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S U M M A R Y
A new robust magnetotelluric (MT) data processing algorithm is described, involving Siegel
estimation on the basis of a repeated median (RM) algorithm for maximum protection against
the influence of outliers and large errors. The spectral transformation is performed by means
of a fast Fourier transformation followed by segment coherence sorting. To remove outliers
and gaps in the time domain, an algorithm of forward autoregression prediction is applied. The
processing technique is tested using two 7 day long synthetic MT time-series prepared within
the framework of the COMDAT processing software comparison project. The first test contains
pure MT signals, whereas in the second test the same signal is superimposed on different types
of noise. To show the efficiency of the algorithm some examples of real MT data processing
are also presented.

Key words: data processing, electromagnetic induction, magnetotellurics, robust statistics,
spectral analysis.

1 I N T R O D U C T I O N

Over the previous decade, the instruments available for magnetotel-
luric (MT) measurements have been improved significantly. This
requires equally advanced data analyses techniques in order to fully
exploit the increasing quality of MT measurements in many cases
contaminated by industrial noise.

One of the most successful ways to improve the quality of MT
transfer functions estimations is to follow the principles of robust
statistics. Adaptation of robust statistics to the MT data processing
problem has been discussed by Egbert & Booker (1986), Chave et al.
(1987), Chave & Thomson (1989) and Larsen et al. (1996). Many
recent examples have shown the effectiveness of such techniques
and demonstrated their advantage over standard least-squares (LS)
methods (Jones et al. 1989).

It has been shown that, in contrast to the traditional LS solution,
robust procedures produce more stable and unbiased results in the
presence of large errors in the data, in both the frequency and time
domains. In order for the conventional LS method to work reason-
ably well, data have to be examined first and appropriate data editing
and rejection have to be made by hand. Robust statistics schemes
make it possible to formalize and automate such hand-preparation.
However, in many cases only formal robust procedures allow an ad-
equate data treatment to be performed, especially when large data
sets are available.

The basic measure of the robustness of an estimator is its break-
down point ε∗, that is, the fraction (up to 50 per cent) of outlying data
points that can corrupt the estimator (Hampel et al. 1986). In other
words, the breakdown point may be roughly defined as the smallest

percentage of gross errors that may cause an estimator to take on
arbitrarily large values. It is well known that the breakdown point
of the LS solution is zero, which means that even a small amount of
noise might have a strong influence on the final estimate. This leads
to applying different kinds of robust schemes. Commonly used ones
are based on M-estimators (Huber 1981). The stablest of them have
breakdown points approaching 30 per cent in the case of a simple
linear regression. However, they do not have the highest achiev-
able breakdown point, but their efficiency in the case of outlier-free
Gaussian data is comparable with that of the LS solution. Robust
schemes may exist that have a higher breakdown point (Hampel
et al. 1986). It would be promising to use these estimators for MT
data processing.

In this study, such a robust scheme is utilized. The method was
suggested by Siegel (1982) and his calculations are based on a
repeated median algorithm. This estimator has the highest break-
down point, namely 50 per cent. This implies that nearly one-
half of the data can be outliers, but the solution will still yield
a reasonable result. However, methods with a very high break-
down point usually have a smaller asymptotic relative efficiency
at the Gaussian distribution than LS. This means that the higher
the robustness of the estimator the higher the asymptotic variance.
In order to achieve the same parameter uncertainties by the ro-
bust procedure more measurements are required. For instance, the
loss of efficiency of the median estimator is approximately 60 per
cent relative to the L2 norm estimator. To increase the efficiency of
the final estimator for short time-series, we supplement the Siegel
estimator, which serves as an initial approximation, with a reduced
M-estimator.
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To eliminate and remove obvious outliers and fill short gaps in the
time domain before the main processing, the AR-prediction method
is used.

The spectral transformation of the original time-series is per-
formed by means of the fast Fourier transformation technique by
subdividing the data into segments. To overcome the problem with
highly noisy segments, sorting is applied using a coherence crite-
rion. A cascade decimation technique is used to obtain results over
the whole period range.

The algorithm is described here in the single-station implemen-
tation and in terms of impedance tensor estimations, but it can be
applied to estimate magnetic transfer functions, as well. An adapta-
tion for remote reference and multistation processing has also been
performed with appropriate modifications, but will not be discussed
here.

2 T H E M A G N E T O T E L L U R I C D A T A
P R O C E S S I N G A L G O R I T H M

2.1 Correction for outliers in the time-series and the filling
of gaps with predicted values

Prior to performing a spectral analysis to derive magnetotelluric
transfer functions, the time-series involved are preconditioned in
the time domain. The ultimate goal is to reduce the bias of the final
estimate. We proceed in the following way.

An autoregressive (AR) model is used to identify outliers and to
close short gaps in a given data set. Assuming that the time-series-
generating process is sufficiently well described by such a model,
predictions and thereby prediction errors can be derived. If the latter
exceed a preset threshold level, then the respective datum is replaced
by the predicted value of the model and, by the same procedure, short
data gaps are filled in.

In detail consider a time-series x[n] to be the output of a causal
filter, that is

x[n] =
∞∑

k=0

h[k]u[n − k], (1)

where h[k] is the discrete infinite response function and u[n] is the
input assumed to be white noise. Then, for an AR model of order p
with coefficients ap[1], ap[2], . . . , ap[p], we have

x[n] = −
p∑

k=1

ap[k]x[n − k] + u[n]. (2)

Once the coefficients âp[k] have been determined for the data seg-
ment under consideration, the resulting linear model yields a forward
predicted value x̂[n] for the datum x[n],

x̂[n] = −
p∑

k=1

âp[k]x[n − k], (3)

and thereby a forward prediction error

ep[n] = x[n] − x̂[n] = x[n] +
p∑

k=1

âp[k]x[n − k]. (4)

Provided that the prediction errors form white noise, the derived
model corresponds to the AR model, as expressed by eq. (2).

For the actual implementation, the first data segment is formed
from the first N values of the time-series. From these values p co-
efficients âp[k] are calculated for an AR process of a chosen order,
using the modified covariance method (Marple 1987). After this, a
prediction is made for the next data point according to eq. (3).

If the resulting forward prediction error ep[N + 1] exceeds a
specified threshold εe, the original datum x[N + 1] is replaced by
x̂[N + 1]. Should the datum x[N + 1] be missing, the gap is filled
with the prediction. Subsequently, the segment is shifted by one
point forward and the prediction x[N +2] is made from a new set of
AR coefficients. The process is repeated until the final data point is
reached. Clearly, the first segment must be without gaps and should
not contain obvious outliers. Furthermore, the gaps that are to be
filled should be sufficiently short compared with the order of the
AR model.

It remains to define an appropriate threshold level for replace-
ments and to consider the choices of p and N. The threshold value
εe is determined as εe = c

√
Dp from the dispersion of the prediction

errors

Dp = 1

N − p − 1

N∑
p+1

|ep[n]|2. (5)

In this study a c factor within the range 3–10 is used. The length, N,
of the segments should be as short as possible in order to allow for
changing AR processes within the time-series. For AR models in
this analysis orders of p between 4 and 12 were applied. The length
of the segment should be from 2p to 3p in order to have sufficient
accuracy for the model parameter estimates.

2.2 Spectral transformation of magnetotelluric data

Time-series for the horizontal electromagnetic components
are denoted as ex , ey, hx , hy and their Fourier transforms as
Ex , Ey, Hx , Hy , respectively. The linear relations to be evaluated
are(

Ex

Ey

)
=

[
Zxx Zxy

Z yx Z yy

] (
Hx

Hy

)
, (6)

where [Z ] = [Zxx Zxy

Z yx Z yy

]
represents the impedance tensor.

In order to perform the spectral analysis the original time-series
are subdivided into sets of segments. The procedure described below
is applied in the same way in each subsequent decimation step. The
decimation step involves low-pass filtering of the time-series with
a recursive filter and then decimation by a factor of 2. The analysis
is carried out with overlapping data segments of length N (different
from N in the previous section), covering the whole time-series. The
degree of overlapping ranges from zero up to 50 per cent, depending
on the number of available data points.

Using i = 0, 1, . . . , N − 1 as the time index within a segment,
the analysis proceeds as follows.

(1) Long-period trends and means are removed by a first-
difference filter, yielding, in the case of ex , the new series: ex [i] =
ex [i] − ex [i − 1].

(2) To reduce the bias of spectral estimation each segment is
tapered by a Hanning window, yielding

ẽx [i] = ex [i]h[i]; h[i] = 1

2

(
1 − cos

2π i

N − 1

)
. (7)

(3) A Fourier transform of ẽx [i] is carried out, yielding the
Fourier coefficients Ex [ j], where j = 1, 2, . . . , N/2 is the frequency
index.

(4) Fourier transforms X and Y, where X, Y and later Z denote
any of the field components, are combined into non-smoothed auto-
and cross-spectral values:
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Sn
XY [ j] = 1

N
X∗[ j]Y ∗[ j], (8)

where X∗ is the complex conjugate of X.
(5) In order to remove from further processing segments with a

large level of noise, coherence sorting is used. Criteria are the two
partial coherences:

Co2
Ex Hy ·Hx

=
∣∣SEx Hy ·Hx

∣∣2

SEx Ex ·Hx SHy Hy ·Hx

, (9)

Co2
Ey Hx ·Hy

=
∣∣SEy Hx ·Hy

∣∣2

SEy Ey ·Hy SHx Hx ·Hy

, (10)

where

SXY ·Z = SXY − SZY SX Z/SZ Z . (11)

Here SXY denotes smoothed spectral values

SXY ( j) = 1

k + 1

k/2∑
m=−k/2

Sn
XY ( j + m), j = k

2
+ 1, . . . ,

N

2
− k

2
,

(12)

i.e. smoothing is carried out over k + 1 neighbouring frequencies,
where k ≤ N/2. The whole purpose for deriving smooth spectra is
to define sorting criteria in terms of coherences. Thereafter, they are
not used any further.

The partial coherences introduced above refer to orthogonal elec-
tric and magnetic components. If any of them fall below a specified
threshold, different for Ex and Ey , then the respective segments will
be eliminated. Tests have shown that appropriate partial coherences
thresholds are well defined in terms of the partial coherences of
the entire time-series. The thresholds are determined during pilot
analysis of the data for each decimation step separately.

As a result of these five steps, we now have M non-smoothed
auto- and cross-spectral values from a selected set of segments for
each frequency:

Sn
Ex Hx i , Sn

Ex Hy i , Sn
Ey Hx i , Sn

Ey Hy i , Sn
Hx Hy i ,

Sn
Ex Ex i , Sn

Ey Ey i , Sn
Hx Hx i , Sn

Hy Hy i , i = 1, 2, . . . , M.

These quantities are selected for the solution of the regression
problem, formulated below, instead of the original Fourier coeffi-
cients because of convenience. The result of the following procedure
would, however, be the same in both cases.

2.3 Robust estimation of transfer functions

In our procedure to derive robust MT transfer functions we adopt
Siegel’s concept of robust estimation of the repeated median algo-
rithm. The system of equations (eq. 6) poses a linear regression
problem which, in general terms, can be written as

yi = xT
i Θ + ei , i = 1, . . . , M, (13)

where yi is the predicted value from the ith observation of a p-
dimensional vector xi , ei the ith prediction error, while Θ represents
the p-dimensional vector of unknown regression parameters to be
estimated.

The least-squares solution T LS
M of the thus formulated regression

problem can be found by minimizing the Euclidean norm of resid-
uals ei :

�(Θ) =
M∑

i=1

[(
yi − xT

i Θ
)

σ

]2

, (14)

where σ is a scaling parameter.

The properties of the estimator are established by the Gauss–
Markov theorem. The solution is optimal in the class of unbiased
estimates only if errors are distributed normally. However, the nor-
mal model can never be absolutely adequate. It is well known that
the LS solution is very sensitive to outliers in the data and has a
breakdown point equal to zero. Huber suggested to minimize the
non-quadratic loss function:

�(Θ) =
M∑

i=1

ρ

[(
yi − xT

i Θ
)

σ

]
. (15)

Huber’s M-estimator can be derived by putting ρ(r ) = ρc(r ), where
ρc(r ) is defined by the weights wi = min{1, c/|ri |}, where ri is
ith residual, c is a positive constant. It is shown that, in practice,
the breakdown point of such an estimator does not exceed 30 per
cent (Hampel et al. 1986). However, M-estimators are much less
sensitive to outliers than LS estimator.

In the present approach Siegel’s repeated median estimator is
sought with the highest possible breakdown point equal to ε∗ =
50 per cent, which is expressed as follows:

T ( j)
n = med

i1

{
. . .

{
med
i p−1

{
med

i p

{
�( j)(i1, . . . , i p)

}}}
. . .

}
, (16)

where �( j)(i1, . . . , i p) is the jth component of the unknown p-
dimensional vector parameter, unequivocally determined by any p
observations and i = 1, . . . , n is the index of observation. The esti-
mator is described in more detail in Appendix A.

To adopt this estimator to the MT problem, the original system of
equations eq. (6) are rewritten in terms of auto- and cross-spectral
densities:

SEx Hx = Zxx SHx Hx + Zxy SHy Hx

SEx Hy = Zxx SHx Hy + Zxy SHy Hy ,
(17)

SEy Hx = Z yx SHx Hx + Z yy SHy Hx

SEy Hy = Z yx SHx Hy + Z yy SHy Hy ,
(18)

where SXY denotes smoothed spectral densities, although not neces-
sarily resulting from a smoothing process identical to that of eq. (12).
It is known that the smoothing procedure leads to the LS solution
that is biased by the uncorrelated noise in input channels Hx , Hy .
The statistics used here allows portion of data, in theory asymptot-
ically up to 50 per cent, to be contaminated by such noise without
bias to the estimator.

For example, the Zxy component of the impedance tensor is esti-
mated as

Zxy = SEx Hy SHx Hx − SEx Hx SHx Hy

SHx Hx SHy Hy − SHx Hy SHy Hx

. (19)

Taking into account that from two systems, eqs (17) and (18), the
estimates of the impedance tensor components are unequivocally
defined by the two independent realizations of spectral values, the
repeated median estimator can be derived. For only two realizations
the result of using these systems is the same as if eq. (6) (based upon
Fourier coefficients) was used directly.

The Siegel estimator in terms of spectral densities for the real
part of the Zxy component (and the imaginary part separately in an
analoguous manner) is given by
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Re[Zxy]S =

med
i

med
j 
=i

Re

[
SEx Hy i j

SHx Hx i j − SEx Hx i j SHx Hy i j

SHx Hx i j SHy Hy i j
− SHx Hy i j

SHy Hx i j

]
, (20)

where the indices i, j = 1, . . . , M and spectral densities SXY are
formed by the combination of two realizations of the non-smoothed
auto- and cross-spectra:

SXY i j = (
Sn

XY i + Sn
XY j

)
/2. (21)

The sequence of computational steps of the Siegel estimate [Z]S
of the impedance tensor is as follows (for each objective frequency
it is the same).

(1) The first median operator of eq. (20) is calculated as

Re[Zxy]M
i =

med
j 
=i

Re

[
SEx Hy i j

SHx Hx i j − SEx Hx i j SHx Hy i j

SHx Hx i j SHy Hy i j
− SHx Hy i j

SHy Hx i j

]
, (22)

where the median is taken over all M −1 values of j. Non-smoothed
spectral densities are combined here in pairs, according to eq. (21).
This procedure is applied for each of the M indices i, providing
us with M medians. To compute all possible combinations, it is
sufficient to take for each index i a paired index j, such as j > i ,
because of symmetry SXY i j = SXY ji .

(2) As an option, unrealistic partial estimates [Z]M
i can be omit-

ted using the phase of the off-diagonal impedance elements as crite-
ria, since the phases should lie within the limits (assuming an e−iωt

dependence)

−90◦ < arg(Zxy) < 0◦, 90◦ < arg(Z yx ) < 180◦. (23)

If the estimate Zxy (or Zxy) is omitted, the respective estimate Zxx

(or Z yy) is omitted as well. This option is used only in the worst
cases, i.e. in the cases where the original time-series are strongly
contaminated by noise, because 3-D structures or static distortions
may, in some cases, cause the phase to be in another quadrant.

(3) The final median operator of the Siegel estimator is calculated
separately for the real and imaginary parts of each impedance tensor
component:

[Z]S = med
i

{
[Z]M

i

}
, (24)

where i = 1, 2, . . . , M .
(4) Confidence limits are estimated from the median of absolute

deviations (MAD):

[Z]mad = 1.483 med
k

{|[Z]k − [Z]S |}, (25)

where k denotes all calculated i j-combinations. This estimate of
the scale parameter is very simple to calculate and is insensitive to
outliers. It also has the same features as the RM estimator, used in
this study. For Gaussian errors, a 95 per cent confidence limit can
be defined as

�[Z] = 1.96[Z]mad/
√

M, (26)

where M is the number of segments involved.
(5) In order to obtain a more effective estimate for short time-

series, the Siegel estimator is supplemented by a one-step reduced
M-estimator involving neighbouring frequencies. The procedure is
applied only when the final number of spectra, obtained after spec-
tral analysis (with coherence sorting), is less than a specified thresh-

old. In this study we used a threshold of 50. In the calculations, l
neighbouring frequencies are used to define the final estimate for
a particular central frequency. Here l is selected to have approxi-
mately six independent transfer function estimates per decade. All
individual estimates {[Z]i j }, obtained from all i j-combinations in
the previous step, for partial l frequencies, are used giving, in total,
n values. Denoting the estimates of this set by Uk(k = 1, 2, . . . , n)
and US for RM estimates [Z]S of the central frequency, where U
denotes the real or imaginary parts of any of the four impedance
tensor elements, the reduced M-estimator is expressed as

U [ j] =
n∑

k=1

Ukwk

/ n∑
k=1

wk, (27)

where the weights are

wk =




1 if |rk | ≤ c,

c/|rk | if c ≤ |rk | ≤ b,

0 if |rk | ≥ b,

(28)

and the k th residual is

rk = Uk − US

Smad
. (29)

The constant c lies within the range 1–2 and b is within the range
4–5, while the scaling parameter Smad is derived from the median of
absolute deviations. This parameter is also used to derive confidence
limits according to eq. (26).

3 TE S T S A N D E X A M P L E S

In the first test, synthetic COMDAT data were processed and com-
pared with a standard LS solution. Each magnetotelluric COMDAT
data set is 7 d long and has a time sampling interval of 20 s. The
spectra of components have both a regular part with a power de-
pendence on frequency and a random part. The second test contains
different types of noise, including normal random noise for each
field component ranging from 4 to 45 per cent of the signal spectral
amplitudes, outliers in the frequency domain, time domain outliers
(pulses) with random amplitudes and duration. A more detailed de-
scription of the COMDAT data sets can be found in Ernst et al.
(2001).

For noise-free data, the results are very close to the model val-
ues for both the LS and robust Siegel estimators, indicating that the
developed robust procedure leads asymptotically to the true result.
Test results with noisy synthetic data are shown in Fig. 1. The ampli-
tude of the transfer function is fitted quite well by both estimators.
The misfit for the Zxy and the Zxx components is greater than for
Z yx and Z yy , which is caused by stronger contamination of the Ex

component by frequency domain outliers in this test (Ernst et al.
2001). It is possible to distinguish problems with harmonic noise
for periods of approximately 250 and 1000 s. The average misfit for
Z yx is only slightly larger than for the noise-free data. The fit for
the corresponding phase is worse for all components. The diago-
nal elements of the impedance tensor are also estimated quite well.
A comparison of two different techniques on the same data set is
presented by Ernst et al. (2001), who observed similar features in
the estimates. It is shown there that for the dominant off-diagonal
impedances the accuracy is comparable to that for the noise-free
test.

In the current realization of the algorithm 64-point segments were
used to perform the spectral analysis. The disadvantage of such a
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Figure 1. COMDAT data processing results. Left-hand column, ampli-
tudes of all impedance tensor components; right-hand column, correspond-
ing phases; solid line, true model; circles, robust estimate; crosses, LS
solution.

short segment length is that the final spectral resolution is quite lim-
ited. In the case of strong harmonic noise, such as power line har-
monics in audio-magnetotelluric (AMT) data, the estimates might
already be biased during spectral transformation of the original data.
Hence, under such circumstances an appropriate adaptation of the
algorithm should be made. Short data segments are used to try to
eliminate possible noise and distortions in the time domain, where
contaminated segments will be removed based on coherence sorting
and subsequent statistical analysis.

The problems with frequency outliers, as mentioned above, are
most probably caused by insufficient spectral resolution in the
Fourier analysis. In general, the robust procedure produces more
stable results with a smaller average misfit for all components, but
the difference in estimates for this test is not large.
The real MT data used in this study were acquired in Russian Karelia
by the MT group of St Petersburg University. The duration of the
time-series is approximately 3 d. Measurements were carried out in
two frequency bands (4 Hz, 50 s and 30 s, DC). In the second band
data were recorded continuously, while in the first band recording
was done in segments of 2048 points each with coherence sorting.

Figure 2. Processing results of real MT data from a ‘noise-free’ site. Z yx

and Zxx are the impedance tensor components estimated using the LS so-
lution and robust procedure for the ‘noise-free’ site. The site is located far
from sources of industrial noise. Estimates agree well. Circles, LS estimate
with coherence sorting; squares, robust estimate.

Only segments with average coherence exceeding some threshold
were stored for further processing.

The data from the first site were collected quite far from the
sources of industrial noise in the central part of Karelia, close to the
southern part of Lake Topozero. Another site was approximately
50 km to the south from the first one. Both sites are located in highly
resistive Archaean crust with no sedimentary cover. Sites are located
at approximately latitude 65.5◦, where the source field may have a
complicated non-plane-wave structure caused by the closeness of
the auroral zone. The second site was clearly contaminated by noise,
caused by a power line approximately 10 km away.

The comparison of the present robust procedure and the LS
method for the first ‘noise-free’ site is presented in Fig. 2, where
the amplitudes and phases of impedance elements Z yx and Zxx are
shown. The other two components (not shown) have a smaller av-
erage misfit between the LS and robust solutions. The processing
results using the LS solution and the Siegel estimator coincide quite
well. Distortions at the long-period tails of the apparent resistivities
(approximately 1000 s) might be caused by non-uniformity of the
source field. Similarly, the long-period phases have a larger mis-
fit than the short-period ones, which is also caused by the same
effects. The results indicate that even for good quality data, the ro-
bust processing produces more stable results than the LS solution.
Thus the robust estimation in use is quite effective for this type of
data.

In Fig. 3 processing results of the data from the noisy site are
shown. Several high-amplitude noisy events are present in the origi-
nal time-series. The LS estimate of resistivity is obviously downward
biased. The corresponding impedance phase is also distorted. This
may be explained by the presence of coherent events in the original
time-series that are not eliminated by the coherence sorting proce-
dure. These distortions of the amplitude of the transfer functions
might be observed when significant uncorrelated noise is present
in input channels, because, in this case, auto-spectral densities are
biased. However, the phases are usually not distorted. The distortion
of the phase here is an indication of correlated noise and it applies,
in particular, to short periods around 10–100 s, where the noise is
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Figure 3. Processing result of real data from the ‘noisy’ site. The LS estimate is obviously downward biased, but the robust procedure still produces a reliable
estimate. Triangles, LS solution without coherence sorting; circles, LS estimate with coherence sorting; squares, robust estimate.

concentrated. At longer periods the LS and robust estimators pro-
duce more or less similar results.

4 C O N C L U S I O N S

A new technique for magnetotelluric data processing has been de-
veloped, using a robust estimation procedure with the highest break-
down point. The procedure is based on the estimator suggested by
Siegel, calculated using an algorithm of repeated medians. The pro-
gram has been tested and compared with the standard LS solution.

Tests using the synthetic COMDAT data set show that the algo-
rithm gives reasonably stable results, although for this test the dif-
ference between the LS solution and the robust estimate presented
here is not very large. Estimates for this noise-free synthetic data set
agree very well. Some problems with noisy synthetic data are ob-
served for the Zxx and Zxy impedance tensor components, caused
by the larger contamination of the Ex field by frequency domain
outliers. The problem might be explained by the insufficient spec-
tral resolution of the FFT, because short data segments were used,
thereby frequency domain outliers have a stronger influence on the
result. Time domain outliers were successfully eliminated by this
technique. The robust procedure results in only a slightly smaller
misfit from the true model than the LS solution.

The method has also been tested using real ‘noise-free’ and
‘noisy’ MT data. The results for the ‘noise-free’ site agree well
for both the LS and robust methods. Agreement is good over the
whole period range of interest. The advantage of the new algorithm
is shown when the data from a ‘noisy’ site are processed. The data
were contaminated by correlated noise, and, by uncorrelated time
domain pulses. Coherence sorting helped to improve the data quality.

The following robust procedure then removed most of the effects
of the remaining noise, thus, providing a realistic estimate of the
impedance tensor.
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A P P E N D I X A : S I E G E L ’ S R E P E A T E D
M E D I A N E S T I M A T O R

Let us consider the p-component vector parameter Θ(i1, . . . , i p) to
be estimated, which is unequivocally determined by any p observa-
tions (xi , yi ) . . . , (xi p , yi p ). Siegel’s repeated median estimator of a
set of n observations (xi , yi ) . . . , (xin , yin ) is defined as follows. The
jth component of Θ is

T ( j)
n = med

i1

{
. . .

{
med
i p−1

{
med

i p

{
Θ( j)(i1, . . . , i p)

}}}
. . .

}
, (A1)

where the median is taken over all indices im = 1, . . . , n.
It is helpful to consider the simple linear regression model yi =

�1 + �2xi + ei , to explain the estimator in detail. For each point
(xi , yi ), let us denote the median �2i of the n − 1 slopes of the
lines passing through this point and each other point of the set. The
repeated median slope estimate �∗

2 is defined to be the median of
the multiset {�2i }:

�∗
2 = med

i
med

j 
=i

yi − y j

xi − x j
. (A2)

The intercept �1 can be estimated then either separately from �2,
as

�∗
1 = med

i
med

j 
=i

yi x j − y j xi

x j − xi
, (A3)

or else hierarchically, as �∗
1 = medi {yi − �∗

1xi }.
In the bivariate linear regression model, that is used to solve the

impedance linear system

yi = �1x1i + �2x2i + ei , where p = 2 (A4)

the repeated median estimate is determined in the same way. If the
unknown parameter is a complex vector, then the equation is split
into two independent equations for real and imaginary parts that are
solved separately. The components of the vector parameter Θ are
estimated separately, for instance, for �1 we have

�∗
1 = med

i
med

j 
=i

yi x2 j − y j x2i

x1i x2 j − x1 j x2i
. (A5)

It means that for each ith observation first the median of combina-
tions with all j observations is calculated and then finally the median
of those n − 1 medians form the final estimation.

There are several algorithms to define the Siegel repeated median
estimator faster than the brute method required O(n2) time, where
n is the number of given points (for a simple line estimation). Some
of them reduce the calculation time to O(n log2 n), such as the ran-
domized algorithm, however, they rely on sophisticated data struc-
tures, which make them quite difficult to program (Stein & Werman
1992).

Here, special algorithms were not applied to accelerate the calcu-
lations, because the required computer time was comparable or even
less than the time needed for Fourier transformation of the original
time-series.
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