig. 1, are

indicated by different levels of gray. Accordingly we

may distinguish different structural units. At the

intermediate scale in Fig. 1 (middle), these structural

units are ‘dense aggregates’ (gray), ‘loose matrix’

(white), and ‘macropores’ (black). Different structural

units can be distinguished according to their texture.

It is worthwhile to note that the transition between

structure and texture, or macroscopic and micro-

scopic, can either be very clear as in the case of the

structural units of soil horizons in Fig. 1 (left), or it

can be somewhat fuzzy as for the dense aggregates

and the loose matrix in Fig. 1 (middle). This problem

is discussed in detail below.

It is assumed that the structural units are also

different in terms of the relevant physical properties

that govern flow and transport—namely, the soil

water characteristic and the hydraulic conductivity—

thus, the dominating impact of structure on the

phenomenology of flow and transport is clear. As a

consequence, for structured materials we observe

spatial variability in replicated measurements of the

soils’ physical properties at different locations within

a given material. This is true because, by definition,

the structural units are not captured representatively in

the sense of a representative elementary volume

(REV). Moreover, the outcome of any measurement

depends not only on the location, but also on the scale

of observation.

To that point, these conclusions are only based on

purely structural observations. On the other hand, they

are corroborated by flow and transport experiments

reported in the literature. Gomez-Hernandez and

Gorelick (1989) could not find a unique value for

the effective hydraulic conductivity of an aquifer

based on various well positions and pumping rates.

Desbarats and Bachu (1994) found a steady increase

in the spatial variability of transmissivities obtained

over increasing scales of observation which covered

more than two orders of magnitude. Transport

experiments in groundwater indicated that the dis-

persivity increases approximately with a power of the

observation scale (Gelhar, 1986; Neuman, 1990).

Similar results have been reviewed by Gelhar et al.

(1992). By visualizing transport patterns in soil, Flury

et al. (1994) demonstrated for a large variety of soils

that structural units are critical. At the pore scale,

Vogel et al. (2002) analyzed geometric properties of

the pore space together with measures of gas

diffusion, as a function of the scale of observation.

They could find a characteristic length of an REV, but

only after separating the pore space into structural

units.

That soils and aquifers are structured at any scale

seems to be the rule. The existence of a macroscopi-

cally homogeneous medium seems to be the excep-

tion. In Section 3 we discuss different approaches to

tackle this kind of spatial heterogeneity.

3. Modeling spatial heterogeneity

One step towards modeling spatial heterogeneity

is to apply stochastic continuum theory. Thereby,

the relevant material properties, such as the

hydraulic conductivity K, are considered to be

stationary random variables that can be described

by its mean value and autocovariance function.

Pioneering work in that field was done by Gelhar

(1974, 1986) and Dagan (1984, 1989) who modeled

heterogeneous groundwater systems. Applying per-

turbation methods they showed, amongst other

things, that the apparent longitudinal dispersion
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coefficient increases with transport distance, and

that it asymptotically reaches a value that depends

on variance and correlation length of the logarith-

mic conductivity field. This result depends crucially

on the correlation length being finite. Furthermore,

the approach to the asymptotic limit is on a length

scale that is very much larger than the correlation

length, and depends on details of the conductivity

field, and on the initial solute distribution. The

stochastic continuum approach may be useful for

studying some heterogeneous media with discrete

hierarchies, or for estimating material properties of

the texture.

There are other models of spatial heterogeneity

that account for the fact that structure may be

present at all scales. Cushman (1990) considered

there may be a discrete hierarchy of structural units

when moving through various scales of observation.

In this case, as shown in Fig. 2, the result of some

kind of measurement has a well-defined value only

when sampling a single hierarchical level. This

value becomes unstable in the transition zone

between two different hierarchical levels. A discrete

hierarchy implies a clear disparity of scales where

the statement of the REV is a local property related

to a single structural unit. This concept is

successfully applied at very-large scales where

discrete geological facies are distinguished (Ander-

son, 1997), and also in the field of hydrological

modeling (Blöschl and Sivapalan, 1995) where the

structure may be represented by hydrological

response units (Flügel, 1995). Also in soil science

where different soil horizons are considered to be

functional entities with internal heterogeneity, the

system can be treated as a discrete hierarchy.

However, there may be no clear disparity in

scales. This means the structural units are inter-

laced and nested at different scales, so we cannot

expect any meaningful material property that is

independent of the scale of observation. Hence, no

REV exists even for a limited fraction of scale. In

that case, material properties are expected to

change continuously with scale (Fig. 2). This type

of structural organization may be referred to as a

continuous hierarchy (Cushman, 1990), or evolving

heterogeneities (Wheatcraft and Cushman, 1991).

The experimental findings of continuously evolving

properties, as cited above, point into that direction.

Fractals can be considered as a special case of

continuous hierarchy where the structural units at

different scales are self-similar. As a consequence, a

well-defined relation between material properties and

the scale of observation can be expected (Fig. 2). This

approach is appealing since information obtained at a

given scale can be easily transferred to another scale.

Neuman (1990) suggested a universal scaling law for

longitudinal dispersivities aL ¼ 0:017s1:5; where s is

the mean travel distance. His analysis was averaged

over a broad variety of geologic media and a broad

variety of flows and transport conditions. As argued

by Anderson (1991), similar results may be obtained

for a discrete hierarchical organization of geological

facies. The potential of fractal models to predict

transport properties at a specific site still remains to be

demonstrated. Soil structure and related material

properties have been suggested to be fractal (Wheat-

craft and Tyler, 1999; Rieu and Sposito, 1991; Perrier

et al., 1995; Baveye and Boast, 1998), yet it is not

obvious that soil should exhibit fractal properties. The

self-similarity of the structure would suggest some

self-similarity in the generation processes of the

structure. While this may be the case in some aquifers

due to their alluvial origin, we do not expect this for

all soils. Here, quite disparate processes are

Fig. 2. Dependency of an imaginary parameter value on the scale of

observation assuming different concepts of spatial heterogeneity:

macroscopic homogeneity (thin line), discrete hierarchy (dashed

line), continuous hierarchy (dashed dotted line), and fractal (thick

line).
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responsible for structure formation, and each of them

may actually introduce a scale of its own. Examples

for such processes are formation of organo-clay

complexes, desiccation cracking, borrowing animals,

or the formation of soil patterns due to the topography.

4. The scaleway

In the following we introduce the scaleway as a

concept that is able to handle multi-scale heterogene-

ities to predict flow and transport at a specific site and

at a given scale. The proposed concept is in contrast to

effective models and classical perturbation theories

that are based on macroscopic homogeneity and the

existence of a finite correlation length.

Most simply, the scaleway can be demonstrated for

discrete hierarchical structures, for which at each

scale of observation the structural units can be clearly

distinguished. This corresponds to the consideration

of discrete geological facies as discussed above.

However, as described below, the scaleway is also

applicable to continuous hierarchies and fractal

structures.

We start from the knowledge that many processes

in soil are dissipative in the sense that microscopic

details average out at the macroscopic scale and

hence, only the macroscopic structure is relevant. This

is obvious at least for those processes described by

linear diffusion (Hammel and Roth, 1998), but it may

not be obvious and actually it may not be true for

others. A notorious example of a non-dissipative

process is invasion of air into water-saturated soil

where structural features at the microscopic scale may

control the macroscopic behavior.

For the class of dissipative processes, we may

choose an arbitrary scale for separating structure,

which is to be represented explicitly, from texture,

which is to be described by material properties. The

scheme of this concept is shown in Fig. 3. At any

particular scale we observe some sort of structure,

where the different structural units are labeled by a

certain texture. The structure is, at least in principle,

directly observable by appropriate instruments irre-

spective the scale of observation. We assume further

that the detected structural units are associated with

specific material properties that govern flow and

transport. Consequently, we associate the texture of

the different structural units with a set of material

properties. At the scale of a small plot this would for

instance be the soil water characteristic and the

hydraulic conductivity function. For the remaining

Fig. 3. Sketch of the scaleway from small scale (bottom) to larger scales (top). At each scale we observe structural units distinguished by their

texture which is associated with a set of material properties. The structure of material properties together with an appropriate process model are

necessary but sufficient ingredients to calculate the full phenomenology at the next larger scale and effective material properties at this larger

scale.
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ingredient at a given scale we need an appropriate

process model, for instance Stokes’ equation at

the pore scale, or Richards’ equation at the continuum

scale. Then, the effective properties at a given

observation scale can be calculated. These effective

properties may represent the material properties of a

structural unit at the next larger scale, while the

structure at the actual scale translates into texture and

so forth.

Note that we do not only get some effective

parameters at the scale of observation. Additionally,

the complete phenomenology without invoking effec-

tive processes is available at the scale of observation

provided that the underlying process model is correct.

This is the base that allows one to predict the effective

behavior. It is possible because the continuous

structure of the relevant material properties is

available.

To enter the scaleway at some point, the structure

must be known. Typically, the instruments used to

measure the structure do not directly measure the

variables required by the process model like for

instance hydraulic parameters. Hence, we aspire to

measure the structure of some property that is

correlated with the variables of interest and we use

such proxy variables to distinguish between different

structural units. The material properties for each

structural unit, i.e. the variables of interest, are

directly measured whenever feasible. If this is not

the case, they must be calculated from the next

smaller scale as a convolute of structure, material

properties and process model. The fundamental

input comes from the observation of the structure

and our understanding of the processes. The process

models are typically ad hoc formulations based on

experiences and our intuition.

Obviously, the scaleway is not restricted by the

type of forms, be they uniform, regularly structured,

fractal or irregularly structured. The price for this

generality is the inability to predict anything beyond

the scale of observation. Since such predictions

appear rather useless in light of the multi-scale

nature of natural forms, we do not perceive this as a

severe restriction. An example for a continuous

hierarchical structure is shown in Fig. 1 (middle).

Here, the separation of the soil material into

structural units, which are dense aggregates and

loose matrix, is not obvious. The hierarchy may be

considered to be continuous. There is no clear lower

limit for the size of aggregates and therefore, it is

not clear which aggregates should be considered

explicitly as part of the structural unit dense

aggregates and which aggregates are small enough

to be part of the texture of the loose matrix. With

respect to solute transport, this problem may not be

very severe because the processes are dissipative.

This means that the effective behavior, such as the

breakthrough curve of a solute pulse, is mainly

affected by the coarse structural elements, while the

effect of tiny details is smeared out.

5. Example

As an application of the scaleway we consider

solute transport within an undisturbed soil column

taken from the top horizon of an arable soil (Orthic

Luvisol). The goal was to predict the breakthrough

curve of a conservative tracer that was transported by

a stationary water flow. This problem is described in

the context of the scaleway in Fig. 4. The different

steps required are only summarized here since they

have already been published elsewhere (Vogel and

Roth, 1998; Kasteel et al., 2000).

The cylindrical column had a diameter of 160 mm

and a height of 90 mm. After establishing a stationary

water flux of 11.4 mm h21, the tracer, Br2, was

applied as a step input and a classical breakthrough

curve was measured.

To predict the result, the structure of bulk density

was measured for the complete column by X-ray

tomography at a resolution of 0.4 mm. Then, the

three-dimensional image was segmented into dense

aggregates and loose matrix, and coarse-grained to a

resolution of 3 mm (Fig. 5) in order to run the

subsequent numerical simulation of flow and transport

more efficiently.

At this scale, we assume that the measured bulk

density can be used as a proxy for hydraulic proper-

ties, i.e. soil water characteristic uðcmÞ and hydraulic

conductivity function KðuÞ where u denotes the water

content and cm the matric potential of water. Once

these material properties are known, we apply

Richards’ equation

›tu2 7·½KðuÞ7c� ¼ 0; ð1Þ
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Fig. 4. Prediction of the breakthrough curve of a conservative tracer for a undisturbed soil column following the scaleway.

Fig. 5. Representation of the structure at different scales: continuum-scale (left), dense aggregates are light gray and the pore-scale (right) where

a network model was adapted to the measured pore-size distribution and topology of the pore space.
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where c is the total soil water potential, as a process

model to describe the water dynamics.

The dynamics of the transport of a conservative

tracer is modeled by the convection dispersion

equation (CDE)

›t½uCw� þ 7·½uVCw�2 7·½uD7Cw� ¼ 0; ð2Þ

where Cw denotes solute concentration in the water

phase, V pore water velocity, and D dispersion tensor.

Consequently additional parameters are required: the

velocity field V and D which are functions of the water

content and the water flux. These functions are

generally not well known however. For our exper-

iment V is obtained from the solution of Eq. (1) and

we add the dispersivity l ¼ D=V as another material

property which was kept constant. For a detailed

derivation of the models (1) and (2) the reader is

referred to some textbook on soil physics (Jury et al.,

1991).

The remaining question is how to get the

material properties uðcÞ and KðuÞ for the two

different structural units. Direct measurements

using subsamples of some 10 mm are not feasible.

Hence, with the scaleway in mind, we move to the

smaller scale, since uðcÞ and KðuÞ can be

considered to be effective descriptions of the

underlying pore structure. Subsamples were impreg-

nated with a polyester resin and the three-dimen-

sional geometry of the pore space was obtained by

serial sections at a resolution of 0.013 mm. Details

are given by Vogel (1997). We now enter the

scaleway. Given the three-dimensional pore struc-

ture, the hydraulic properties may be calculated

using Stokes’ equation with viscosity of water and

surface tensions water/air and water/solid as

material properties at this scale. However, to

solve numerically that problem for a complex

structure is a monumental task, and therefore we

chose a simpler approach.

The complex pore geometry was quantified in

terms of pore size distribution and pore topology.

These two properties are expected to govern the

hydraulic properties. To obtain the pore size distri-

bution we applied morphological erosion followed by

dilation using spherical structuring elements of

different radii r (Serra, 1982). This procedure filters

all pores smaller than r. Hence, each point within the

pore space can be attributed to a pore size class.

Additionally, the spatial connectivity of the different

pore size classes is known to be critical for the

hydraulic behavior of porous media. A quantitative

description of the pores’ topology was obtained by the

connectivity function, which is defined as the Euler

number in dependency of the pore size (Vogel, 1997).

These morphological results were used to represent

the pore structure by an equivalent network model.

Thereby, the complex pore structure is idealized by a

network of cylindrical tubes of different radii. Fig. 5

shows a small cutout (43 nodes) of a network with 643

nodes which was used for the simulations. The model

was constructed such that its pore size distribution and

connectivity function corresponds to the measured

values.

For such network models uðcÞ can be directly

calculated using the Young–Laplace relation, essen-

tially cm / 1=r and taking into account the continuity

of the gaseous phase. Additionally, the hydraulic

conductivity function can be obtained by simulating a

pressure gradient over the network and using Hagen–

Poiseuille’s law, essentially K / r2; to calculate the

effective conductivity. Details are given by Vogel and

Roth (1998).

In this way we obtained an estimation for the

hydraulic properties of the two structural units as a

convolute of structure and process model at the

subscale. Vogel and Roth (1998) compared the results

with direct multi-step outflow experiments and found

a reasonable agreement. Together with the three-

dimensional image measured by X-ray tomography,

the complete three-dimensional structure of hydraulic

properties was available. Given the hydraulic proper-

ties, solution of Eq. (1) using SWMS_3D (Šimu̇nek

et al., 1995) yielded the flow field jw: Transport

properties V and D were estimated by (i) presuming

that the entire water phase was active in transport,

hence V ¼ jw=u; and (ii) by choosing 1 mm for the

longitudinal dispersivity and 0.5 mm for the transver-

sal dispersivity which is smaller than the spatial

discretization of 3 mm. The transport problem (2) was

solved by a random-walk algorithm (Roth and

Hammel, 1996).

Fig. 6 shows some horizontal sections of the

simulated tracer distribution after 28.5 mm of infiltra-

tion. It should be noted that a tensiometer was

installed in a depth of 20 mm which led to some

compaction of the soil material. Consequently there

H.-J. Vogel, K. Roth / Journal of Hydrology 272 (2003) 95–106102



was a dense aggregate in the surroundings of that

instrument and the effect on tracer distribution is

clearly visible. This also demonstrates that the

physical reality of the experiment is faithfully

represented.

The comparison between measured and simulated

breakthrough curves is shown in Fig. 7. Although the

long tail of the measured curve is not represented well

in the simulation, the agreement between the two

curves was reasonable which demonstrates the pre-

dictive power of our approach. This is especially true

considering the fact that we have not used any

information from the experiment itself. This is in

contrast to the mobile–immobile model (van Gen-

uchten and Wierenga, 1976) which yields a much

better description of the measured data but is only a

retrospective description of the specific experiment.

This is because the partitioning into mobile and

immobile water and the exchange term between

theses compartments is fitted to the measured data,

and the physical meaning of the introduced par-

ameters is not clear. Our prediction based on the

structure of material properties emulates the physical

reality. It reproduces the observed phenomenology

without a heuristic partitioning into mobile and

immobile fractions of the water phase.

6. Implications and extension to larger scales

The example presented in Section 5 operates on the

relatively small scale of a soil column while the scale

of typical problems in solute transport is much larger.

It is in the order of some meters, the distance from the

soil surface to the groundwater. When moving to

Fig. 6. Simulated concentration distribution of a conservative tracer at various depths of a soil column after an infiltration of 28.5 mm.

Fig. 7. Breakthrough curve of a conservative tracer: measured

(symbols), independently predicted (thick line) and mobile–

immobile-model fitted to the data (thin line).
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larger scales, the instruments to measure the relevant

structure may change. The same is true for the process

model and for the material properties.

Irrespective of the techniques used, the structure

must be measured continuously at a resolution that

allows to represent the structural units including their

topology. The latter describes the connectivity which

is a critical property for any kind of transport process

and requires a continuous measurement. Thereby,

more specifically, we need the structure of the

relevant material properties.

However, in most cases, the material properties

cannot be measured directly. As already mentioned

above, we have to rely on surrogates that are suitable

proxies for the required material properties and that

can be measured efficiently and continuously. In the

example presented above we used bulk density which

could easily be measured by X-ray tomography as a

proxy for hydraulic properties. In catchment hydrol-

ogy topography is widely used as proxy for hydraulic

variables, since this information is continuous in

space and readily available.

Measuring technologies at the field scale and

beyond are not as developed as at the lab scale.

However there are a number of geophysical methods

that have originally been invented for exploring

deeper layers of the earth, but may be adapted to

near-surface measurements. One example is ground-

penetrating radar (GPR) which can be used to map the

dielectric structure of the subsurface. This is an

excellent proxy for the pore size distribution which

can be linked to hydraulic properties. While this link

does not yield the hydraulic properties themselves,

probably not even a useful estimate for its value, we

believe that it yields the spatial structure of the

corresponding fields. This suffices for entering the

scaleway. In contrast to pedotransfer functions, where

the variables of interest are directly calculated from

the proxy variables after some kind of regression

analysis, we suggest to use the proxy variable merely

to identify the structural units.

By using proxy variables to describe the structure,

the measurement error is increased due to the

imperfect correlation between proxy and the required

material properties. However, there is some evidence,

that a relatively coarse description of the three

components—structure, material properties, and pro-

cess model—may be sufficient to predict the effective

behavior reasonably well. This is corroborated by the

small scale example (Fig. 4) where all these

components are represented by rather coarse approxi-

mations. Obviously, if one of these components is

missing, prediction would not be possible at all.

These coarse approximations, however, must

encompass all significant properties. Considering the

pore geometry, the significant properties are the size

distribution of pores and their topology which both are

represented in the network model. It was demon-

strated by Vogel (2000) for the same data set, that

ignoring the topological characteristics of the pore

space leads to completely different results for both,

the hydraulic properties and the transport parameters.

The topology or connectivity of the structure may

be a critical point at any scale of observation. Clearly,

topology of structural units plays a crucial role for any

kind of transport process. On the other hand, in

terrestrial systems we often face structural units that

are extremely anisotropic. At the small scale the most

notorious structures of this kind are earthworm

burrows, root channels and cracks. Examples at the

large scale are river networks, their remnants in the

subsurface, and thin sedimentary layers. To represent

the topology of structural units the ratio between field

of view and resolution, which is a characteristic of the

instrument used to measure the structure, should be

much larger than the anisotropy ratio of the structural

units. In some cases this condition may be hard to

meet. Photographic techniques and X-ray tomography

have a relatively high ratio between field of view and

resolution of some 103. For near-surface geophysical

methods, such as GPR, this ratio is more like 101.

Another tool to get a continuous description of the

spatial structure is provided by geostatistics where

point measurements are extrapolated using different

methods of kriging (Chilès and Delfiner, 1999).

Thereby, however, the extrapolation is based on

critical assumptions on the structure, such as isotropy,

and topological characteristics are typically lost

completely. Hess et al. (1992) found that a very

large number of points of measurement are required to

come up with a conductivity field that is able to

predict the macroscopic dispersivity. Using proxy

information seems to be much more efficient. This

was also proposed by Sivapalan (1993) who used

information on topography, climate and vegetation

cover to identify structural units at the subscale. Viney
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and Sivapalan (2001) termed it the disaggregation–

aggregation approach. Thereby, in a first step, the

results obtained at the large scale are disaggregated,

i.e. distributed in space, using appropriate proxy

information. Then, in an aggregation step, the

effective behavior at the observation scale is obtained

based on the spatially distributed parameter field.

In summary, concerning the measurement of

structure, there are promising perspectives also for

the larger scale. But what about the process model? Is

Richards’ equation still applicable at the regional

scale? We should comment that such qualitatively

new knowledge cannot be expected to result from

some mechanistic operation, but only comes out of

some new vision of the matter. Of course, the

scaleway may serve as a base to produce such a

vision and to verify it. Given the structure of material

properties, the full phenomenology at a given (large)

observation scale can be calculated as a result of the

chosen model and herewith the model prediction can

be compared to the reality.

7. Conclusions

Geologic materials like soils and aquifers are

almost always heterogeneous and they are often so

across many scales. Many important processes in such

media, for instance groundwater flow or solute

transport in soil, are dissipative in the sense that the

details of small-scale features are immaterial at a

larger scale. For that kind of process we arrive at the

following conclusions.

1. The explicit consideration of structure in modeling

flow and transport, here referred to as the scaleway,

is a predictive tool to quantify the phenomenon of

solute transport. By introducing the structure of the

material, we do not have to prejudice any

‘effective’ process model at the scale of obser-

vation. The effective phenomenon of solute trans-

port is implicit in the structure and the microscopic

process model.

2. Once the structure, the related material proper-

ties, and the process model are known, a

relatively coarse description of these ingredients

may be sufficient to come up with a reliable

prediction. On the other hand if one of those is

qualitatively wrong, the effective behavior cannot

be predicted.

3. As a consequence of (2) we should focus more

on measuring structure rather than on measuring

hydraulic properties with more and more pre-

cision. Moving the location of the sample by a

short distance would change the result anyway, if

the material is structured. The identification of

suitable proxy variables is crucial in this context,

because direct measurement of the relevant

variables is typically not possible.

We demonstrated the concept of the ‘scaleway’ for

a simple example which we already know in much

detail. While a lot of experimental and theoretical

work will be required to make the proposed concept

operational at larger scales, we believe that it allows a

consistent transition from one scale to the next.
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