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Abstract

Spatial crop yield prediction is an enigma that needs to be solved to avoid ecological and economical risks in agricultural

crop production, that can result from local fertilizer surplus or deficiency. Current approaches for site-specific fertilizer

distribution are based on patterns of soil properties and yield maps obtained from previous years. The aim of this study was to

evaluate the quality of crop yield prediction in an arable field using two sets of variables in autoregressive (AR) state-space

models. One set included detailed soil information (texture, organic carbon content) and yield data from the previous year at a

high spatial resolution. In the other set, remotely sensed soil and crop information (vegetation index, crop nitrogen status, land

surface elevation) was assembled, which is available under farm conditions without intensive soil sampling campaigns. Soil and

remotely sensed variables were evaluated in bi- and multivariate autoregressive state-space analysis to predict spring barley

grain yield. Remotely sensed variables showed to be better predictors for spatial grain yield estimation than soil variables.

Transition coefficients determined from state-space analysis were applied in AR-equations with soil and remotely sensed

information, but yet given only the initial value of the spatial yield series. Both sets of variables elicited similar prediction

quality.
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1. Introduction

Modern agricultural production is characterized by

highly intensive and efficient production systems, and

the average field size has been increased tremen-

dously over past decades. Nowadays, large field units

are managed homogeneously, although there exists a

considerable inherent soil spatial variability causing

spatially differing zones of fertility and physical

properties. When such large field sites are fertilized

homogeneously for example with nitrogen (N),

economical and ecological disadvantages can be the

consequence. The first is the case when the applied

fertilizer dose is below the local optimum, the second

when the applied fertilizer cannot entirely be used by

the crop and may cause leaching of fertilizer nutrients.

Farmers in the last decades have already intuitively

met decisions with respect to the spatial variability

pattern within their fields or have been varying

fertilizer application rates locally, based on their

experience and their expectations. This idea has been

embedded in a technology, i.e. precision or site-

specific farming, which are now possible due to
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the availability of global positioning systems among

others. Local records of crop yields and soil properties

can now be taken into account in order to derive maps

underlying locally varying fertilizer application rates

(Wenkel et al., 2001). However, such a fertilizer

distribution map requires a spatial expectation or

prediction of crop yield, how its spatial variation is

related to underlying soil properties, and how it can be

spatially predicted even under spatially homogeneous

management.

A lot of emphasis has been spent in using soil

information and already existing yield maps from

previous years as a basis for estimating crop yield

distribution maps (Kersebaum et al., 2002). However,

usually under farm conditions, the existing soil

information is rather insufficient to draw a detailed

map. Not to mention that such a map would neither

allow to derive a spatial expectation of crop yield nor

could a local fertilizer application rate be based on it.

Yield maps exhibit differing variability patterns for

the same site in subsequent years (Stafford, 1999;

Grenzdörfer and Gebbers, 2001). In addition,

resources for intensive monitoring campaigns are

limited and impractical under farm conditions. More-

over, the fact that weather conditions differ from year

to year in the climatic zone of Western Europe with its

strong maritime influence jeopardizes the use of soil

data bases in their usual spatial resolution (50 by 50 m

in Germany) for deriving a yield expectation map for

a particular year. Low correlation coefficients at the

field scale cause a considerable uncertainty in

approaches in which crop yield estimations are

based solely on soil properties such as textural grain

size distribution and soil organic carbon content.

In addition to the available soil information, site

information is nowadays used increasingly. Land

surface images from either the bare soil surface or the

crop can be obtained during different times of the

growing season. If the pattern of such images is

spatially related to a relevant soil state-variable, e.g.

soil water content, or indicates the crop development

distribution within a field site, this could be a useful

alternative for predicting the spatial crop yield

distribution. Moreover, even for conditions when the

existing soil map does not exhibit a pronounced soil

variation, considerable spatial yield variation can be

observed. Shaw and Carter (2002) pointed out that

although soil survey is efficient for grouping soil

variability at the landscape scale, substantial spatial

variability arises from near surface soil properties

within the same mapping unit. Additional effects on

the variation of grain yield (Ciha, 1982) may be

related to landscape morphology (Pennock and Corre,

2001), i.e. surface relief and underlying soil develop-

ment, including erosion.

Regardless of the information underlying a pre-

dicted map, another important issue has to be

considered. The quality and evidence of a yield map

obtained from a monitoring system has to be

examined critically for at least two reasons. One is

the uncertainty of such a map due to the measurement

technique. The other is the fact that even one single

intensive rain event before harvest can affect the crop

yield, e.g. by causing lodging. Under such conditions,

the yield obtained at a respective location does not

necessarily reflect the previous vegetative develop-

ment and biomass production relative to the local

neighborhood.

During the last two decades, statistical tools based

on autoregression that are appropriate for describing

the process of a set of variables were adapted from

applied statistical time series analysis to spatial series

of soil and crop data. Using autoregressive state-space

models, Morkoc et al. (1985) and Shumway et al.

(1989) described the spatial association of soil water

content and soil temperature. Nielsen and Alemi

(1989) showed the coincidence between cotton yield

and nematode infestation. Wendroth et al. (1992)

identified processes underlying yield of a N-fixing

legume and a non-fixing reference crop. Li et al.

(2001) based cotton lint yield variability upon soil

water content, nitrate-N and elevation. Due to the fact

that state-space techniques concede measurement and

model uncertainty that drive a stochastic updating and

filtering step, and due to the autoregressive model

equation, spatial relations between variables can be

identified with greater accuracy than with ordinary

regression techniques (Nielsen et al., 1999). Shumway

(1985) addressed advantages of geostatistical interp-

olation techniques, e.g. kriging and cokriging, which

allow spatial estimations based upon sparse collec-

tions of data points. On the other hand, time series

techniques required equally spaced data. However,

with time series techniques such as state-space

analysis, problems can be approached which involve

instationarity and missing data (Shumway, 1985).
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The emphasis for applying state-space analysis here

as in many current spatial and temporal data series is

to identify underlying processes of one-dimensional

series of observations (Nielsen et al., 1994, 1999) and

to estimate model parameters based on maximum

likelihood (Shumway, 1985).

The objective of this study was, to evaluate two

sets (vectors) of different variables monitored at a

site for predicting yield distribution. One group of

variables consisted of grain yield, soil textural data,

soil organic carbon content at 0–30 cm depth, and

grain yield from the previous year and crop. The

other group comprised grain yield, remotely sensed

normalized differential vegetation index (NDVI98),

crop N status (CNstat) at one time during the

vegetative period, elevation, and slope. The first

group of variables is rather soil-based and requires

detailed information. However, except for the yield

of the previous crop no annual or short-term

influences upon crop development are integrated.

The second set mainly consists of variables, which

reflect current crop and soil status, hence integrate

a lot of influences upon the recent crop develop-

ment. Both sets should be examined with respect to

their support of yield prediction. The validity and

robustness of transition coefficients was examined

in autoregressive predictions without any stochastic

filtering and updating.

2. Material and methods

2.1. Site and experimental description

The field site of this investigation is located in

Luettewitz on a farm of the Suedzucker company,

southeastern Germany, in the federal state of

Saxony (51870N, 138140W). The soil is derived

from loess and is classified as a Stagnic Luvisol.

The annual average air temperature is 8.0 8C, and

the average annual precipitation is 662 mm. The

size of the investigated field site is approximately

21 ha. Across this field, a regular grid of 15 £ 15

points was laid out with 29 m distance between

grid points in the north and east direction (Fig. 1).

All measured and calculated information included

in state-vectors for this study was aggregated to

this 29 £ 29 m grid. As state-space analysis is

designed for observations taken in one dimension,

observations were arrayed in the way indicated in

Fig. 1, beginning in the upper left hand corner of

the field and leading to the lower right hand corner

of the field.

In spring 1998, spring barley (Hordeum vulgare, L.)

was planted in the field. In the previous year 1997, the

site had been grown to triticale (Triticosecale

wittmack ). Grain yield in both years 1997 (Yi97)

and 1998 (Yi98) was determined during harvest with

an automatic CLAAS yield monitoring system

‘CEBIS’.

On 30 May, 1998, an aerial infrared photograph

was taken from an aircraft (Jürschik and Schmerler,

1997). This photograph was processed to obtain a map

of NDVI (Baret, 1995). Soil textural grain size

distribution was determined for three depths

(0–30 cm, 30–60 cm, and 60–90 cm), and soil

organic carbon content (SOC) at 0–30 cm depth.

Soil texture and SOC were determined at every other

location in both the north and south direction, hence at

64 points. In comparison to the other variables, this

spatial resolution of textural data is coarse but this was

the only affordable amount of measurements. How-

ever, for practical farm conditions, such a resolution

Fig. 1. Sampling grid and array of data in the North–South direction

for spatial analysis. The bold part of the line refers to those

measurement locations for which results are depicted in Figs. 2

and 3.
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would probably be unaffordable. For this study, soil

texture was linearly interpolated for the unknown

locations. From the variety of grain size fractions,

silt (2–63 mm equivalent particle diameter) at 30–

60 cm depth and sand content (63–2000 mm) at

60–90 cm depth were considered in the analysis.

These grain size fractions were selected from the

existing set of soil information, as they yielded

largest correlation coefficients with spring barley

grain yield among other fractions and other soil

depths, respectively (Table 1). Moreover, ranges of

spatial dependence determined from cross vario-

grams between barley yield and respective variables

indicated strong spatial associations between 61 and

198 m, approximately corresponding to 2 and 7

lags, respectively (Table 1).

Currently, crop sensors are becoming available

that allow monitoring, e.g. the crop growth or

nutrition status. At present such a sensor is being

developed to monitor crop N status. However, this

sensor was not available at the time of our

experiments. Therefore, a corresponding crop N

state-variable was generated from the crop growth

and N dynamics model HERMES (Kersebaum,

1995). This model was not calibrated for the field

site, and was applied at each of the 225 grid points,

given the respective soil textural information and

the soil mineral N content after harvest of the

previous crop as the initial condition (Kersebaum

et al., 2002). Simulated N in the above ground

biomass was taken for 14 June, 1998 and included

in the state-vector.

For the field site, a digital elevation model was

determined by laser altimetry. Slope was computed

using the D8-method (steepest descent) on a

10 £ 10 m basis. Both elevation and slope were

averaged for the 29 £ 29 m grid. For further details

see Reuter et al. (2001).

2.2. Theory

State-space models in general consist of a model

equation and an observation equation. For this study,

an autoregressive equation was combined with the

Kalman Filter (Kalman, 1960). In this case, the state-

equation is

Zi ¼ FZi21 þ vi ð1Þ

which describes how the state-vector Zi at location

i which includes a set of p variables is related to

that at location i 2 1. This relation is manifested in

the p £ p transition matrix F that consists of

autoregression coefficients. Only one-dimensional

experimental designs support autoregressive anal-

ysis (Shumway, 1985). Accordingly, the exper-

imental data sampled across the field were arrayed

in a spatial series that allows the application of

time series analytical tools. The spatial direction of

data series is certainly changed. However, spatial

distances remain as if observations were taken

along one line with regular sampling intervals. The

model error term vi is a zero mean uncorrelated

noise with a q £ q covariance matrix Q the latter

being variance per unit space or time, and

depending on the interval between observations.

This source of uncertainty is due to a systematic

error implied in the model itself and in the

underlying functions, in this case the magnitude

and the general validity of the transition coeffi-

cients. This state-equation is solved simultaneously

with the observation equation

Yi ¼ MiZi þ y i ð2Þ

in which the true state Zi is reflected in the

observation Yi by a measurement matrix Mi and an

uncorrelated zero mean measurement error with y i

common covariance R. Hence, the observation does

Table 1

Correlation coefficients and associated ranges of spatial dependence

between spring barley grain yield (Yi98) and other variables

Correlation

coefficient r

Yi98

Range of

spatial

dependence, m

NDVI98 0.541 (2) 137.5

Yi97 0.339 (3) 99.8

Crop-N-status on

June 14, 98 (simulated)

0.371 (4) 61.2

Elevation 0.588 (1) 197.6

Slope 20.098 151.4

Silt 30–60 cm 0.307 118.4

Sand 60–90 cm 20.280 143.6

SOC 0.269 144.3

Ranges of spatial dependence were derived from spherical

models fitted to cross-variograms. Rank orders of r are given in

parenthesis( ).
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not have to be taken to be fully true but is only an

indirect measure of the true system’s state.

In this study, the system including the filtering,

updating and smoothing steps was solved with the

expectation maximization algorithm described by

Shumway and Stoffer (1982). For further details, see

Shumway (1988), Shumway and Stoffer (1982, 2000),

Nielsen et al. (1994) and Nielsen and Wendroth

Fig. 2. Spatial process of spring barley grain yield, triticale grain yield (a), silt content in 30–60 cm depth (b), sand content in 60–90 cm depth

(c), and soil organic carbon content (SOC) in 0–30 cm depth (d). For a better visualization of the spatial process of the series, data are presented

for locations 61–180 (Fig. 1).

O. Wendroth et al. / Journal of Hydrology 272 (2003) 250–263254



(2002). One of the advantages of deriving autoregres-

sion coefficients in state-space models compared to

ordinary autoregression models is the implication of

the two error terms, the model and measurement noise

and the mathematical separation of noise and signal.

The autoregression coefficients are based on an update

of the estimated state. However, for robustness of the

solution the log likelihood is not affected by any

updated or smoothed state but on the predicted state

(Shumway, 1988 and Nielsen and Wendroth, 2002).

Before applying state-space analysis, data were scaled

by the following equation (Wendroth et al., 2001)

ysci ¼
yi 2 ðmy 2 2syÞ

4sy

: ð3Þ

In this equation the scaled value ysci of the original

observation yi is calculated based on the mean my and

the standard deviation sy: This scaling procedure was

Fig. 3. Spatial process of spring barley grain yield, normalized differential vegetation index (NDVI) (a), crop N status on June 14, 1998 (b),

elevation (c), and slope across the field (d). For a better visualization of the spatial process of the series, data are presented for locations 61–180

(Fig. 1).
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applied for two reasons. One reason is to avoid

numerical problems that can arise if variables differ

by orders in their magnitude. Instead, if they are in the

same order of magnitude, their transition coefficients

reflect their relative contribution to the estimate. Data

series have a mean of 0.5 and a standard deviation of

0.25 when normalized with Eq. (3). The second reason

is the comparability of the log likelihood for

combinations of variables. By this normalization

procedure, the variables have the same probability

density function, and only differ by their correlation

structure (Nielsen and Wendroth, 2002). The log

likelihood allows to compare how different state-

vectors with the same number of variables and the

same number of observations contribute to the

estimation. The lower the log likelihood (value of

22 ln L ), the better the prediction.

In order to evaluate the resulting transition

coefficients from state-space analysis, these

coefficients were applied in simple autoregressive

predictions, where only the first yield value in the

series is known, and all following values are

calculated from the previous one and those from the

underlying variables included in the respective state-

vector. As a criterion for prediction quality, the

average of squared deviations between measured

spring barley yield Yi98meas and predicted spring

barley yield Yi98pred was calculated with

SQDavg ¼
1

n

Xn

i¼1

ðYi98meas 2 Yi98predÞ2: ð4Þ

3. Results and discussion

Spring barley grain yield across the 225 locations

arrayed in one dimension is shown in comparison to

triticale grain yield (Fig. 2a), silt content at 30–60 cm

depth (Fig. 2b), sand content in the layer from 60 to

90 cm (Fig. 2c), and soil organic carbon content (SOC)

at 0–30 cm depth (Fig. 2d). For better illustration of

the spatial series, not all 225 data points but only those

at positions 61 through 180 (Fig. 1) are shown. The

three latter variables are correlated with lrl , 0:31

(Table 1), and are less associated to spring barley yield

than grain yield of triticale, i.e. the yield of the previous

crop. The spatial processes of the second group of

variables is shown versus spring barley grain yield with

NDVI (Fig. 3a), crop N status at a day in mid June

(Fig. 3b), elevation (Fig. 3c), and slope (Fig. 3d).

Except for Yi97, all variables in this group exhibit a

closer relation with spring barley grain yield (Table 1).

Correlation between yield and elevation was slightly

lower than that observed by Li et al. (2001). Spatial

ranges obtained from cross variograms between yield

and elevation shown in Table 1 were longer than those

reported by Li et al. (2001) owing to the fact that

topographic differences in their field site were less

pronounced and reached across shorter distances than

those in our study. In their study on grain yield and

underlying soil properties, Cassel et al. (2000)

identified cross correlation lengths being shorter than

the spatial ranges of dependence between yield and soil

properties resulting from our study. Spatial ranges of

variograms (results not shown) and cross variograms

observed in our study, were similar to those observed

by Sadler et al. (1988) for yield data. Based on their

results, Sadler et al. (1988) recommended resolutions

finer than 100 m for precision farming studies in

Coastal Plain soils. This suggestion is confirmed by our

results. The four highest correlation coefficients were

obtained in the rank sequence of Elevation . NDVI .

Yi97 . crop-N-status.

An elevation map of our field site is shown in

Fig. 4 to convey an impression of topographical

Fig. 4. Elevation map of the field investigated in this study (all units

in meter).The field is located in Luettewitz, southeastern Germany.
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differences. The large northeastern region of the field

is a south-directed hillslope. A valley exists in the

southeast corner of the field. When considered in the

one-dimensional array in Fig. 3c, an association

between elevation and spring barley grain yield is

obvious. Rather than between crop yield and

elevation, Timlin et al. (1998) found strong spatial

coherence between corn yield and curvature. Accord-

ing to Timlin et al. (1998) including curvature in the

analysis may explain differences in crop yield

between different years when local water trans-

mission differs.

All variables monitored were systematically com-

pared in bivariate state-space analysis in two different

scenarios, respectively. In one scenario, observations

at each location were considered in the estimation. In

this case, updating is possible at each location. In the

second scenario, only one out of four spring barley

grain yield measurements were taken into account, i.e.

the updating step is possible only at those locations

where an observation of spring barley grain yield is

available.

For both groups of variables, an example is shown

for the respective scenarios. Spatial prediction of

spring barley grain yield based on silt content at 30–

60 cm depth (Silt30) is shown in Fig. 5 with the

respective state-equation. The values for the log

likelihood resulted 2965 and 21268 for the scenario

considering all and only every fourth yield obser-

vation, respectively (see also Table 2). In both

scenarios, the coefficients of the transition matrix

remain relatively stable. The 95% confidence interval

of the estimation increases for the case where less

yield observations become available for an updating

(Fig. 5). The closer the 95 % confidence interval, the

better are local fluctuations of grain yield met by the

model prediction.

As an example for the second set of variables,

elevation is used in state-space analysis for estimating

the spatial process of spring barley grain yield. The

results (Fig. 6 and Table 2) indicate different weights

on the previous yield observation for both scenarios.

This may be due to the fact that, unlike in the original

yield series (Fig. 6a), in the series of one out of four

Fig. 5. Bivariate state-space analysis of spring barley grain yield (Yi98) and silt content at 30–60 cm soil depth (Silt30) considering all Yi98

observations (a) and only every fourth Yi98 observation (b), respectively. Variables were scaled using Eq. (4). Their respective state-equations

and the log likelihood values (22 ln L ) are given.
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considered Yi98i values (Fig. 6b) some extremely high

and low yield values are not included. The magnitudes

of the respective 95% confidence intervals are smaller

than those for the combination of Yi98 and silt at

0–30 cm depth (Fig. 5). Values for the log likelihood

(21498 and 21788, respectively, Fig. 6, Table 2)

indicate a stronger association of spring barley yield

with elevation than with silt content.

Fig. 6. Bivariate state-space analysis of spring barley grain yield (Yi98) and elevation considering all Yi98 observations (a) and only every

fourth Yi98 observation (b), respectively. Variables were scaled using Eq. (4). Their respective state-equations and the log likelihood values

(22 ln L ) are given.

Table 2

Transition coefficients according to Eq. (1) for bivariate state-space analysis of spring barley grain yield [f (Yi98)] and other covariables [f

(cvar)], as well as respective values for the log likelihood

State-space analysis (1st order bivariate)

All Yi98-observations considered Every 4th Yi98-observation considered

Transition coefficients Log likelihood Transition coefficients Log likelihood

f (Yi98)i21 f (cvar)i21 f (Yi98)i21 f (cvar)i21

NDVI98 0.818 0.141 21156 (2) 0.901 0.076 21374 (2)

Yi97 0.684 0.289 2876 0.517 0.504 21117

Crop-N-status on June 14, 98 (simulated) 0.385 0.600 2851 0.589 0.430 21115

Elevation 0.638 0.322 21498 (1) 0.811 0.127 21788 (1)

Slope 0.854 0.133 2887 0.829 0.165 21071

Silt 30–60 cm 0.829 0.140 2965 0.827 0.167 21268 (4)

Sand 60–90 cm 0.915 0.071 2968 (4) 0.920 0.072 21237

SOC 0.838 0.129 21062 (3) 0.933 0.049 21355 (3)

The numbers in parentheses represent the ranks of the respective four best estimation results.
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Unlike ordinary correlation analysis, the four

strongest contributing variables that were identified

in state-space analysis were in the rank Elevation

NDVI98 . soil organic carbon (SOC) . sand, and

silt content, respectively, for the different scenarios

(Table 2).

From both groups of variables, state-vectors

were composed including three variables besides

spring barley grain yield itself, i.e. Silt30, SOC,

and Yi97 in one set, and NDVI98, crop N status

(CNstat) and elevation in the other set. The two

different scenarios regarding yield resolution were

the same as above. Results for the multivariate

state-space analysis of the soil-based set of

variables are shown in Fig. 7. The contributions

of the three variables and the weight of the

previous Yi98 observation change considerably

compared to the bivariate state-space analysis

(Fig. 5 and Table 2). Notice, that the contribution

of Silt30 increases strongly from 0.19 to 0.68 when

only one out of four Yi98 observation is taken into

account in the estimation (Fig. 7). Again, the 95%

confidence interval increases when only every

fourth Yi98 observation is considered. Especially,

at position 100–225, the spatial process of Yi98 is

rather smooth in the second scenario (Fig. 7b), i.e.

fluctuations cannot be conserved.

The second set of variables with rather sensor and

short-term integrative variables besides Yi98 causes

a better prediction of spring barley grain yield, as

indicated by the log likelihood (22580 versus

22058 in the first set, and 22814 versus 22346,

in the scenarios, respectively). Unlike for the state-

vector with soil-based variables, the fluctuations at

positions 100–225 remain pronounced in the second

scenario, and proceed less smoothed (Figs. 7b

and 8b).

So far, the estimation of transition coefficients

and the prediction of spring barley grain yield has

been based in all scenarios and all different

state-vectors on observations of the yield itself,

though with varying observation densities.

Fig. 7. Multivariate state-space analysis of spring barley grain yield (Yi98), silt content at 30–60 cm soil depth (Silt30), soil organic carbon

content (SOC), and triticale grain yield from the previous year (Yi97) considering all Yi98 observations (a) and only every fourth Yi98 obser-

vation (b), respectively. Variables were scaled using Eq. (4). Their respective state-equations and the log likelihood values (22 ln L ) are given.
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The question remains, how well the results

obtained can contribute in a more predictive

scenario, i.e. in a case where the main variable

of interest, the spring barley grain yield is not

known. Notice, that barley grain yield measure-

ments had to be included in the state-space

estimation procedure in order to determine under-

lying processes. However, under farm conditions,

yield observations of the currently growing crop are

not readily available. Therefore, transition coeffi-

cients from state-equations obtained above should

be evaluated via application in ordinary autore-

gressive models, where only the initial yield value

at position 1 is given. Hence, these equations could

be used for the rather soil-based state vector after

harvest of the previous crop, and at any time

during the vegetation period when the information

of the respective underlying state-variable becomes

available.

Autoregressive spring barley yield predictions are

given for the soil-based state-vector, based on

autoregression or transition coefficients obtained in

the respective scenarios above. The average squared

deviation between prediction and observation is

0.0522 if transition coefficients were used from the

scenario using all observations, and 0.0659 if

coefficients are based on the scenario with only one

out of four yield observations known, respectively

(Fig. 9).

The second set of variables is applied in this

prediction procedure, as well. The results exhibit

similar prediction quality with SQDavg being 0.0526

for the set of transition coefficients obtained from the

scenario with all observations (Fig. 10a). Prediction

quality is similar to that obtained from the soil

information (SQDavg being 0.0675 versus 0.0659)

when transition coefficients are examined, that have

been derived from the scenario with only one out of

four yield observations.

The results in the last two figures are strongly

depending on the initial value of Yi98 at location 1,

here assumed to be known. However, at least

Fig. 8. Multivariate state-space analysis of spring barley grain yield (Yi98), normalized differential vegetation index (NDVI98), crop-N status

calculated for June 14, 1998 (CNstat), and elevation considering all Yi98 observations (a) and only every fourth Yi98 observation (b),

respectively. Variables were scaled using Eq. (4). Their respective state-equations and the log likelihood values (22 ln L ) are given.
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the relative spatial process of yield is obtained from

this autoregressive prediction. It remains open

whether it is possible at all, to gain a precise

prediction of yield magnitude, since a variety of

short-term effects even a few days prior to harvest can

change the level of magnitude of final yield. Here, it is

assumed, that relative yield distribution across that

field is the prediction goal. That aim has been reached

especially with the second set of variables with

encouraging accuracy. The method presented here is

based on empirical analysis of spatial processes

underlying crop yield variation. Therefore, variables

were selected that integrate considerable deterministic

information. Physiological interpretation cannot be

expected from autoregressive equations. For the

purpose of biogeochemical reactions, physical and

bio-geochemical equations can be combined in state-

space models (Nielsen et al., 1994). The analytical

approach presented here was chosen as an alternative

to deterministic description of field-scale crop yield

variation.

4. Conclusion

Bivariate state-space analysis resulted in a

different answer which variables are helpful estimat-

ing spring barley grain yield series, compared to

ordinary correlation. Overall, soil-based variables

proved to be less helpful in both bivariate and

multivariate analyses than variables obtained from

sensors and elevation. It remains open, how crop N

status obtained from a sensor contributes to yield

estimation and prediction. Results from this study

obtained from model calculations of an uncalibrated

model are encouraging. Future work has to show,

how both rather soil-based and information obtained

during the growing season can support yield

prediction. Validity of coefficients has to be

examined both, for neighboring fields and for other

years. In this study, here, the field-scale was the

focus of this investigation. The question remains

open for future research how useful the variables

considered here and others behave at different scales,

Fig. 9. Autoregressive prediction of spring barley grain yield (Yi98), based on Yi98, silt content at 30–60 cm soil depth (Silt30), soil organic

carbon content (SOC), and triticale grain yield from the previous year (Yi97). Autoregression coefficients were obtained from state-space

analysis (Fig. 7). Variables were scaled using Eq. (4). The average squared deviation SQDavg is given as a measure of prediction quality

(see text).
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e.g. for regional large scale predictions. A better

support for on-farm prediction may result from

remotely sensed information. However, for predic-

tions at the scale where soil properties dominate the

yield magnitude, the available soil information stays

important. In this study, the soil within the

investigated field was relatively homogeneous.

Under conditions where soil variability is more

pronounced, a stronger impact of soil properties on

crop yield can be anticipated.
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