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S U M M A R Y
A sequence of aftershocks is modelled assuming fluid migration in a narrow, porous fault zone
formed along a vertical strike-slip fault in a semi-infinite elastic medium. The principle of
the effective stress coupled to the Coulomb failure criterion introduces mechanical coupling
between fault slip and pore fluid. The fluid is assumed to flow out of localized high-pressure fluid
compartments in the fault zone at the instant of the main shock occurrence. We successfully
simulate both regularity and complexity observed for aftershocks in a unified way. For example,
we can simulate both the Omori law and the Gutenberg–Richter relation, which are the most
outstanding regularity observed seismologically. A large majority of simulated aftershocks are
shown to consist of repeated slips, that is, slips on fault segments that have experienced slips
earlier in the aftershock sequence. Our calculations show that the emergence of the Gutenberg–
Richter relation is closely related to the occurrence of these repeated slips. Complexity is
also a striking feature of aftershocks. One of the examples is the occurrence of secondary
aftershocks, which can also be simulated successfully if we assume several high-pressure fluid
compartments formed in a fault zone or a significant change in the permeability caused by the
rupture occurrence.

Key words: aftershocks, faulting, fault zone, fluid flow, permeability, seismicity.

I N T R O D U C T I O N

Aftershock occurrence is one of the most distinctive features of seis-
mological phenomena. Almost all shallow earthquakes, regardless
of size, appear to be followed by aftershocks. It has been revealed
from seismological observations that there are both regularity and
complexity in the occurrence of aftershocks. One of the most famil
iar regularities is found for the decay rate of occurrence of after-
shocks

n(t) ∼ t−p, (1)

where p is the order of unity (Utsu 1961) and n(t) is the frequency
of events at time t, which is measured from the occurrence time of
the main shock that triggered the aftershocks. While the relation
(1) is generally referred to as the Omori law, Omori (1894) con-
sidered only the case p = 1. It is also well-known that aftershocks
have magnitude distribution that satisfies the Gutenberg–Richter
magnitude-frequency relation,

log n(M) = a − bM, (2)

where n(M) is the frequency of events that occur at a given mag-
nitude M , and a and b are constants. Utsu (1961) showed, investi-
gating many aftershock sequences, that b is generally in the range
0.6 < b < 1.5.

We can also observe complexity in the occurrence of aftershocks.
One of the most typical examples is the occurrence of secondary
aftershocks (e.g. Utsu 1970). A large-size aftershock is sometimes
followed by its own aftershocks, which also satisfy the Omori law
and are called secondary aftershocks. However, what should be
noted is that large-size aftershocks are not always followed by the
secondary aftershocks. Some researchers think that an aftershock
followed by the secondary aftershocks rupture fault segments that
have not slipped at the time of the main shock (e.g. Sagisaka 1927).
Page (1968) considered that a large-size aftershock occurring near
the outer edge of the aftershock zone tends to be followed by the
secondary aftershocks.

The Omori law (1) and the Gutenberg–Richter (GR) relation
(2) are exclusively mentioned as common features of aftershocks
in most studies of aftershocks, and many theoretical or simula-
tion studies have tried to explain them. However, it is also a dis-
tinctive feature of aftershocks that the aftershock area tends to
expand gradually after the occurrence of the main shock (Mogi
1968, 1974; Eaton et al. 1970; Tajima & Kanamori 1985a,b).
For example, Mogi (1968, 1974) pointed out that the aftershock
area of the 1968 Tokachi–Oki earthquake showed southward ex-
pansion with an average velocity 100 km per day. However,
the rate of expansion seems to be dependent on local tectonics
(Tajima & Kanamori 1985a,b). Another common feature of after-
shock sequences is that larger aftershocks tend to occur earlier in

20 C© 2003 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/152/1/20/702330 by guest on 21 January 2022



Regularity and complexity of aftershocks 21

an aftershock sequence (e.g. Page 1968; Eaton et al. 1970; Allen
et al. 1971).

While there have been a large number of theoretical or simulation
studies about the mechanism of aftershock occurrence, the aim of
many researchers has been to explain the Omori law or the GR
relation (e.g. Enya 1901; Burridge & Knopoff 1967; Das & Scholz
1981; Yamashita & Knopoff 1987; Dieterich 1994). However, a
successful aftershock source model will at least have to explain all
the features of aftershocks stated above in a unified way. A common
assumption made in theoretical or simulation studies of aftershocks
is the introduction of some kind of non-elasticity for the explanation
of delayed ruptures in aftershock sequences. A successful source
model should also be based on a physically reasonable model about
the delayed ruptures.

We successfully simulate all the features of aftershocks stated
above in a unified way assuming fluid migration in a fault zone as
a mechanism to cause delayed ruptures. Field observations indicate
fluid penetration of fault zones during slip, and a fault zone is gen-
erally regarded as a fluid conduit on the basis of petrologic studies
of exhumed fault zones (e.g. McCaig 1988; Forster et al. 1994).
Mechanical effects of fluids on earthquake faulting have been stud-
ied theoretically or experimentally in a large number of studies (e.g.
Hickman et al. 1995). For example, Nur & Booker (1972) theoreti-
cally derived an expression for the decay of number of aftershocks
on the assumption that the rate of aftershock occurrence is pro-
portional to temporal change in pore fluid pressure. What makes
a striking contrast to the study of Nur & Booker is that we in this
paper simulate aftershock occurrence considering a fracture crite-
rion for the occurrence of aftershocks. Our study here is regarded
as an extension of those of Yamashita (1998, 1999), who simulated
a foreshock–main shock sequence and an earthquake swarm, re-
spectively, on the assumption of mechanical interactions between
fluid flow in a fault zone and earthquake occurrence. We apply
the fault zone model introduced in Yamashita (1999) with slight
modifications.

It will be shown in the present paper that the Omori law and the
GR relation are simulated in a unified manner in addition to other
features of aftershocks. It is sometimes puzzling how such regularity
as the GR relation or the Omori law emerges in apparently complex
aftershock phenomena. We will show that the emergence of the
GR relation is closely related to the recurrence of slip on the same
location on a fault. The occurrence of secondary aftershocks can
also be simulated if several high-pressure fluid sources are formed
in a fault zone or a significant change is caused in the permeability
by the rupture occurrence.

F L U I D M I G R A T I O N
A N D F A U L T M O D E L

The fault zone model to be assumed here is fundamentally the same
as in Yamashita (1999), so that it is only briefly described here. We
consider a vertical rectangular strike-slip fault S in a semi-infinite
isotropic homogeneous elastic medium (Fig. 1). A narrow porous
fault zone sealed from the country rock is assumed along the fault,
which behaves as a fluid conduit. The remotely applied stress is
assumed to be kept constant during a sequence of simulated af-
tershocks since the duration of aftershocks is negligibly short in
comparison with the recurrence period of characteristic events on a
fault.

The change in the stress pyx in the country rock is assumed to be
described in terms of the relative slip alone as in Yamashita (1999)
since the fluid flow alone will cause negligible deformation in the

Figure 1. Elastic half-space with vertical strike-slip fault S. The fault is
represented as a computational grid with a large number of segments; each
segment has the size 250 m × 250 m. The plane z = 0 corresponds to
the free surface. High-pressure fluid is initially located in the compartments
�i

0(i = 1, . . . , n); the rest of the fault,�1, is under much lower fluid pressure.
While we assume n = 4 in this illustration, most of calculations are carried
out assuming n = 1.

country rock. Catastrophic ruptures are assumed to be instantaneous,
so that a quasistatic treatment is allowed.

According to Yamashita (1998, 1999), the governing equation
for the change of the pore fluid pressure p f (x) in the fault zone is
written as

∂

∂x

(
κ(x) + ∂p f

∂x

)
+ ∂

∂z

(
κ(x)

∂p f

∂z

)
= ηφeβ

∂p f

∂t
(3)

by considering the continuity of fluid mass and the Darcy flow,
where x = (x, z) is the location on the fault, η is the viscosity, φe

is the elastic component of porosity, κ(x) is the permeability at x,
and β is the sum of the fluid compressibility and elastic pore com-
pressibility. We assume in the derivation of eq. (3) that the fault
extent substantially exceeds the thickness of the fluid conduit, and
the pore-fluid pressure p f is regarded as the pressure averaged over
the fault zone thickness. The effect of the gravity is neglected here
as in Yamashita (1998, 1999). Since the consideration of relatively
large plastic component of porosity has been shown to cause a rup-
ture sequence similar to earthquake swarm (Yamashita 1999), the
plastic component is assumed to be negligible in comparison with
the elastic component in our calculation here.

The rupture occurrence is assumed to be dependent on the pore
fluid pressure p f through the Coulomb fracture criterion coupled to
the principle of effective stress

τs = c + ms(σn − p f ), (4)

where τs is the static shear traction at fracture, c is the cohesive
strength, ms is the coefficient of static friction and σn is the total
normal traction on the fault. It will be reasonable to assume that the
strength c drops to a lower value on a fault segment at the time of
the earliest slip there in a sequence of slips because of the loss of
cohesion; the value of c remains to be at the lower value for later slips
there. It will be shown later in this paper that a fault segment can slip
repeatedly in a sequence of simulated aftershocks. Our assumption
of the strike-slip fault suggests that a rupture is initiated once the
stress component pyx exceeds the threshold stress τs ; the stress pyx

drops suddenly to the residual level τ f with the onset of rupture.
The residual stress is also written in a form similar to (4) (Wong
1986; Yamashita & Ohnaka 1992), that is,
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τ f = d + m f (σn − p f ), (5)

where d(<c) and m f are cohesion and coefficient of sliding friction.
We assume that the permeability increases to a higher value κ1

from the initial value κ0 at the instant of the earliest slip on a fault
segment in a sequence of repeated slips because dynamic rupture is
likely to increase the porosity and pore connectivity; the permeabil-
ity is assumed to remain at the higher value κ1 at later slips. Note
that earthquake ruptures are likely to generate a large number of
tensile microcracks in their vicinity (e.g. Moore & Lockner 1995;
Yamasita 2000) which will increase the pore connectivity as well as
the plastic component of porosity. Some formulae have been pro-
posed for a relationship between permeability and porosity. Brace
(1977) evaluated the formula

κ = κcφ
3, (6)

and argued that the calculated values of permeability κ compared
well with measurements of a number of rock types, where φ is poros-
ity and κc is a quantity proportional to the pore connectivity. This
equation shows that the permeability is enhanced by the increases in
porosity and pore connectivity. As stated before, the plastic changes
in porosity were investigated in Yamashita (1999) and were shown to
lead to earthquake swarms. We therefore focus on the effect of pore
connectivity in this paper, and the plastic component of porosity is
assumed to be negligible in comparison with the elastic component.
However, quantitative effects of dynamic ruptures on κc are largely
unknown, so that we rather arbitrarily assume the increase in the
permeability κ at the instant of the earliest slip on a fault segment
in a sequence of repeated slips.

As in Yamashita (1998, 1999), the rupture of an impermeable
seal separating one of the high-pressure fluid compartments and the
surrounding low-pressure one in a fault zone is assumed to trig-
ger a sequence of earthquakes. Shear induced pore compaction in
a sealed fault can be a mechanism for locally elevated fluid pres-
sure (Sleep & Blanpied 1992, 1994; Byerlee 1993). We assume
the spatial distribution of the pore fluid pressure at t = −0 in the
form

p f (x) = (
pmax

i − p0

)√
1 − (|x − xi |/ξi )2 + p0 x∈�i

0 (i = 1, . . . ., n)

= p0 x ∈ �1 (7)

on the fault S, where pmax
i > p0, and the i-th high pressure fluid

compartment �i
0 is assumed to be located at a region to satisfy both

|x − xi | < ξi and x ∈ S (Fig. 1); �1 is under a lower fluid pressure
p0.

Mechanical interactions between fluid flow and rupture occur-
rence are caused by the abrupt changes in the permeability κ and
cohesive strength c at the instant of the earliest slip at each fault seg-
ment in a sequence of slips, and through the fracture condition (4)
and the boundary condition on slipped fault segments (5).

N U M E R I C A L C A L C U L A T I O N

The fault is assumed to comprise a computational grid, in which
space and time evolution of stress, relative slip and fluid pressure
fields are calculated as in Yamashita (1998, 1999). All the quantities
are assumed to be constant on each fault segment; each segment has
the same size 250 m × 250 m. These fault segments are assumed
to slip independently. The relative slip 
u, pore fluid pressure p f ,
and shear stress pyx are calculated at the center of each segment.
The fault length and width are assumed to be 21.5 km and 15.5 km,
respectively, and the top edge of the fault is at a depth of 1.75 km

(Fig. 1); the rigidity and Poisson’s ratio of the medium are fixed at
4.5 × 104 MPa and 0.25, respectively.

As discussed in detail by Yamashita (1998), we have no reliable
information about the depth dependence of pore fluid pressure and
the shear stress. We therefore make one of the simplest assumptions,
that is, the shear and normal stresses and the pore fluid pressure
outside of the high pressure fluid compartments are assumed to be
constant over the fault at the initial state; the same assumption was
made by Yamashita (1998, 1999).

The diffusion eq. (3) is solved in a finite difference scheme. Some
care must, however, be taken about the calculation of the terms on
the left-hand side because these terms are associated with the dif-
ferentiation of discontinuous quantities; we assume abrupt increase
in the permeability at the instant of the rupture occurrence. These
terms are discretized following the treatment of Kummer et al.
(1987), which was found to perform satisfactorily (Zahradnik
et al. 1993). The stress change due to relative slips on fault seg-
ments can be calculated using an expression given by Okada
(1992).

We assume as in Yamashita (1998, 1999) that the spatial distribu-
tions of pyx and σn are constant over the fault at t = −0. The fluid
pressure is assumed to be highest in the compartment �1

0 , whose
rupture can therefore trigger a rupture sequence. The contribution
from fault slip to the normal traction σn is negligible because of the
narrow straight fault zone and due to the occurrence of shear slip
only, so that σn in eqs (4) and (5) can be assumed to be constant in
the calculation. Eqs (4) and (5) can therefore be rewritten as

τs = αs − ms p f ,

τ f = α f − m f p f ,
(8)

where αs(= c − σn) and α f (= d − σn) are parameters independent
of the stress change and pore fluid pressure. The value of αs is
assumed to drop from α0

s to α1
s (>α f ), due to a drop in cohesion c,

at the instant of the earliest slip at each fault segment in a sequence
of repeated slips; αs remains at the lower value α1

s for later slips. We
also assume ms = m f = 0.7 and the swinging back of the relative
slip is prohibited as in Yamashita (1998, 1999).

E X A M P L E S O F A F T E R S H O C K
S E Q U E N C E S

We assume some model parameters rather arbitrarily and assume
α f = 16.5 MPa, pyx = 10 MPa and p0 = 10 MPa at t = −0 in all
the calculations in this paper. The strength αs is assumed to drop
from α0

s to α1
s at the instant of the earliest slip in a sequence of slips

as stated in the preceding section. The initial strength α0
s is assumed

to be distributed randomly over the fault at t = −0, while the relation
α0

s −m f p f ≤ pyx is assumed somewhere in �1
0 so that the failure of

this compartment may trigger a sequence of ruptures. The strength
α1

s is assumed to be given by a parameter γ = (α0
s −α1

s )/(α0
s −α f ),

which is fixed in each simulation. Hence, the strength αs drops to
the level of α f if γ = 1. If γ = 0, the cohesive strength remains
unchanged; γ should therefore be in the range 0 ≤ γ ≤ 1. The
quantity α0

s is only the randomness in the model parameters assumed
in this paper. Uniform randomness is assumed in the range from
(24 − r/2) MPa to (24 + r/2) MPa for α0

s unless noted otherwise,
where r is a model parameter. This suggests that the mean value
of α0

s is fixed at 24 MPa, while its variance is changed as a model
parameter. It is characteristic in our model that the tectonic shear
stress pyx is greater than the residual stress τ f over the fault at
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t = −0. Hence, the occurrence of slip is expected to release strain
energy.

Now we have three fundamental model parameters, δ = κ0/κ1,

γ = (α0
s − α1

s )/(α0
s − α f ) and r, whose effects on the simulation

results are investigated in detail in this study. Here, δ denotes the
relative change in the permeability; δ should be in a range from
0 to 1 because the permeability increase from κ0 to κ1 with the
occurrence of rupture as stated before. The parameter γ denotes a
drop in cohesion, and r denotes a measure of the initial heterogeneity
of the cohesive strength.

Only a single high-pressure fluid source �1
0 , located near the

bottom of the fault, is assumed in the following calculations unless
noted otherwise. The parameters describing this high-pressure fluid
source are given by x1 = (0, fL ), pmax

1 = 20 MPa, where z = fL (=
−17.25 km) is the location of the bottom edge of the fault. The value
of ξ1 is given by 17 h(= 4.25 km) in most examples.

Fig. 2 shows examples of simulated aftershock sequences for sev-
eral values of the model parameters. The magnitude M is given by
the moment magnitude, and T is nondimensional time defined as
T = κ0t/h2ηφeβ. Sudden slip occurs over a large area with the fail-
ure of the high-pressure fluid compartment, �1

0 , which is regarded
as the main shock. The events are classified into two groups in Fig. 2.
Open symbols denote a repeated slip, that is, slip on fault segments
that have experienced slips earlier in each sequence; hence, no intact
segment slips in an event shown by an open symbol. At least one
intact fault segment slips in an event shown by a closed symbol. The
slip of an intact fault segment is generally accompanied by that of
the neighboring segments that have slipped earlier in the sequence
as will be shown later in this paper (Figs 5a and 6a). We observe a
general tendency in Fig. 2 that the size of an event is larger when
the slip of an intact segment is involved, and that a large majority
of the events consist of repeated slips. If no discrimination is made
between the open and closed symbols, we find a general tendency
for the frequency of event occurrences to decrease with time and
larger size events to occur earlier in a sequence. These are commonly
observed in actual aftershock sequences (e.g. Omori 1894; Eaton
et al. 1970). It is also observed that the activity is found to be lower
and the duration of activity is shorter if we assume a smaller value
for γ , while qualitative features are unchanged; compare Fig 2(a)
with 2(b). This occurs because it is more difficult to cause repeated
slips if the cohesive strength c does not drop sufficiently. Less ac-
tive sequences are also observed if the variance of the distribution
of α0

s is smaller; compare Fig 2(a) with (c). This occurs because
the population of fault segments with lower strengths is smaller in
the example shown in Fig. 2(c). If we assume a smaller value for
δ, the activity is found to be higher; compare Fig 2(a) with (d). This
will be because the fluid tends to accumulate more easily near the
rupture front when δ is small, as will be discussed in detail later
in this paper. One of the distinctive features of rupture sequences
observed in Fig. 2 is that secondary aftershocks follow a relatively
large event only in the case δ = 0.01. The mechanism of the oc-
currence of such secondary aftershocks will be investigated later in
this paper.

As noted in Yamashita (1999), a wide variation of in situ esti-
mates of the permeability is an obstacle for the quantitative sim-
ulation of interactions between earthquake rupture and fluid mi-
gration. If we assume η = 2 × 10−4 Pas, β = 1 × 10−8 Pa−1 and
φ = 0.01, then we find that T/dT = 1 × 106 corresponds to t = 6.94
hours and 7.93×103 yr for κ0 = 10−11 m2 and κ0 = 10−18 m2, re-
spectively; both are in the range of the in situ estimate of the
permeability (Yamashita 1999). This estimate implies that the
permeability κ0 must be in a limited range for the sequences

shown in Fig. 2 to simulate the duration of actual aftershocks
successfully.

F R E Q U E N C Y D I S T R I B U T I O N
O F M A G N I T U D E S

The frequency-magnitude curves that result from the simulations
are illustrated in Figs 3(a) and (b) for some examples; the effects of
δ, r and ξ1 are investigated here. The value of γ is fixed at 0.99 in
these figures since the number of simulated events is too small for
a statistical analysis for γ < 0.9. We observe a feature common in
each curve that the frequency-magnitude distribution for the events
includes a scaling region of small-size events that is similar to the
GR relation, and a region of large-size events whose frequency ex-
ceeds that of the extrapolated GR relation. The b value of the GR
relation for small-size events is found to be in the range from 1.0 to
1.2 in our simulations (Figs 3a and b) and is almost independent of
the assumed model parameters. The b values obtained in the simula-
tions is in accordance with seismological observations: Utsu (1961)
obtained the b values in the range from 0.6 to 1.5 in the analysis of
30 aftershock sequences.

Frequency distributions with two branches, similar to the ones
shown in Figs 3(a) and (b), have been reported from the analysis of
earthquake catalogues. Since aftershocks generally prevail in many
earthquake catalogues, such distributions will approximately rep-
resent the distributions of aftershock magnitudes. In fact, Knopoff
(2001) pointed out in the analysis of an earthquake catalogue of the
Southern California region that frequency distribution of aftershock
magnitudes has two branches similar to the curves in Figs 3(a) and
(b). However, while the crossover occurs near M = 3.5 in our sim-
ulations, it occurs near M = 4.8 in the study of Knopoff. That the
frequency distribution of aftershock magnitudes has two branches
implies the existence of a scale size corresponding to the crossover
magnitude.

We now investigate the mechanism to cause two branches in the
frequency distribution of magnitudes. The frequency distributions
of magnitudes are separately illustrated, in Fig. 3(c), for repeated
slips and for events that involve the slip of intact segment for the
example with r = 12.0 and δ = 0.1 shown in Fig. 3(a). It is clearly
observed in Fig. 3(c) that the repeated slips obey the GR relation
for all magnitudes, while no such regularity is found if the slip of
intact segment is involved. The same feature is observed in our
simulations even if we change the values of the model parameters.
This is the reason why the frequency distribution of magnitudes
tends to deviate from the GR relation at large magnitudes in Figs 3(a)
and (b). Events shown with open circles have a lower threshold
magnitude near M = 3.0 in Fig. 3(c), which is related to the assumed
size of fault segment 250 m × 250 m. In fact, our simulations show
that an event with M � 3 causes slip on a single intact segment
and on its neighboring segments that have experienced slips earlier.
Hence, we can judge that the crossover magnitude is determined
by the assumed size of fault segment, so that the emergence of the
crossover magnitude near M = 3.5 is entirely artificial. However,
seismological studies have shown that slip distribution on the fault
plane of a large earthquake is highly inhomogeneous (e.g. Yoshida
et al. 1996). Such slip maps therefore imply the existence of small-
scale fault segments that can slip somewhat independently. If such
fault segments actually exist on a fault, a crossover magnitude should
be observed and it will depend on the frequency distribution of the
sizes of fault segments. Knopoff (2001), however, attributed the
crossover magnitude to the fault zone thickness having a size of
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Figure 3. (a) Frequency distribution of magnitudes of simulated aftershocks; dependence on the values of δ and r is investigated. The values of γ and ξ1 are
fixed at 0.99 and 17 h(= 4.25 km) in each example. The frequency distributions are calculated from the sequences shown in Fig. 2 except the example with
δ = 0.3. (b) Frequency distribution of magnitudes of simulated aftershocks; dependence on the value of ξ1 is investigated. The values of δ, r and γ are fixed
at 0.3, 12.0 and 0.99, respectively, in each example. (c) Frequency distributions of magnitudes for repeated slips (closed symbol) and for events that involve a
slip of, at least, one intact segment (open symbol) for the sequence of simulated aftershocks shown in Fig. 2(a).
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the order of 3 km; consideration of fault zone thickness introduces
another length scale.

D E C AY R AT E O F A F T E R S H O C K
O C C U R R E N C E

As stated in the Introduction, the decay rate of the occurrence of
actual aftershocks is generally described by the Omori law, while
some aftershock sequences show a deviation from the Omori law be-
cause of the occurrence of secondary aftershocks (Sagisaka 1927).
The decay rate of occurrence of simulated aftershocks is illustrated
in Fig. 4(a) for some examples. Only the effect of the permeability
change (δ) is investigated here; r and γ are fixed at 12.0 and 0.99, re-
spectively. It is found that the decay rate is dependent on the value of
δ unlike the magnitude-frequency distributions shown in Figs 3(a)
and (b). While the decay is well approximated by the Omori law
for the cases δ = 0.1 and 0.3, the behavior of the decay is very
complicated in the case δ = 0.01. This occurs because large-size
events tend to generate secondary aftershocks in the case δ = 0.01.
Each of the secondary aftershock sequences are shown to satisfy the
Omori law (Fig. 4b). We find a tendency as exemplified in Fig. 4(b)
that the p value of the Omori law is smaller for an earlier sequence
of secondary aftershocks. This will be because the activity is higher
in an earlier time period in a sequence of simulated aftershocks.

Even if no secondary aftershocks occur, the decay rate of sim-
ulated aftershocks seems to be slightly dependent on the model
parameters unlike the magnitude-frequency distribution (Fig. 4a).
We now investigate how the model parameters affect the decay rate;
we consider only aftershock sequences that are not accompanied by
secondary sequences. Figs 4(c) and (d) show that the p value tends to
be larger when δ is larger or ξ1 is smaller, and that the p value is in the
range from 0.75 to 1.2. Utsu (1961) showed that many aftershock
sequences satisfy the range 0.9 < p < 1.5 although the p value
tends to vary with sequences. While the p values shown in Figs 4(c)
and (d) approximately satisfy this seismological observation, the
simulations suggests that the values of the model parameters should
be in certain ranges to explain the seismological observation of the
p value.

M E C H A N I S M S O F O C C U R R E N C E O F
R E P E AT E D S L I P S A N D S E C O N DA RY
A F T E R S H O C K S

We show, in Figs 5 and 6, examples of the spatio-temporal variations
of slip and pore-fluid pressure on the fault. Figs 5 and 6 correspond
to the sequences shown in Figs 2(a) and (d), respectively, so that
only the magnitude of the permeability change is different in the
two figures. We assume a time period in which a relatively large-
size event occurs in the illustration of these figures; this large-size
event can generate secondary aftershocks in the case δ = 0.01 as
shown in Fig. 4(a). In Figs 5(a) and 6(a), the black area denotes the
slip of intact segments, while the grey area denotes the slip of fault
segments that have slipped earlier in each sequence of slips. No slip
is generated on the blank area at each specified time step, while the
area has already slipped in earlier events. Figs 5(a) and 6(a) clearly
show that if a few intact segments slip, it is always accompanied by
the slip of a large number of the neighboring segments that have
experienced slips earlier. It is also found that the same segment
slips repeatedly in a sequence following the occurrence of a large-
size event. We now investigate how fault segments slip repeatedly
in a sequence of aftershocks.

We find local changes in the fluid pressure where intact segments
have slipped, which are depicted by the arrows in Figs 5(b) and 6(b).
These changes denote the local fluid flow caused by an increase in the
permeability where intact segments have slipped. Since the strength
αs is reduced significantly there, the fluid inflow causes slips there
repeatedly. Such slips are sometimes accompanied by the slip of the
neighboring segments. This is the reason why repeated slips tend to
occur along the edge of rupture zone in our simulation (see grey area
in Figs 5a and 6a). Precise relative relocation of small aftershocks
has shown that a large majority of such events tend to concentrate
along the edge of the main shock fault (e.g. Nadeau & Johnson
1998; Rubin & Gillard 2000). Our calculation suggests that such
small aftershocks represent repeated slips on the main shock fault.

Both models with δ = 0.01 and 0.1 are shown to generate repeated
slips. However, a significant difference between the two models
is that the occurrence of a large-size event suddenly enhance the
activity of small-size events, identified as secondary aftershocks,
only in the case δ = 0.01 (compare Figs 2a and d). Since the fluid flux
is far larger in the rupture area than ahead of the temporarily arrested
rupture front in the case δ � 0, the fluids tend to accumulate near
the rupture front. This will cause much larger fluid pressure gradient
in the case δ = 0.01 near the rupture front than in the case δ =
0.1; compare Fig 5(b) with 6(b). Once intact segments rupture and
the expansion of the rupture front occurs, the high-pressure fluid
migrates after the extended rupture front and flows into the newly
ruptured area because of the increase in the permeability there. The
fluid flux is much larger near the extended rupture front in the case
δ = 0.01 because the fluid flux is proportional to the fluid pressure
gradient according to the Darcy law. Hence, a larger number of
repeated slips are expected to occur near the extended rupture front
in the case δ = 0.01 than in the case δ = 0.1; such repeated slips
are identified as secondary aftershocks in the former case.

G R A D UA L E X PA N S I O N
O F A F T E R S H O C K Z O N E

We now investigate the temporal expansion of rupture zone on the
basis of our simulation results. Fig. 7 shows the temporal change
of the location of the top edge of the rupture zone; the location of
the top edge is measured from the bottom of the fault. The effect of
fracture strength is investigated here; we assume that the value of α0

s

ranges from 18 MPa to 30 MPa for the example shown by circles,
and 22 MPa to 34 MPa for the example shown by squares; hence,
while the variance of the distribution of α0

s is fixed, the average
value is larger in the latter case. Two aftershock sequences, shown
by open and closed symbols, resulting from the same statistical
distribution for α0

s are simulated in each case. As expected, the
expansion rate is smaller when the average value of strength α0

s

is higher. It is clearly observed that the rate of the expansion
of rupture zone is larger at earlier times in all the examples. It
is known that the migration of seismicity sometimes shows a
similar pattern (e.g. Talwani & Acree 1985; Aoyama et al. 2001).
Talwani & Acree (1985) and Aoyama et al. (2001) considered
that fluid migration is responsible for the seismicity migration.
Aoyama et al. (2001) estimated the hydraulic diffusivity by fitting
the arrivals of peak fluid pressure, expected from an analysis of
a diffusion equation, with the migration front of seismicity. Our
study implies that the hydraulic diffusivity cannot be estimated
from such an approach since the expansion of rupture zone is
affected by the fracture strength as well as the hydraulic diffusiv-
ity. It should also be noted that while the expansion of rupture zone is
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Figure 6. Spatio-temporal variation of (a) slip and (b) pore-fluid pressure for the example shown in Fig. 2(d). M and T denote the magnitude and occurrence
time of each event in (a). The numerals in (b) denote the fluid pressure in MPa, and z0 is the distance from the bottom of the fault.

Figure 7. Temporal variation of the location of the top edge of the rupture
zone for some values of the model parameters. The value of α0

s is assumed
to range from 18 MPa to 30 MPa and 22 MPa to 34 MPa for the examples
shown by circles and squares, respectively. Two aftershock sequences, shown
by open and closed symbols, resulting from the same statistical distribution
for α0

s are simulated for each case. The values of ξ1, δ and γ are fixed at
17 h(=4.25 km), 0.1 and 0.99, respectively, in each sequence here. zu is the
location of the top edge of the rupture zone measured from the bottom of
the fault (see Fig. 5a).

rather smooth in the examples shown in Fig. 7 (see also Figs 4a
and 5a), it is sometimes quite irregular if we assume multiple high-
pressure fluid compartments, whose effects will be investigated in
the next section.

E F F E C T S O F M U LT I P L E
H I G H - P R E S S U R E F L U I D
C O M PA RT M E N T S

If hydraulic properties are very inhomogeneous in a fault zone, it
may be more appropriate to assume several high-pressure fluid com-
partments there; Fitzenz & Miller (2001) actually showed the gen-
eration of such high-pressure fluid compartments in their numerical
simulation. The existence of such high-pressure fluid compartments
may much more complicate interactions between fluid flow and rup-
ture occurrence. We shortly investigate the effects of multiple high-
pressure fluid compartments in this section. We specifically assume
four high-pressure fluid compartments �1

0 , �2
0 , �3

0 and �4
0 in the

fault zone (see Figs 1 and 8a); their model parameters in eq. (7) are
assumed to be given by x1 = (0, fL ), x2 = (0, fL + 20h), x3 =
(−22 h, fL + 8h), x4 = (19 h, fL + 16 h), pmax

1 = 20 MPa, pmax
2 =

pmax
3 = pmax

4 = 15.5 MPa, ξ1 = 11 h, ξ2 = ξ3 = ξ4 = 6 h, where
z = fL (= −17.25 km) is the location of the bottom edge of the
fault and h(= 250 m) is the side length of each fault segment. The
fluid pressure is highest in the compartment �1

0 , so that the failure of
this compartment is expected to trigger a sequence of ruptures. We
assume δ = 0.1, γ = 0.99 and r = 12 in the calculation, which are
the same as in Fig. 2(a). Hence, the difference in the assumptions
made in Fig. 2(a) and here lies only in the spatial distribution of
high-pressure fluid compartments.

The simulated rupture sequence is illustrated in Fig. 9(a). The
main shock ruptures the whole area of the compartment �1

0 and
some segments in the other high pressure fluid compartments (see
Fig. 8b). We find that the rupture activity is much more complex
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30 T. Yamashita

Figure 8. (a) Spatio-temporal variation of fluid pressure p f in the case when multiple high-pressure fluid compartments are formed in the fault zone.
(b) Spatio-temporal variation of slip �u in the case when multiple high-pressure fluid compartments are formed in the fault zone; s = 1 MPa, h = 250 m and
µ is the rigidity of the medium.

in Fig. 9(a) than in Fig. 2(a). The increase in the activity at
T/dT = 100 000 ∼ 130 000 (see also Fig. 9b) is due to the sudden
coalescence of rupture zones formed at �1

0 and �2
0 . Our calculations

show that two rupture zones formed at �1
0 and �2

0 coalesce in the

time period T/dT = 100 000 ∼ 130 000 (see Fig. 8b). Fluid pres-
sure increases at the location of coalescence due to fluid inflow as
illustrated in Fig. 8(a), which will cause repeated slips there. These
slips are observed as a sequence of secondary aftershocks.
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Figure 9. Temporal variation of simulated aftershock activity that corresponds to the example shown in Fig. 8. The event with M = 5.34 occurring at T = 0
denotes the main shock. The time range from T/dT = 8 × 105 to 1.8 × 105 in (a) is magnified in (b).

D I S C U S S I O N

We assumed in our study that the fault zone boundary is imper-
meable in a sequence of simulated aftershocks. However, after-
shock epicenters are sometimes observed to diffuse into the coun-
try rock with time (Japan Meteorological Agency 1995). This may
indicate that some parts of the fault zone boundary are fractured
and become permeable because of the occurrence of the main
shock. If the leakage of pore fluids occurs, the expansion of rupture
zone along the fault will be smaller than simulated in the present
study.

While the distribution of seismologically observed aftershock
hypocenters is roughly planar, a precise determination indicates
that the distribution is zonal (e.g. Hirata et al. 1996). This sug-
gests that fluid flow in a zone with finite thickness must be taken
into account for a more detailed and quantitative simulation. The
assumption of a finite fault zone thickness introduces another char-
acteristic scale-size in the model, which may modify the frequency

distribution curves of magnitudes simulated in our study. As men-
tioned before, Knopoff (2001) argued that a scale size related to the
fault zone thickness gives rise to two branches in the frequency dis-
tribution curve of earthquake magnitudes. Although we considered
in this paper only the average flow of pore fluids in the direction
parallel to the fault, we have to consider a changes in hydraulic
properties across a fault zone when a finite fault zone thickness is
taken into account. Field and microstructural studies of fault zones
formed in rocks demonstrate that fault zones are composed, in vary-
ing amounts, of two principal components: the damage zone and the
fault core (Chester et al. 1993; Heynekamp et al. 1999). Evans et al.
(1997) found in their laboratory tests that the fault core has much
lower permeabilities than the damage zone. Hence, the damage zone
will act as a fluid conduit, whereas the lower permeability fault core
is likely to inhibit fluid flow across the fault. This implies that fault
zones have a bulk permeability anisotropy with higher permeability
parallel to the fault plane and reduced permeability normal to the
fault.

C© 2003 RAS, GJI, 152, 20–33

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/152/1/20/702330 by guest on 21 January 2022



32 T. Yamashita

It is sometimes argued that the number of aftershocks is propor-
tional to the magnitude of the main shock (e.g. Singh & Suarez
1988). We also observed such tendency in our simulation. The ex-
ample shown in Fig. 2(a) has the main shock magnitude M = 5.73,
and the number of aftershocks is 10 957. If we assume a larger fluid
compartment at �1 with ξ1 = 5.25 km and with the same values
for the other parameters as in Fig. 2(a), the main shock with larger
magnitude M = 5.92 is simulated, and the number of simulated
aftershocks is found to be 16 704. However, the number of after-
shock is also dependent on such parameters as γ and δ; see Fig. 2.
Dependence on local tectonics found in the relation between the
main shock magnitude and the number of aftershocks (e.g. Singh &
Suarez 1988) may reflect the dependence on such model parameters
as γ and δ.

The unstable rupture growth is temporarily arrested in our model
because of the inhomogeneities in the spatial distributions of τs and
τ0 − τ f , where τ0 is the value of pyx at t = −0; note that the shear
stress at the rupture edge is proportional to the integration of the
value of τ0 − τ f over the rupture surface. The fluid migration can
change the distributions of τs and τ0 − τ f (see eqs 4 and 5), so that
it can trigger the regrowth of the arrested rupture. Hence, the unsta-
ble rupture growth occurs in an intermittent way in our simulations.
However, the unstable rupture growth is expected to become unar-
rested at some time step if the value of τ0 − τ f is much larger than
assumed in the present study and τs is not much different from the
value assumed here. This occurs because the shear stress at the rup-
ture edge far exceeds the value of τs . If such rupture growth occurs,
our aftershock model appears to be invalidated because aftershock
occurrence culminates in an unstable rupture whose growth is never
arrested. However, a recent analysis has shown that the spontaneous
bending of the rupture plane can arrest such unstable rupture growth
(Kame & Yamashita 1999a,b). While the investigation of the effect
of bending of rupture plane is beyond the scope of our study, our
study suggests that aftershocks can occur due to fluid migration
regardless of the arresting mechanism of unstable rupture growth
only if enough fluid flux exists near the temporarily arrested rupture
front. The fluid flow can drive the regrowth of the temporarily ar-
rested rupture front and a sequence of aftershocks will be observed.

The GR relation and the Omori law can also be simulated by con-
sidering the stress corrosion cracking (Yamashita & Knopoff 1987;
Reuschle 1990). Although Yamashita & Knopoff (1987) did not
study the occurrence of secondary aftershocks, the introduction of
strong heterogeneities in fracture strengths may simulate secondary
aftershocks in their aftershock models, too. However, one of the
important differences is that repeated slips cannot be simulated in
the models proposed by Yamashita & Knopoff (1987). We found in
this paper that a large majority of simulated aftershocks consist of
repeated slips, which satisfy the GR relation over all magnitudes.

C O N C L U S I O N S

The mechanical interactions between the rupture occurrence and
fluid migration in a fault zone was shown to give rise to an af-
tershock sequence satisfying the GR relation and the Omori law.
A majority of simulated aftershocks consist of repeated slips. We
found that the emergence of the GR relation is closely related to
the occurrence of repeated slips. Repeated slips occur because of
the fluid flow onto fault segments that have slipped earlier in a se-
quence of slips. While the GR relation and the Omori law are the
most distinctive regularity seismologically observed for aftershocks,
we also know the existence of complexities in aftershock sequences.
One of the well-known complexities is the occurrence of secondary

aftershocks. We successfully simulated secondary aftershocks if we
assume several high-pressure fluid compartments formed in a fault
zone or a significant change in the permeability caused by the rup-
ture occurrence.

We find a general tendency in our simulations that the frequency
of aftershock occurrence decreases with time, and larger size events
occur earlier in a sequence. These are commonly observed in actual
aftershock sequences (e.g. Omori 1894; Eaton et al. 1970). Our study
shows that a majority of simulated aftershocks, which are repeated
slips, occur near the rupture front. Precise relative relocation of small
aftershocks has also shown that a large majority of events tend to
concentrate along the edge of the main shock fault. Hence, our study
suggests that such small aftershocks represent repeated slips.

The aftershock zone is found to expand with time in our simu-
lation due to gradual fluid migration. Some researchers try to es-
timate the hydraulic diffusivity of the crust from the observation
of the expansion rate of seismicity. However, the expansion rate
is also dependent on the fracture strength as clearly found in our
simulation.
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