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S U M M A R Y
In this paper wavelet transforms and a logarithmic barrier method are applied to the inversion
of large-scale magnetic data to recover a 3-D distribution of magnetic susceptibility. The fast
wavelet transform is used, along with thresholding the small wavelet coefficients, to form a
sparse representation of the sensitivity matrix. The reduced size of the resultant matrix allows
the solution of large problems that are otherwise intractable. The compressed matrix is used to
carry out fast forward modelling by performing matrix-vector multiplications in the wavelet
domain. The reduction in CPU time is directly proportional to the compression ratio of the
matrix. A second important feature of the algorithm used here is the use of an interior-point
method of optimization to enforce positivity constraints. In this approach, the positivity is
incorporated into the inversion by a sequence of non-linear optimizations approximated by
truncated Newton steps. At the heart of the algorithm, a linear system of equations is solved.
The conjugate gradient technique has been used as the basic solver to take the advantage of the
efficient forward modelling offered by the sparse matrix representation. Overall, the combina-
tion of wavelet transforms, interior point optimization and conjugate gradient solutions readily
allows us to solve magnetic inverse problems that have a few hundred thousand parameters
and tens of thousands of data.

Key words: 3-D, conjugate gradients, interior point method, inversion, magnetic data,
positivity, wavelet transform.

I N T RO D U C T I O N

In an earlier paper (Li & Oldenburg 1996), a generalized magnetic
inversion for constructing 3-D distributions of magnetic susceptibil-
ity was developed. That method is capable of dealing with multiple
anomalies and arbitrary susceptibility distributions, and it offers an
effective means to image magnetic sources in a complex geological
environment. The algorithm has been used successfully to interpret
magnetic data for mineral exploration problems on scales ranging
from ore deposits to mine districts. Inversion of magnetic data at
regional scales effectively generates a 3-D image of the regional
geology, which can provide valuable information such as that on
prospective deposit horizons.

In principle, the above algorithm can be applied to large-scale
data. Numerically, however, the computational complexity increases
rapidly with the increasing size of the problem and the solution of
large-scale inversion of magnetic data faces two major obstacles.
The first is the large amount of computer memory required for stor-
ing the sensitivity matrix. For example, a moderate-sized problem
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that has 100 000 unknowns and 5000 data would require 2 Gb to
store the sensitivity matrix in single precision. The second obsta-
cle is the large amount of CPU time required for the application of
the dense sensitivity matrix to vectors. These two factors directly
limit the size of practically solvable problems. To deal with the
first obstacle, one can store the matrix outside the core memory or
generate it at the time of processing. However, these two options
will pay the heavy price of either increased disc access time or in-
creased CPU time for matrix generation. An alternative approach is
to carry out the matrix-vector multiplication using the fast Fourier
transform (FFT) since the magnetic kernels are translation invariant
(Pilkington 1997). The use of FFT’s will alleviate the memory limi-
tation and reduce the CPU time dramatically. The restriction of this
approach, however, is that the observations must lie above the sur-
face topography and all data must be located over a regular grid on a
flat observation surface. Although specialized algorithms utilizing
this approach can be generated to solve large problems on regional
scales, it cannot address the afore-mentioned difficulties for gen-
eral applications in which the surface topography is almost always
present and the data are located on uneven observation surfaces, over
irregular grids, or in boreholes. For a generally applicable algorithm,
other strategies need to be considered.
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Recent advances in the theory of wavelet transforms have pro-
vided novel means of efficient representation of functions and func-
tional operators, and such representations have in turn led to fast
algorithms for various numerical analyses (Beylkin et al. 1991;
Beylkin 1992, 1993; Harten & Yad-Shalom 1994). In these appli-
cations, the operator (e.g. matrix) and function (e.g. vector) are
represented in the wavelet domain by only the significant coeffi-
cients. Therefore, both the storage requirement and multiplication
counts are reduced in proportion to the number of winnowed coef-
ficients. This results in reduced memory and CPU time required for
solving a given problem and addresses the two major difficulties in
the solution of large-scale magnetic inversions discussed earlier. In
this paper, we examine the feasibility of using such a wavelet-based
fast matrix-vector multiplication algorithm in inverting large-scale
magnetic data sets.

In addition to the above numerical challenges, we must also en-
force positivity on the inverted susceptibility since it is usually non-
negative for exploration problems. This is an essential component of
our algorithm and enables the recovery of depth information about
the susceptibility. Our original algorithm (Li & Oldenburg 1996) ap-
plies positivity by a nonlinear mapping that is implemented naturally
with the iterations of subspace linear inversion method. However,
since we now have an implicitly sparse sensitivity matrix from the
wavelet compression, it is natural to use the conjugate gradient (CG)
technique in solving the linear system of equations. We therefore
would like to develop a new approach for enforcing the positivity
that will work well with the CG technique. The newly developed
interior-point method (IPM) of optimization is ideally suited for
this purpose. This is a class of algorithms for solving inequality-
constrained optimization problems. We use a special variant called
the primal logarithmic barrier method. In this approach, the posi-
tivity is implemented using a logarithmic barrier function and the
final solution is obtained by solving a sequence of non-linear mini-
mization problems. At the heart of the algorithm is the solution of a
linear system of equations using the CG technique based upon the
sparse representation of the sensitvity matrix.

The essence of this paper, therefore, is the combined use of the
wavelet compression and the logarithmic barrier method of opti-
mization in solving large-scale magnetic inverse problems. We be-
gin with a brief review of the fast wavelet transform based upon
orthonormal bases of compactly supported wavelets, and then ap-
ply the fast wavelet transform to compress the sensitivity matrix and
perform fast forward modelling. Next we discuss the inversion of
magnetic data using a logarithmic barrier technique, in which the
conjugate gradient method is used as the central solver and the fast
forward modelling performs the core computation. We then apply
the method to synthetic and field examples and conclude the paper
with a brief discussion.

B A S I C S O F WAV E L E T T R A N S F O R M S

Wavelet theory is a vast field where aspects of mathematics, scien-
tific computing, and signal analysis converge under a single frame-
work. For a rigorous mathematical treatment, we refer readers to
the classics in this field (e.g. Mallat 1989; Daubechies 1992; Meyer
1993). In this section, we give a general description of wavelet trans-
forms, which provides an intuitive understanding for the use of the
fast wavelet transform in our magnetic inverse problems.

The wavelet transform expands a function in the bases formed by
the translation and dilation of a single function called the mother
wavelet. Let f (x) be the function and ψ(x) be the mother wavelet.
Then the wavelet transform w(a, b) is defined by

w(a, b) =
∫ ∞

−∞
f (x)ψa,b(x) dx, (1)

where

ψa,b(x) = 1√
a

ψ

(
x − b

a

)
, (2)

and a and b are the dilation and translation variables, respectively.
The wavelets are concentrated over a short spatial interval and also
have limited bandwidth in the wavenumber domain. The wavelet
transform w(a, b) describes the frequency or scale content (mea-
sured by a) at different locations (measured by b), that is, it provides
resolution in both the spatial and frequency domains. This prop-
erty makes the wavelet transform well-suited for analyzing non-
stationary signals that have transient events. This is in sharp contrast
to the Fourier transform, which uses global basis functions and is
better suited for stationary signals as it has maximum resolution in
the frequency domain and retains no explicit information about the
spatial location of an event.

For practical applications, the dilation and translation variables
take on a set of discrete values, which are typically dyadic. The
wavelet is then expressed as a double-indexed function,

ψ j,k(x) = 2− j/2ψ(2− j x − k), (3)

where j and k are integers. A class of wavelets are constructed by
solving the two-scale difference equation

φ(x) =
√

2
L−1∑
k=0

hkφ(2x − k),

ψ(x) =
√

2
L−1∑
k=0

gkφ(2x − k), (4)

where φ is the accompanying scaling function. The wavelet ψ(x)
is then completely defined by a set of filter coefficients hk and gk

called the quadrature mirror filter. Daubechies (1988) constructed a
class of such wavelets that has several important properties. These
wavelets are orthogonal to the dyadic translation and dilation of the
original version; they have compact support and are localized both
in space and in frequency domain; they are constructed to have M
vanishing moments:∫ ∞

−∞
ψ(x)xmdx = 0, m = 0, . . . , M − 1, (5)

where M is an integer. The last property makes these wavelets or-
thogonal to low order polynomials. When M = 1, we obtain the Haar
wavelet; when M = 2, we have the Daubechies-4 wavelet defined
by a quadrature mirror filter of length 4. As an illustration, both
wavelets are shown in Fig. 1.

The orthonormal bases of compactly supported wavelets allow the
formulation of multiresolution analysis in which the Hilbert space
L2(R) is decomposed into a chain of closed subspaces

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · (6)

Without dwelling on details of the mathematics, it suffices to say
that each subspace has a characteristic scale or resolution and the
projection of a function onto a subspace V j gives the representa-
tion of the function at that resolution. Let the subspace W j be the
orthogonal complement of V j in V j−1,

Vj−1 = Vj ⊕ W j , (7)

then the difference between the representations of the function at two
successive resolution scales is in the subspace W j, which represents
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Figure 1. (a) The Haar wavelet, which has 1 vanishing moment. (b) The
Daubechies-4 wavelet, which has 2 vanishing moments.

the details of the signal and is given by the wavelet transform on that
scale. The subspace V j is spanned by the scaling functions φj,k while
W j is spanned by the wavelets ψ j,k . For numerical applications, we
have a finite number of scales. Let j = 0 be the coarsest scale and
j = −n be the finest scale, then

V−n = V0 ⊕
n⊕

k=1

W−k . (8)

The discrete wavelet transform using these orthonormal, compactly
supported wavelets accomplishes exactly the decomposition ex-
pressed in eq. (8) by generating the wavelet coefficients in W−j and
the coarsest representation in V 0. An efficient algorithm for com-
puting such an orthonormal wavelet transform is the well-known
pyramid algorithm first outlined by Mallat (1989).

The discrete wavelet transform is a linear transformation, and
it can be symbolically represented by a matrix that acts upon a
vector representing the discretized function. Let W be the matrix
representing the fast wavelet transform and v be the vector, then the
wavelet transform ṽ is given by,

ṽ = Wv. (9)

The transform W is orthonormal and its inverse is given by its
transpose, W−1 = WT . Thus we have the following identity,

WT W = WWT = I, (10)

where I is the identity matrix. This relation allows the reconstruction
of a function from its wavelet coefficients,

v = WT ṽ. (11)

The wavelet transform of a function based on the orthonormal,
compactly supported wavelets usually has a large number of coef-
ficients that are either zero or very close to zero. Winnowing the
coefficients whose magnitudes are below a certain level still al-
lows reconstruction of the original function with a high degree of
accuracy. Thus a function can have a sparse representation in the
wavelet domain. This results first from the localization property of
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Figure 2. (a) Fast wavelet transform of a magnetic–anomaly profile gen-
erated by a 2-D distribution of susceptibilities. (b) The magnetic data. (c)
The wavelet transform. The coefficients are shown as vertical lines with
the length proportional to the amplitude. They are plotted as a function of
location and scale.

the wavelet as localized events do not produce significant coeffi-
cients at a distant location, and second, the orthogonality of the
wavelets with low order polynomials means that a smooth piece
of the function that is well-approximated by a polynomial will be
represented by using only a few large coefficients.

As an example of wavelet transform applied to data arising from
magnetic problems, Fig. 2 shows the wavelet transform (using
Daubechies-4 wavelet) of a magnetic-anomaly profile. There are
128 data points in the profile. The wavelet coefficients are shown
as vertical lines with the length proportional to the amplitude at
their locations and scales. Notice that most of the wavelet coef-
ficients are very small. Discarding the coefficients that are below
three different thresholds relative to the largest coefficient produces
the reconstructed profiles shown in Fig. 3. They can be compared
with the true data. The reconstructions have used only 53, 43, 23 co-
efficients, respectively, out of the total of 128. At the low threshold
level, the reconstruction is virtually identical to the original profile,
and as the threshold level increases, the small scale distortions be-
gin to appear but the long wavelength features remain. This example
demonstrates the efficient sparse representation of a function in the
wavelet domain. It is this property that we shall use to construct a fast
magnetic inversion algorithm: we will compress the 3-D sensitivity
so that the required memory and CPU time during the inversion are
reduced.

In our application, the susceptibility distribution is a 3-D image,
as is the sensitivity function that corresponds to a given observation.
In order to apply the wavelet transform to our problems, we need
to have the multi-dimensional form of the transform. One way of
accomplishing the wavelet transform in multi-dimensions is to apply
the 1-D wavelet transform independently to each dimension (e.g.
Daubechies 1992). This is analogous to the fast Fourier transform
in multi-dimensions. Such a multi-dimensional wavelet transform
amounts to using 3-D wavelets formed by the tensor products of
1-D wavelets. We use this form in our work for its simplicity.
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Figure 3. Comparison of the true profile (a) with three reconstructions
from wavelet coefficients that are thresholded by different levels (b, c, d).
The value of e in these panels indicates the relative threshold. All coefficients
that are smaller than the largest wavelet multiplied by e are set to zero. The
value of n in each panel indicates the number of coefficients that are kept.

FA S T F O RWA R D M A P P I N G
F O R M A G N E T I C DATA

We now proceed to develop fast forward mapping of magnetic data
using the wavelet transform based upon orthonormal bases of com-
pactly supported wavelets. Let the 3-D distribution of the suscepti-

bility be represented by a set of cuboidal cells of constant values.
The collection of the susceptibility values in the cells forms the
model vector κ. The magnetic data observed above, and in, this 3-D
susceptibility distribution are collected into the data vector d. Then,
under the commonly adopted assumption that there is no remanent
magnetization and that the self-demagnetization effect is negligible,
the observed data are linearly related to the susceptibility model by
the sensitivity matrix:

Gκ = d, (12)

where G is the sensitivity matrix and it is full. In the direct approach,
the entire matrix is stored during the inversion and it is applied to
vectors by direct multiplication.

Our goal is to construct an alternative approach such that less
memory is needed for storing G and fewer operations are needed
to apply it to a vector. In the following, we first present the wavelet
domain equivalent of two matrix-vector multiplications that are nec-
essary for carrying out an inversion. We then discuss the issues
concerning the practical applications.

Forward mapping in the wavelet domain

The rows of the sensitivity matrix are defined over the 3-D domain
of the model κ and can be treated as 3-D images. Application of the
3-D wavelet transform can therefore produce a sparse representation
of them. Let W be the 3-D wavelet transform, and G̃ be the matrix
whose rows are the wavelet transforms of corresponding rows of G.
Then G̃ is given by

G̃ = GWT . (13)

We call G̃ the transformed sensitivity matrix. We also apply the
identical wavelet transform to the model vector κ to produce the
transformed model κ̃ . Let

κ̃ = Wκ. (14)

Multiplying eqs (13) and (14), applying eqs (10) and (12) yields,

G̃κ̃ = d. (15)

Therefore the forward modelling is accomplished by the multipli-
cation of the transformed sensitivity and the transformed model in
the wavelet domain.

Eq. (15) allows the application of the sensitivity matrix to a gen-
eral model vector. Most inversion algorithms also require the ap-
plication of GT to a data vector vd to produce a ‘model’ vector vκ,
i.e.,

GT vd = vκ . (16)

By multiplying the two sides of eq. (16) by WT W = I and regroup-
ing the terms, we obtain,

WT
(
G̃

T
vd

)
= vκ . (17)

Thus the application of GT to a vector is accomplished by the multi-
plication of the transformed sensitivity with the data and an inverse
wavelet transform.

We now turn our attention to the goal of generating an efficient
forward modelling algorithm. The transformation to the wavelet
domain itself does not decrease the required storage nor does it in-
crease the speed of calculation. It is the properties of functions in
the wavelet domain, and the processing based upon these properties,
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that make the fast algorithm possible. As discussed in the preced-
ing section, the wavelet transform of a generally smooth function
has many coefficients that are close to zero. Setting to zero those
coefficients that are below a certain threshold still allows the recon-
struction of the original function with high degree of accuracy. That
is, only the significant coefficients that are above the threshold are
needed in the wavelet domain to represent the function. Thus, we
can apply thresholding to the transformed sensitivity matrix G̃ to
generate a sparse matrix G̃s . We have adopted a threshold that is
applied to each row of G̃,

g̃s
i j =

{
g̃i j , |g̃i j | ≥ δi

0, |g̃i j | < δi

i = 1, . . . , N (18)

where g̃i j are the elements of G̃ and δi is the threshold level for the
ith row. The value of δi is discussed in the next section. g̃s

i j then
form the sparse representation G̃

s
.

During the course of an inversion, we need only to store the
sparse matrix G̃s , which yields the desired reduction in the memory
requirement. In addition, the matrix G̃s is substituted for G̃ in eqs
(15) and (17) so that the application of G or GT is carried out
by sparse multiplication in the wavelet domain and the number of
operations is reduced in proportion to the sparseness of G̃s . This
yields the desired reduction in CPU time.

The reduction in memory and CPU time therefore depends di-
rectly on how sparse the wavelet representation is. To measure the
sparseness, we define a compression ratio that is given by the ratio of
the number of entries in matrix G to the number coefficients that are
kept in G̃s . Typical values of the compression ratio ranges from 10
to 50. It follows that we can achieve a reduction in CPU by a factor
of 20 to 50. This is a significant saving for large-scale applications.

When such a fast forward modelling is used in an inversion, it
requires repeated application of forward and inverse wavelet trans-
form. Specifically, one application ofG requires one forward wavelet
transform and one application of GT requires an inverse wavelet
transform. This will incur some computational overhead. How-
ever, forward and inverse wavelet transforms are carried out using
the pyramid algorithm (Mallat 1989), which is extremely efficient.
The computational overhead is negligible compared to the savings
achieved through sparse representation of the sensitivity matrix.

To summarize, the fast forward modelling used in an inversion
takes the following steps:

(1) Generate the matrix G row by row. As each row is computed,
apply the wavelet transform to it and then threshold the wavelet
coefficients according to (18) to produce a sparse representation.
This step only requires the memory to hold one row of the sensitivity
matrix.

(2) Store the sparse matrix G̃s as its rows are generated. Only
the memory to store the sparse matrix in Yale (row major) format is
needed.

(3) Apply G̃s to vectors using sparse multiplication during the
inversion.

Practical aspects

In order to apply the above method to realistic magnetic inverse
problems, several practical issues need to be treated. These include
the choice of the wavelet, method of thresholding, analysis of error
bounds and effective treatment of surface topography in the model.
These are discussed here.

There are many choices of wavelet that can be used to compress
the sensitivity matrix. The desired wavelet should produce the great-

est compression ratio and the least distortion to the sensitivity. This
suggests the use of wavelets with higher vanishing moments, such
as Daubechies wavelets, or symmlets. Since the inversion is carried
out in the spatial domain, while the matrix-vector multiplications
are done in the wavelet domain, there is an added cost of trans-
forming a model vector between the two domains, which is directly
proportional to the length of the quadrature mirror filter defining
the wavelet. This suggests the use of shorter wavelets. Numerical
test have shown that the Haar wavelet and Daubechies wavelet with
2 or 3 vanishing moments perform well and longer wavelets do
not seem to improve the overall performance. In general, the Haar
wavelet yields a better compression ratio when the required accu-
racy of reconstruction is low and therefore produces the most savings
in memory and CPU time. As the accuracy requirement increases,
Daubechies wavelets out-perform Haar wavelets. As a result, our
algorithm uses mostly Daubechies wavelets.

We threshold the wavelet coefficients of the sensitivity matrix
based upon their amplitudes according to eq. (18). All coefficients
that are below a threshold, δi, are set to zero. This introduces certain
errors in the forward mapping. We therefore choose the value of δi to
be small enough so the mapping error is acceptable. A direct measure
is given by the relative data error, rd = ||δd||/||d||, where d is the
data vector and δd is the vector of errors resulted from thresholding
the transformed sensitivity, and || · || denotes the L2 norm of a
vector. However, the error is model dependent and cannot be easily
evaluated. It can be used to verify the accuracy of the sensitivity after
the inversion is completed. For determining the threshold level, δi,
we use an alternative measure. We require that each row of the
sensitivity matrix has an acceptable reconstruction error, which is
given by ri (δi ) = ||Gi −Gri ||/||Gi ||, i = 1, . . . , N , where Gi is the
ith row of the sensitivity matrix,Gri is the ith row of the reconstructed
sensitivity matrix. Since the wavelet transform is orthonormal and
||Gi || = ||G̃i ||, the above equation can be expressed as the ratio of
the norm of winnowed coefficients over the norm of the transformed
sensitivity,

ri (δi ) =

√√√√√√√
∑

|g̃i j |<δi

g̃2
i j

∑
j

g̃2
i j

, i = 1, . . . , N . (19)

The quantity ri(δi) increases monotonically with δi. Thus the value
of δi can be determined for a prescribed accuracy r∗ by a simple line
search carried out directly in the wavelet domain. It is expensive to
calculate an individual threshold for each row so we have therefore
implemented a relative thresholding method. Assume the i0th row
is a representative row, and δi0 is the corresponding absolute thresh-
old. A relative threshold can be defined as ε = δi0/ max j (|g̃i0 j |)
such that a coefficient is set to zero when the ratio of its amplitude
over the largest coefficient is less than ε. This relative threshold is
then applied to every row of the matrix by defining the individual
threshold level as

δi = ε max
j

(|g̃i j |), i = 1, . . . , N . (20)

When more than one distinct group of data, such as surface and
borehole data, are present, a representative row is chosen and the
relative threshold is calculated for each group. It is observed that a
value for ri close to 0.05 provides a sufficiently good reconstruction
of the sensitivities and the resulting relative error for testing models
is usually smaller.

The sensitivity of magnetic data decays rapidly with the dis-
tance between the source and the observation location. Given the
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geometry of a typical magnetic inversion problem, this decay can
easily range over several orders of magnitude. This disparity in the
elements of the sensitivity matrix will translate to the disparity in
the wavelet coefficients and thresholding based upon relative am-
plitude is therefore likely to produce greater distortions in the re-
gion far away from the observation location. Fortunately, the mag-
netic inversion requires the use of a depth weighting function (Li &
Oldenburg 1996, 2000). That weighting counteracts the decay of
the sensitivities so that the inversion constructs a model based pri-
marily on the non-decaying portion of the sensitivities, and this
produces a susceptibility distribution that has better depth charac-
teristics. Numerically, the result is achieved by treating the product
of the depth weighting function and susceptibility as the new model.
The amplitude and structural complexity of the new model are con-
trolled by a model objective function. The forward modelling, re-
quired as part of the inversion process, is achieved by multiplying a
weighted sensitivity matrix with the new model as shown below. We
then apply wavelet compression to the weighted sensitivity matrix
so that both the compression ratio and reconstruction accuracy are
improved.

Let Z be the diagonal matrix representing the depth weighting.
To evaluate Gκ we write Gκ = GZ−1Zκ . Let

Gζ = GZ−1, m = Zκ. (21)

Then solving the magnetic inversion with the depth weighting is
equivalent to solving an inverse problem whose forward mapping is
given by

Gζ m = d. (22)

We can now simply apply the wavelet transform to Gζ and carry out
the thresholding as presented above. The matrix-vector operation
then involves the weighted model vector m, and the rest of the
analysis follows in the similar manner.

The last issue is the surface topography, which causes the sensi-
tivity to be defined over a non-rectangular region. A related issue is
the discretization of the model domain with a finite difference mesh
whose number of cells in each dimension is not dyadic (equal to
an integer power of 2). The fast wavelet transform requires that the
dimension of the data be dyadic. We circumvent both difficulties by
padding the sensitivity ‘image’ with zeroes so that the number of
points in each direction is dyadic. The model is also padded with ze-
ros in the same manner. These added elements usually increase the
number of significant coefficients slightly, and they do not greatly
affect the over-all compression ratio.

Tests on synthetic examples suggest that the achievable compres-
sion ratio for the sensitivity matrix is between 10 and 50 when a
reconstruction error better than 5 per cent is required. The com-
pression ratio decreases to below 10 for borehole data while it can
approach 100 for aeromagnetic data with large terrain clearance.

Table 1. The sensitivity matrix for the test problem is compressed using Haar and Daubechies-4 wavelets and
different thresholding levels. The resultant compression ratio and the CPU time for accessing the compressed
matrix and for performing the forward modelling are compared in this table. The relative data error for the
synthetic susceptibility model is also shown.

Relative Compression Multiplication Relative data
threshold ratio time (s) error (per cent)

Wavelet domain (Haar) 0.005 34.0 0.2 8.70
0.001 13.3 0.4 2.00

Wavelet domain (Daubechies-4) 0.005 18.6 0.4 3.64
0.001 10.0 0.6 0.67

Spatial Domain N/A 1.0 2.8 0.0

This range of ratios gives an indication about the size of problems
that can be tackled with the wavelet transform approach. For ex-
ample, a workstation with only 128 Mb of memory can potentially
invert aeromagnetic data that requires a sensitivity matrix of up to
2 Gb in a direct approach. This represents a significant increase in
the size of solvable problems.

Numerical tests

We now illustrate the fast forward modelling algorithm using a syn-
thetic problem. The size of the problem is chosen to be small enough
so that all matrices can fit into the core memory. This allows the CPU
time for accessing the sensitivity matrix from the disc and the CPU
time for matrix-vector multiplication to be measured separately. The
model domain is defined over a 1000 m by 1000 m by 500 m volume
and the mesh has 30 cells in each horizontal direction and 20 cells
in the vertical direction. The observations are located 2 m above the
surface and on a grid of 30 by 30 points. We assume an inducing
field direction of I = 65◦ and D = 25◦, and carry out the modelling
for the total field observations. (Note that the regular grid for the
data is chosen for convenience and it does not affect the result to be
presented in the following.) For the illustration, we have also cho-
sen a susceptibility model that consists of six rectangular blocks of
different sizes. These blocks are placed at various locations within
the mesh to ensure that there is a contribution to the observations
from different regions of the model.

Table 1 shows the comparison of CPU time for accessing the sen-
sitivity matrix from disc and for applying the sensitivity to a model
vector. The CPU time is based on the performance on a Sparc20
workstation. Both the Haar wavelet and Daubechies-4 wavelet are
tested for two different thresholding levels. Under these different
combinations of a wavelet with the threshold, the achieved com-
pression ratio under acceptable data accuracy (e.g. 5 per cent) is
greater than 10. The CPU time needed for computing the matrix-
vector multiplication in the wavelet domain ranges from one-tenth
to a quarter of the CPU time for the same task in the spatial domain.
These are significant savings. In addition, we also compare the CPU
time needed to access the matrix from the disc. This time becomes
relevant to large-scale problems in practical applications when the
entire sensitivity matrix cannot be stored in the core memory and
has to be accessed from disc for each matrix-vector multiplication.
The relative difference between the forward modelled data and the
true data are compared in the last column of Table 1. It is clear that,
given the same threshold for the wavelet coefficients, the Daubechies
wavelet achieves a lower compression ratio but much higher accu-
racy in the forward modelled data.

Fig. 4 compares the true sensitivity with the approximations re-
constructed from the thresholded wavelet transforms for an observa-
tion location at the centre of the data grid. The sensitivity displayed in
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(a)

(b)

(c)

Figure 4. Comparison of the true sensitivity with the approximations re-
constructed from thresholded wavelet transforms. The sensitivity shown is
that of an observation located 2 m above the surface at the centre of the grid.
Panel (a) is the true sensitivity. Panels (b) and (c) are reconstructed from
wavelet transforms using Haar and Daubechies-4 wavelets respectively. The
relative threshold level is 0.001. The gray scale indicates the logarithm of
the absolute value of the sensitivity.

the figure is a cross-section in east–west direction directly below the
observation location. The true sensitivity is well approximated by the
reconstructed versions from Haar wavelet (Fig. 4b) and Daubechies-
4 wavelet (Fig. 4c). Only minor discrepancies are noticeable near the
zero-crossing of the sensitivity. The corresponding distortion in the
calculated surface field is negligible and, therefore, is not a concern
for the inversion. Fig. 5 shows the comparison between the true total
field data on the surface and those computed from compressed sen-
sitivities using Haar and Daubechies-4 wavelets, respectively, with
a relative threshold of 0.001. Only minor distortions occur near the
edge of the data map.

I N V E R S I O N B Y L O G A R I T H M I C
B A R R I E R M E T H O D U S I N G
C O N J U G AT E G R A D I E N T S

Formulation of the inverse problem

We now formulate the inversion using the wavelet transformed
sensitivity matrix. As discussed in the preceding section, we
represent the model by a large number of cells having constant sus-
ceptibilities. The data and susceptibility model are linearly related
by the sensitivity matrix as expressed in eq. (12) or eq. (22). As in
our earlier work, we obtain the inverse solution by minimizing an
objective of the weighted model subject to fitting the observations to

(a)

(b)

(c)

nT

Figure 5. Comparison of true total field magnetic data on the surface with
those computed from the compressed sensitivity matrices. Panel (a) is the
true data. Panels (b) and (c) are the computed data when the sensitivity
matrix is compressed using Haar and Daubechies-4 wavelet, respectively,
and a relative threshold of 0.001.
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the degree determined by the errors. The model objective function
is given by

φm = αs

∫
V
{ζ (r)[κ(r) − κ0]}2 dv + αx

∫
V

{
∂ζ (r)[κ(r) − κ0]

∂x

}2

dv

+ αy

∫
V

{
∂ζ (r)[κ(r) − κ0]

∂y

}2

dv

+ αz

∫
V

{
∂ζ (r)[κ(r) − κ0]

∂z

}2

dv, (23)

where κ(r) is the susceptibility model, κ0 is a reference model, and
ζ (r) is the generalized depth-weighting function, which can be a
simple depth weighting or a more general distance weighting. The
constants αs, αx, αy, and αz are real, positive numbers controlling
the importance of each term, and we usually set αs � 1 and αx =
αy = αz = 1 . Readers are referred to Li & Oldenburg (1996, 2000),
for more details about the model objective function. We discretize
this objective function using a finite difference approximation to
produce

φm = κT ZT WT
mWmZκ

≡ mWT
mWmm, (24)

where WT
mWm is the usual weighting matrix representing the model

objective function and Z is the diagonal matrix containing the dis-
cretized depth weighting function. Here we have used eq. (21).

The data misfit is given by the χ2 misfit measure. Let

φd = (Gκ − dobs)T (Gκ − dobs) = (Gζ m − dobs)T (Gζ m − dobs),

(25)

where dobs is the vector containing the observed data. We assume
that the data and corresponding rows of the sensitivity matrix have
been normalized by the standard deviations of the data errors.

The inverse solution is obtained by minimizing the model objec-
tive function subject to constraints that the data misfit achieves an
acceptable value and that the susceptibility model be positive. For
generality, we introduce a regularization parameter µ and solve the
following equivalent minimization,

minimize : φ = φd + µφm,

subject to : m > 0.
(26)

Here µ controls the relative importance of the model norm and data
misfit. When the standard deviations of data errors are known, the
acceptable misfit is given by the expected value φ∗

d and we will
search for the value of µ that produces the expected misfit. Oth-
erwise, an estimated value of µ will be prescribed. The details of
various aspects of choosing a tradeoff parameter will be discussed in
a following section. Once the vector m is obtained through the min-
imization problem in eq. (26), the susceptibility model κ is obtained
by κ = Z−1 m.

Minimization by logarithmic barrier method

Having spent much effort on obtaining an efficient forward mod-
elling algorithm that reduces both the memory requirement and CPU
time, it is then logical to choose a minimization technique in which
the efficiency of the forward modelling can be directly translated
to the inverse solution. To achieve this goal, we use a primal loga-
rithmic barrier method with the conjugate gradient technique as the
central linear solver. The logarithmic barrier method was originally
developed for solving linear and quadratic programming problems

with inequality constraints (e.g. Gill et al. 1991; Wright 1997). We
adapt that method to incorporate a positivity constraint.

In the logarithmic barrier method, the positivity constraint is im-
plemented as a logarithmic term. The new objective function is given
by (Gill et al. 1991; Saunders 1995)

φ(λ) = φd + µφm − 2λ

M∑
j=1

ln(m j ), (27)

where −2λ
∑

M
j=1 ln(mj) is called the barrier function, λ is the bar-

rier parameter, and the tradeoff parameter µ is fixed during the
minimization. As the name suggests, the logarithmic barrier func-
tion forms a barrier along the boundary of the feasible domain (zero
bound in our problem) and prevents the minimization from crossing
over to the infeasible region. The method solves a sequence of non-
linear minimizations with decreasing λ and, as λ approaches zero,
the sequence of solutions approaches the solution of eq. (26).

In our implementation, the parameters are constrained only from
below by zero, and it is then necessary to scale the model m so
that mi < 1. This guarantees that the barrier function is positive.
Otherwise, a model value greater than unity will cause the barrier
function to be negative and the logarithmic barrier solution will not
converge. This is not a concern with magnetic inversion since the
susceptibility is generally far less than unity. If upper bounds on the
parameters are available, they can be imposed in the same manner.
It is then unnecessary to scale the parameters.

The minimization process starts with a large value of λ and an
initial model m whose elements are all positive. It then finds the
solution iteratively with the barrier parameter λ being decreased at
each iteration. However, the minimization of the nonlinear func-
tional in eq. (27) at each barrier iteration is an expensive process.
Instead of carrying out the full minimization at each iteration, it is
common to take a Newton step for each value of λ and adjust the
step length so that the updated model remains positive (e.g. Gill
et al. 1991). The step length is also used to determine the decreased
value of the barrier parameter λ for the next iteration.

At the nth iteration, we apply one step of Newton method to
minimize eq. (27) to yield(
GT

ζ Gζ + µWT
mWm + λ(n)X−2

)
�m

= −GT
ζ δd − µWT

mWmδm + λ(n)X−1e, (28)

where X = diag{m1, . . . , mM}, e = {1, . . . , 1}, δd = Gζ m(n−1) −
dobs , and δ m = m(n−1) − m0. The solution of the above equation
yields the search direction ∆m. It is then used to update the model
by a reduced step length so that the new model remains positive.
Thus

m(n) = m(n−1) + γβ�m, (29)

where β is the maximum permissible step length and is given by

β =



1, if �m > 0

min
�m j <0

m
(n−1)
j

|�m j | , otherwise
. (30)

The parameter γ is prescribed to be within (0, 1), and a value very
close to unity, for instance 0.99, has been used in the literature.
However, we have found empirically that a slightly smaller value of
γ seems to perform better for the current problem and our algorithm
uses γ = 0.925. The barrier parameter is then updated by

λ(n+1) = [1 − min(β, γ )]λ(n). (31)

The barrier iterations are continued until the value of λ is sufficiently
small such that the barrier term has a negligible contribution to the
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total objective function in eq. (27). By this stage, the model objective
function and data misfit are not expected to change very much so
we also use an additional termination criterion that the objective
function is changing less than 1 per cent.

The remaining issues for a practical algorithm are the specifica-
tion of the initial value of λ and the solution of the central equation
given in eq. (28). Once an initial model m(0) is chosen, the starting
value of λ can be chosen so as to balance the barrier term with the
sum of the remaining terms in eq. (27),

λ(0) = φ
(0)
d + µφ(0)

m

2
M∑

j=1
ln

(
m(0)

j

) . (32)

This choice has worked well in all our applications.
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Figure 6. The perspective view of the test susceptibility model. Six smaller blocks are buried at shallow depth and one large block is buried at a greater depth.
The lighter blocks have a susceptibility of 0.05 SI and the darker ones have a susceptibility of 0.08 SI.

Figure 7. The 3-D perspective view of the surface topography over the 3-D model shown in Fig. 6. The total relief is 150 m. The top of the inversion mesh is
placed at the elevation of 125 m as only a very few points on the surface are actually above 125 m. The depth indicated in the plotted model is referenced from
that elevation.

For the solution of the central eq. (28), we use a conjugate gradient
(CG) technique. This is for the following two reasons. First, it is
prohibitively expensive to form explicitly the matrix

A = GT
ζ Gζ + µWT

mWm + λ(n)X−2 (33)

in eq. (28), but it is relatively easy to apply A to a vector implic-
itly. The operation of multiplying A to a vector is dominated by
the first term GT

ζ Gζ , since WT
mWm and X−2 are extremely sparse.

We have the sparse wavelet representation of the matrix Gζ , and
the computation of GT

ζ Gζ vκ is accomplished by two matrix-vector
multiplications followed by an inverse wavelet transform. The mul-
tiplication is carried out in the wavelet domain using eqs (15) and
(17). Numerically, we have an equivalent sparse system to solve
and the conjugate gradient method is a natural choice. Second, the
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260 Y. Li and D. W. Oldenburg

solution of eq. (28) only gives an approximate search direction and
it is unnecessary to solve it precisely. The CG method allows us to
obtain a partial solution and thereby reduce the computational time.
This results in a truncated Newton step for the barrier iteration. We
generally terminate the CG solution when the relative residual is be-
low 10−2 and this has worked satisfactorily. Increased CG accuracy
does not seem to improve the solution very much but significantly
increases the CPU time.

As barrier iterations progress, many model elements approach the
zero bound. Thus the barrier component, λX−2, in eq. (28) can cause
the matrix A to be poorly conditioned and this makes the CG solver
converge very slowly. We treat this difficulty by applying a Jacobi-
like pre-conditioner to the CG solver. The diagonal pre-conditioner
C consists of the square root of the diagonal elements of the matrix
A,

C = diag {
√

Aii }. (34)
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Figure 8. The true susceptibility model is displayed in six plan-sections. The depth of each section is indicated by the labels. The gray scale shows the
susceptibility in SI units. A part of the surface topography can be seen in the section at z = 87.5 m .

The pre-conditioner is updated at each barrier iteration. Numeri-
cal examples have shown that the pre-conditioning is necessary to
have the CG converge in a small number of iterations. Without it,
the number of required CG iterations increases rapidly as the final
solution is approached.

Determination of regularization parameter

The choice of the regularization parameter µ ultimately depends
upon the magnitude of the error associated with the data. The inver-
sion of noisier data requires heavier regularization, thus a greater
value of µ is needed. When the standard deviation associated with
each datum is known, the data misfit defined by eq. (25) has a known
expected value φ∗

d , which is equal to the number of data if the errors
are assumed to be independent Gaussian noise with zero mean. The
value of µ should be such that the expected misfit is achieved. This
entails a line search based on the misfit curve as a function of µ.
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Fast magnetic inversion using wavelets 261

Because of the positivity constraint, our problem is nonlinear. Thus
for each µ a nonlinear solution using a logarithmic barrier method
must be obtained. This is computationally demanding and we there-
fore have developed the following strategy to reduce the cost.

It is observed that, when plotted on a log-log scale, the misfit
curves, φd(µ), for 3-D magnetic inversion with, and without, posi-
tivity often parallel each other in the vicinity of the expected misfit.
The curve with positivity lies above the curve without positivity.
We proceed by first performing a line search without positivity to
find a µ0 that gives rise to φ∗

d . This search also generates the slope,
s0, of the misfit curve at µ0. This process is very efficient and the
required CPU time is much smaller compared to the time required
for the solution with positivity. A rigorous line search incorporating
positivity then starts with an initial guess of µ = 0.5µ0. This usu-
ally yields a misfit that is very close to the target value. However,
if the misfit is not sufficiently close to φ∗

d , a new guess for µ is ob-
tained which makes use of the approximate slope s0. The inversion
with updated µ can be solved efficiently if the logarithmic barrier
algorithm is started with an initial model that is close to the final
solution. Here we use the current model but first perturb it so all
elements are well away from the zero bound. Such ‘warm starts’ of
the logarithmic barrier method also require an appropriate starting
value for λ. We invoke eq. (32) with m(0) replaced by the perturbed
model. If further iterations of a line search are demanded, then the
same procedure is used except that an estimate of the slope of the
misfit curve is obtained directly from optimizations, already carried
out, that incorporate positivity. The line search using this strategy
is often successful in reaching the target misfit φ∗

d after testing two
to four values of µ.

In practical applications, the estimate of data error is often not
available. The degree of regularization, hence the value of µ, needs
to be determined based on other criteria. A commonly used method
in linear inverse problems is the generalized cross-validation (GCV)
technique. The use of GCV in inverse problems with inequality
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Figure 9. The total field anomaly produced by the susceptibility model shown in Fig. 8. The inducing field direction is I = 65◦ and D = 25◦. The data are
simulated over an undulating surface that parallels the topography with a constant terrain clearance of 75 m. Uncorrelated Gaussian noise with a standard
deviation of 5 nT is added to the data. The gray scale shows the field in nT.

constraints such as positivity requires the solution of a number of
auxiliary optimization problems, which requires a large amount
of computation. However, we have observed that applying GCV
to the 3-D magnetic inversion without positivity can produce a
reasonable estimate of the data error and corresponding value of
µ. That error can serve as a starting point for further adjustment
by the user based on his or her judgement. If no other informa-
tion is available, the value of µ obtained in this manner can be
used directly in the final inversion that has the positivity imposed.
In this case, only one logarithmic barrier solution is needed. Nu-
merical tests have indicated that this simplistic use of GCV is in
fact surprisingly effective unless the data have a large negative
bias or are distributed too sparsely. In the following, we outline
the implementation of an efficient method for evaluating the GCV
function.

In the absence of positivity, the solution to the inverse problem is
obtained by solving the following equation,(
GT

ζ Gζ + µWT
mWm

)
�m = −GT

ζ δd, (35)

where δd = Gζ m0 − dobs . The corresponding expression for GCV
is (Golub et al. 1979; Wahba 1990)

V (µ) =

∣∣∣∣∣∣[I − Gζ

(
GT

ζ Gζ + µWT
mWm

)−1
GT

ζ

]
d
∣∣∣∣∣∣2

{
N − trace

[
Gζ

(
GT

ζ Gζ + µWT
mWm

)−1
GT

ζ

]}2 , (36)

where N is the number of data. The numerator is the data mis-
fit obtained when solving the eq. (35). Since the inverse (GT

ζ G +
µWT

mWm)−1 can be obtained by using a CG solver and fast matrix
multiplication, the numerator can be evaluated very quickly. The
more difficult task is to evaluate the trace of the term in the brackets
to obtain the value of the denominator. This is carried out by using
the stochastic trace estimator of Hutchinson (1990), which states
that an unbiased estimate of the trace of a matrix A is given by
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trace (A) = uT Au, (37)

where u is a random vector of −1 and 1 each having a probability
of 0.5. The GCV function is then approximated by

V (µ) �

∣∣∣∣∣∣[I − Gζ

(
GT

ζ Gζ + µWT
mWm

)−1
GT

ζ

]
d
∣∣∣∣∣∣2

{
N − uT Gζ

(
GT

ζ Gζ + µWT
mWm

)−1
GT

ζ u
}2 . (38)

Therefore, the evaluation of V (µ) for each value of µ is equivalent
to inverting eq. (35) two times with different right-hand sides. The
first inversion is applied to the data vector d and the second to the
random vector u. Finding the µ that minimizes the GCV function
entails a line search, and the process can be sped up by starting the
CG solver using, as the initial model, the respective models from
the solutions for the previous value of µ.
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Figure 10. Recovered susceptibility model is displayed in six plan-sections. The depth of each section is shown by the label. This figure is to be compared
with the true model in Fig. 8. The six shallow prisms and one large prism at depth are all imaged.

N U M E R I C A L E X A M P L E

We now apply our fast algorithm to a synthetic example. The
model consists of seven different magnetic bodies embedded in a
non-susceptible background beneath a topographic surface. Among
them, six are relatively small bodies having different sizes and
shapes. They are buried at different depths to simulate small scale
anomalies. One large body is buried at a greater depth below the
small bodies to generate a broad anomaly over which the smaller
anomalies are superimposed. The total relief of surface topography
is 150 m over a 3 km by 3 km area. Fig. 6 shows a perspective
view of the model geometry. Fig. 7 is a perspective view of the sur-
face topography. The elevation varies mostly between 0 and 125 m,
with a few points reaching 150 m. Fig. 8 shows six plan sections
of the model. We have generated total-field anomaly data above the
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surface assuming an inducing field direction of I = 65◦ and D =
25◦. The data are located at a constant terrain clearance of 75 m on
a 60 by 60 grid of 50-m spacings, which gives rise to a total of 3600
data. Fig. 9 shows the noise-contaminated data. The standard devi-
ation is 5 nT for all data. The observed data indicate the presence of
six shallow anomalies, but there is little indication about the deep
source.

For the inversion, we use a mesh occupying a volume of 3.2 km
by 3.2 km by 1.5 km. The top of the mesh is placed at the elevation
of 125 m. The cell width is 50 m in both horizontal directions and
the thickness varies from 25 m near surface to 100 m at the bottom.
After the surface topography is discretized onto the mesh, the re-
sulting model contains a total of 110 000 cells. Storage of the entire
sensitivity matrix, requires more than 1500 Mb. Clearly, solving a
problem of this size by the direct approach is beyond the capability
of many workstations currently available.

To perform the inversion using the fast algorithm, we first gen-
erate the sparse representation of the sensitivity matrix using the
Daubechies-4 wavelet. The depth weighting function ζ (r) is used
and the required relative accuracy for the reconstructed sensitiv-
ity is 5 per cent. With these choices, a compression ratio of 76 is
achieved and the transformed sensitivity matrix is stored with less
than 45 Mb. The high compression ratio is achieved because the
magnetic kernels become smoother as observation height increases,
so fewer wavelet coefficients are needed for a good reconstruction.
The model objective function is specified by choosing αs = 0.0001
and αx = αy = αz = 1.0, and a zero reference model. We start the
inversion using a constant initial model of 0.001 and set the target
misfit to the expected value of 3600. The recovered susceptibility
model is displayed in Fig. 10 in six plan-sections. Comparison with
Fig. 8 shows that the different anomalies in the true model, includ-
ing the deep prism, are well-imaged. However, the more interesting
aspect of this inversion is its small demand on computing resources.
The inversion uses 60 Mb of memory, and is completed in 150
minutes on a SUN Sparc20 workstation.

Next, we apply the algorithm to a set of field data. Since the
inversion methodology for constructing 3-D susceptibility has been

nT

Figure 11. The anomalous magnetic data at Mt Milligan copper–gold porphyry deposit. The data are on a 25 m by 25 m grid and at a terrain clearance of
20 m. The inducing field direction is at I = 75◦ and D = 25.73◦.

published in previous publications, and the emphasis of the current
work is on numerical efficiency, we use as an example the ground
magnetic data from Mt Milligan copper-gold porphyry deposit in
central British Columbia. A subset of this data set was used in Li &
Oldenburg (1996), and we re-invert it here to provide a comparison
with the previously published result so the adequacy of the present
inversion strategy can be established.

The host rocks for the deposit are early Mesozoic volcanic and
sedimentary rocks and contain intrusive monzonitic rocks that have
accessory magnetite. The copper and gold are known to be concen-
trated in the potassic alteration assemblage, which is mainly around
the contact of the monzonite intrusions and may extend outward
and into fractured volcanic rocks. Among other minerals, magnetite
is one of the strong indicators of the potassic alteration. Thus the
magnetic inversion is expected to recover high susceptibility in the
monzonite stock and in the regions of intense alteration. Readers
are referred to Oldenburg et al. (1997) for more detail. The study
was concentrated in an area of 1.2 km by 1 km, which covers a large
monzonite body known as the MBX stock and contains a reasonably
isolated set of magnetic anomalies. The reduced magnetic anomaly
is shown in a contour map in Fig. 11. There are 2009 data points
located at a 25-m intervals in both horizontal directions. The direc-
tion of the inducing field is I = 75◦ and D = 25.73◦. Each datum
is assumed to have an error whose standard deviation is equal to
5 percent of its magnitude plus 10 nT.

To invert these data, we use a model mesh that is horizontally
larger than the data area and coincides at the top with the highest
point on the topographic surface, and extends to 450 m depth. The
mesh has a cell width of 25 m beneath the area of data, and the cell
thickness varies from 12.5 m near the surface to 25 m at depth. This
results in a mesh with 52 × 44 × 22 cells. Once the mesh is defined,
the topography is discretized onto it. The 43 428 cells below this
surface define the susceptibility model. For the purpose of compari-
son, we have carried out the inversion with, and without, the wavelet
compression of the sensitivity matrix. For wavelet compression, we
use Daubechies-4 wavelet, and a reconstruction accuracy of 5 per
cent. The achieved compression ratio is 17. The dense sensitivity
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Figure 12. Comparison of recovered susceptibility models from inversions with, and without, wavelet compression of the sensitivity matrix. Both models are
shown in one cross-section and one plan-section. The model on the left is produced by the inversion without wavelet compression, and the model on the right
is recovered by using the compressed sensitivity matrix. There is little difference between the two results.

matrix requires 335 Mb to store while the compressed matrix re-
quires only 39 Mb. The CPU time required for inversion, when the
dense matrix is used, is 20 times that required when the compressed
matrix is used. This represents significant savings in computing re-
sources. Fig. 12 compares the two models in cross-section at N =
9600 m and in the plan-section at Z = 150 m. The two models are
virtually identical. There are only minor differences between the two
models and those occur in regions of low susceptibility away from
the main anomalies. It is clear that the model recovered using the
compressed matrix has not lost any information that might affect
the final interpretation, yet the savings in the computing resources
are significant.

C O N C L U S I O N

We have developed a fast algorithm for inverting large-scale mag-
netic data based on wavelet compression and logarithmic barrier
method of minimization. The large, dense sensitivity matrix is com-
pressed by applying a 3-D wavelet transform to each row and thresh-
olding the resultant transformed matrix. This yields a sparse repre-
sentation of the sensitivity which, in turn, allows reduced memory
requirements for storage and reduced operation counts for matrix-
vector multiplications. This produces an efficient forward mapping.
We have also adapted the logarithmic barrier method to solve the
inverse problem with positivity constraints. The fast matrix-vector
multiplication makes it possible to use conjugate gradient techniques
as the central solver for the barrier method. This combination of so-
lution strategy translates the savings in the forward mapping directly
to the speed of inverse solution. As a result, the size of magnetic
inverse problems that can be solved is greatly increased and the re-
quired CPU time for solution is reduced significantly. This has had a
significant and positive impact upon the interpretation of field data
sets.
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