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S U M M A R Y
Representing seismic waves numerically by, for example, the discrete wavenumber method,
we normally decompose waves into P-SV and SH components. This scheme, however, cannot
treat the exactly vertically travelling S-wave element (VTSE), which corresponds to kx = ky =
0, whereas VTSE exists except for a few cases of fault geometry. In order to deal with VTSE
from a point source, a new S-wave potential must be introduced, so that its polarization is
restricted on a horizontal plane. The polarization angle of VTSE is a function of the fault
geometry represented by dip, rake and strike. In this study, we first point out that VTSE from
a finite fault cannot be calculated even if we use the above new S-wave potential, because
the terms originated from fault finiteness become zero if kx = ky = 0. In order to remedy
this difficulty for a finite source, we define a new VTSE potential for a rectangular fault. The
contribution of VTSE is large for displacements in a very low frequency range such as static
displacement. The static displacement due to VTSE does not depend on a fault depth or station
locations. When we take a small but finite value for kx and ky instead of zero, say δk = 10−5,
we can obtain practically accurate results even without the VTSE potential, including static
displacements that have not been discussed in detail yet. Following the above scheme, accurate
seismograms with both dynamic and static components can be simulated simultaneously for a
fault of any configuration and station location.

Key words: finite fault model, static deformation, vertically travelling S-wave.

1 I N T R O D U C T I O N

New kinds of observations, such as kinematic GPS (e.g. Hirahara et al. 1996) and interferometric seismometers with laser diodes, have been
recently developed, and they have the potentiality of being used as broad-band seismometers which can observe in a very low frequency
range including static displacement. We are gathering data on not only elastic but also on the nonlinear behaviour of crustal deformations
and making use of these new observations. If we can calculate surface displacements, including static displacement, accurately we are able
to divide observed displacements into elastic and anelastic deformations. This kind of approach will play an important role in understanding
crustal deformations due to earthquakes and the dynamic properties of the Earth’s crust. An appropriate method to compare synthetics directly
with such new observations for a realistic Earth structure is the discrete wavenumber method (Bouchon & Aki 1977; Bouchon 1979), which
is ordinarily used to synthesize dynamic motions. Overcoming some difficulties, this method can calculate not only dynamic motions but also
static displacement simultaneously (Honda & Yomogida 2002).

If we use the discrete wavenumber method in synthesizing seismograms, it is difficult to include static displacement. This is because of
poor convergence of integration over horizontal wavenumbers for the static. Although complete displacements due to a kinematic fault model
are derived in the Weyl integral, we must truncate the integration over horizontal wavenumbers when we carry out the integration numerically.
To obtain seismograms, not only of dynamic motions such as P- and S-waves but also of static displacement corresponding to zero frequency,
we investigated the importance of the truncation number of horizontal wavenumbers, kmax, especially in zero and low frequency ranges (Honda
& Yomogida 2000, 2002). In the case of a homogeneous half space, Honda & Yomogida (2002) concluded that 4 km−1 is a suitable value for
the truncation number of horizontal wavenumbers to calculate surface displacements including accurate static displacement.

In addition to the difficulty related to the truncation number of the wavenumber integration, there is another problem in obtaining accurate
seismograms inherent to any method based on the plane-wave decomposition. We normally decompose waves into P-SV and SH coordinates.
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This decoupling has the essential singularity if both of horizontal wavenumbers kx and ky are to be zero, because SV - and SH-wave potentials
become zero. This wave corresponds to a vertically travelling plane S-wave (VTSE). This component is important for obtaining accurate
surface displacement particularly for the static component, as shown later. For a point source, Takenaka (1990) and Hirata (1992) introduced
a new coordinate system in order to remove this singularity. Hirata (1992) studied the effect of VTSE radiated from a point source on seismic
waveforms. Comparing displacement waveforms with and without VTSE, he pointed out the effect of VTSE is more noticeable in a low
frequency range. But he did not check this effect in a finite fault case and did not deal carefully with the static component.

In this study, we shall show that VTSE cannot be dealt exactly for a finite source in the same manner as that for a point source because of
an additional singularity in the formulation related to fault finiteness. The terms originated from the fault finiteness become zero as horizontal
wavenumbers kx and ky go to zero. We will develop a new scheme to avoid this type of singularity for a finite fault and investigate the
degree of the contribution of VTSE to surface displacements in order to obtain accurate seismograms with the discrete wavenumber method.
Although we follow the discrete wavenumber method, the basic concept of this study is valid for any other approaches based on the plane-wave
decomposition.

2 P O T E N T I A L S F O R A P O I N T S O U R C E

Let us first consider P-, SV - and SH-wave displacement potentials radiated from a coupled point source in the discrete wavenumber repre-
sentation (e.g. Honda & Yomogida 1999). Using SV - and SH-potentials, the displacement vector is written by

Ũ = ∇φ + ∇ × (0, 0, ψSH ) + ∇ × ∇ × (0, 0, ψSV ) (1)

(e.g. Aki & Richards 1980). x and y correspond to the NS and EW directions, respectively (Fig. 1). Potentials for P-, SV - and SH-waves at a
reference point (xo, yo, zo) in the Cartesian coordinate are

φ± = i Mo

8π 2µk2
β

∫ ∞

−∞

∫ ∞

−∞
A± exp i(kx (x − xo) + ky(y − yo) ∓ ν(z − zo)) dkx dky, (2)

ψSV ± = i Mo

8π 2µk2
β

∫ ∞

−∞

∫ ∞

−∞
Bsv± exp i(kx (x − xo) + ky(y − yo) ∓ γ (z − zo)) dkx dky, (3)

ψSH± = i Mo

8π 2µk2
r

∫ ∞

−∞

∫ ∞

−∞
Bsh± exp i(kx (x − xo) + ky(y − yo) ∓ γ (z − zo)) dkx dky, (4)
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Figure 1. Fault geometry. L , W , φs , δ and λ are length, width, strike, dip and rake of the fault, respectively, whose definitions are after Aki & Richards (1980).
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where

A± = − k2
x

ν
Mxx − 2kx ky

ν
Mxy ± 2kx Mxz − k2

y

ν
Myy ± 2ky Myz − νMzz, (5)

Bsv± = ∓ k2
x

kr
Mxx ∓ 2kx ky

kr
Mxy + kx

(
k2

β − 2k2
r

)
γ kr

Mxz ∓ k2
y

kr
Myy + ky

(
k2

β − 2k2
r

)
γ kr

Myz ± kr Mzz, (6)

Bsh± = − kx ky

γ
Mxx + k2

x − k2
y

γ
Mxy ± ky Mxz + kx ky

γ
Myy ∓ kx Myz, (7)

with the seismic moment Mo and moment tensors related to fault parameters φs , δ and λ (see Box 4.4 of Aki & Richards 1980 p. 117, or
Fig. 1). kr is the horizontal wavenumber, k2

r = k2
x + k2

y , and kβ is for S-wave. ν and γ are so understood as ν2 = k2
α − k2

r and γ = k2
β − k2

r .
The subscript plus and minus signs in the above equations correspond to upward and downward propagating potentials, respectively.

Surface displacements by P- and SV -waves are given by

Ur ′ = ∂φ±
∂r ′ − ∂ψSV±

∂z
, (8)

W = ∂φ±
∂z

+ ∂ψSV±
∂r ′ , (9)

where U r is the r ′ component (direction of the wave propagation shown in Fig. 2) of surface displacement and W is the vertical. The surface
displacement by SH-waves, which is horizontal and perpendicular to Ur ′ , is given by

Vθ = −∂ψSH±
∂r ′ . (10)

In the case of kr 
= 0, N–S and E–W displacements U x and V y are obtained by

Ux = kx

kr
Ur ′ − ky

kr
Vθ , (11)

Vy = ky

kr
Ur ′ + kx

kr
Vθ , (12)

Although the above formulations can be easily extended to a layered medium using the reflection-matrix method (Kennett & Kerry
1979; Luco & Apsel 1983), all the displacements obtained from SV - and SH-potentials vanish in the case of kx = ky = 0. This type of waves
correspond to VTSE, even though VTSE exists except a few special cases. We shall call this type of difficulty ‘the singularity of VTSE’. In
the following section, we shall introduce a new S-wave potential in order to avoid this singularity, following an approach developed by Hirata
(1992) for a point source.

y (east)

x (north)

r'

Φ 

θ ’
kr

θ 

receiver

Figure 2. Relation between horizontal wavenumber kr and receiver direction in the cylindrical coordinate.
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3 I N T R O D U C T I O N O F V T S E P O T E N T I A L

3.1 Representation of exact VTSE

Initally, we decompose three components of S-wave displacement potential ψ̃ into SV - and SH-wave displacement potentials, as shown in
eqs (3) and (4). This decomposition, however, cannot accurately deal with a vertically travelling plane S-wave element with kx = ky = 0,
because SH- and SV -wave potentials are not distinguishable in this case and the displacements expressed by SV - and SH-waves with (3) and
(4) become zero. This problem has been recognized as the difficulty of a vertical plane S-wave incidence (e.g. Horike et al. 1990; Ohori et al.
1992; Uebayashi et al. 1992). We first briefly review previous approaches in order to distinguish the singularity for a point source from that
for a finite fault to be discussed in the next section.

Although Takenaka (1990) and Ohori et al. (1992) introduced special potentials in order to represent VTSE, they were interested only in
the effect of layered media and did not consider the singularity related to a seismic source. On the other hand, Hirata (1992) carefully studied
the effect of VTSE from a point source and presented formulations due to VTSE from a finite fault in a formal manner. Following Hirata
(1992), we introduce a new coordinate system (x ′, y′) in the case of a horizontal wavenumber to be zero for VTSE (Fig. 3). The particle
motion of VTSE should be confined on a horizontal plane, which is defined by θ s . θ s depends only on the fault geometry, in terms of δ, λ and
φs in Fig. 1:

tan θs = Vy

Ux
= −ψx

ψy
,

= cos δ cos λ sin φs − cos 2δ sin λ cos φs

cos δ cos λ cos φs + cos 2δ sin λ sin φs
. (13)

The S-wave polarization angle defined by (13) cannot be determined for either a vertical strike-slip fault (δ = 90◦ and λ = 0◦, ±180◦) or a
45◦ dip-slip fault (δ = 45◦ and λ = ±90◦). Since an amplitude of VTSE becomes zero in these cases, it is not necessary to consider the effect
of VTSE. We then express vertically upward and downward travelling S-wave displacement potentials, ψ+ and ψ−, for VTSE as

ψ± = −ψx± sin θs + ψy± cos θs, (14)

= i D

2Lx L ykβµ
(Myz sin θs + Mxz cos θs) exp (∓iγ (z − zo)), (15)

where ψ x± and ψ y± are the displacement potentials with zero horizontal wavenumber for x and y directions. D is the amount of slip. Lx and Ly

are the charateristic length of x and y directions for the discretization. Note that ψ± are functions of neither x ′ nor y′ but only z. This represent
the VTSE potential for a point source.

Usθ s

y (east)

x (north)

y’

x’

 ψ 

Figure 3. Relation between two horizontal components of a S-wave vector potential ψ and S-wave displacements U s. θ s is the polarization angle of S-wave
due to a vertically travelling plane S-wave element (VTSE).
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The displacement related to VTSE has x ′ component only, and is represented by

Ũs± =
(

∂

∂x ′ ,
∂

∂y′ ,
∂

∂z

)
× (0, ψ±, 0) =

(
−∂ψ±

∂z
, 0, 0

)
. (16)

To extend this approach to a layered medium, we define a standard displacement-stress matrix for VTSE expressed by


Us± = (−iγ iγ )

(
ψ−
ψ+

)
,

σzy′ = µ
(

∂Us
∂z + ∂Us

∂y′

)
= (µγ 2 µγ 2)

(
ψ−
ψ+

)
. (17)

The formulations (17) look similar to those of SH wave. This means that we can calculate VTSE directly, only replacing a standard matrix
for SH wave by that of VTSE in the (x ′, y′) coordinate system (i.e. U s and σ zy′ ).

Although we represent displacement potentials in the Cartesian coordinate, it is natural to use a cylindrical coordinate system for a point
source. Using (15), we can calculate also VTSE in a cylindrical coordinate case, as shown in the Appendix. Even if potentials are represented
in the cylindrical coordinate, surface displacements are obtained through (8)–(10). As a result, we can see displacements due to SV - and
SH-waves vanish in the case of kr = 0. That is, VTSE can be included easily in the cylindrical coordinate case, applying the VTSE potential
derived in this section (i.e. eq. 15) with L replacing Lx and Ly, as shown in Bouchon (1981).

3.2 Reflection coefficient of the VTSE potential at the free surface

Since we represent VTSE in the formulation of the potential (15), the reflection coefficient at the free surface is different from that of SH
wave. Assuming a plane S-wave incidence to an interface at z = 0, incident and reflected waves are represented as follows:

ψinc = Cinc exp i(kx (x − xo) + ky(y − yo) − γ (z − zo)), (18)

ψref = Cref exp i(kx (x − xo) + ky(y − yo) + γ (z + zo)), (19)

where C inc and C ref are the amplitudes of the incident and reflected waves . Referring eqs (16) and (17), the displacement due to VTSE is
obtained by

Us = −
(

∂ψinc

∂z
+ ∂ψref

∂z

)
(20)

= −(−iγ Cinc exp i(−γ z) + iγ Cref exp iγ z) exp i(kx (x − xo) + ky(y − yo) + γ zo) . (21)

Considering the boundary condition at the free surface,

σzy′ = µ
∂Us

∂z

∣∣∣∣
z=0

= µγ 2(Cinc + Cref) exp i(kx (x − xo) + ky(y − yo) + γ zo), (22)

= 0 . (23)

As a result, we obtain the reflection coefficient of VTSE at the free surface to be Cref
Cinc

= −1. Note that if VTSE is not dealt in the potential
form but in a displacement form, the coefficient is the same as the SH case. Making use of ψ± in (15) and a P-wave potential φ±, we can
calculate all the components of seismograms even for VTSE or kx = ky = 0. NS and EW components of displacements are finally obtained by

Ux = Us cos θs, (24)

Vy = Us sin θs . (25)

Following the above procedure, we can obtain VTSE surface displacements for a point source in any coordinate system.

4 P O T E N T I A L S F O R A F I N I T E F A U L T

Since our interest is surface displacement near a realistic fault, we shall introduce potentials for a finite fault by the integration of point
source potentials (2) ∼ (4) over the whole fault plane. After we extend the above equations into such a finite fault case, we find an additional
singularity related to the fault finiteness. In order to understand this additional singularity, let us first introduce potentials for a finite source.
As shown in Fig. 1, we assume a unilateral and unidirectional rupture propagation. ξ represents the direction of rupture propagating and η is
the other direction of the fault segment. Using the transformation matrix of coordinate systems
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
C11 C12 C13

C21 C22 C23

C31 C32 C33


 =


 sin φs cos δ cos λ − cos φs sin λ sin φs cos δ sin λ + cos φs cos λ sin φs sin δ

− cos φs cos δ cos λ − sin λ sin φs − cos φs cos δ sin λ + sin φs cos λ − cos φs sin δ

− sin δ cos λ − sin δ sin λ cos δ


 .

where φs , λ and δ represent strike, rake and dip angles, respectively, we can express a position on the fault (xo, yo, zo) as
x

y
z


 =


C11 C12 C13

C21 C22 C23

C31 C32 C33





η

ξ

0


 +


xo

yo

zo


 .

After the above operation, we integrate the point-source potentials of (2)–(4) to obtain potentials for a finite fault with length L and width W
as follows:∫ L

0

∫ W

0
exp i

(
ω

vr
ξ − kx (C11η + C12ξ ) − ky(C21η + C22ξ ) ± ν(C31η + C32ξ )

)
dη dξ.

It leads to the following expressions of finite-fault potentials:

φ± = i D

2Lx L yk2
β

A± IL IW exp i(kx (x − xo) + ky(y − yo) ∓ ν(z − zo)) ≡ CP± exp(∓iνz) (26)

ψSV ± = i D

2Lx L yk2
β

Bsv± IL IW exp i(kx (x − xo) + ky(y − yo) ∓ γ (z − zo)) ≡ CSV ± exp(∓iγ z) , (27)

ψSH± = i D

2Lx L yk2
r

Bsh± IL IW exp i(kx (x − xo) + ky(y − yo) ∓ γ (z − zo)) ≡ CSH± exp(∓iγ z) , (28)

where

kx = 2π

Lx
nx , ky = 2π

L y
ny,

y

x

0 20

10

-10
(km)

(km)

y (km)

z (km)

10

surface

Figure 4. Station locations at surface for Figs 5, 7 and 8. Circles show stations and a fat line show the fault projection to surface and x-z plane.
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Table 1. Fault parameters for the model in Fig. 4.

Fault length (strike) 20 km
Fault width (down-dip) 10 km
Depth of the fault top 30 km, 10 km and 100 m
Slip on the fault 2 m
Dip angle δ 90◦
Strike φs 90◦
Rake λ 90◦ (dip-slip)
Rupture velocity 2.5 km s−1

Reference point (xo, yo) (0, 0)

IL ≡ exp i L(ω/vr − C12kx − C22ky ± C32�) − 1

(ω/vr − C12kx − C22ky ± C32�)i
, (29)

IW ≡ exp iW (−C11kx − C21ky ± C31�) − 1

(−C11kx − C21ky ± C31�)i
, (30)

� is the vertical wavenumber (i.e. ν for P-waves or γ for S-waves).

5 S I N G U L A R I T Y D U E T O V T S E F O R A F I N I T E F A U L T

In the previous two sections, we reviewed VTSE potential for both a point source and a finite fault. Now let us observe how a new singularity
appear in the VTSE potential for a finite fault. Setting kx = ky = 0 in (29) and (30), we see that potentials become zero in some cases. For
example, substituting ±90◦ for λ, that is, a dip-slip fault, C31 become zero. I W in (26)–(28) cannot be determined when horizontal wavenumbers
are zero. For potentials in the cylindrical coordinate, we introduce a simple example in the appendix and show that the singularity for such
a circular fault does not exist. We can obtain accurate displacement with the VTSE potential (15) directly multiplied by the above finiteness
terms in the cylindrical coordinate system.

We must develop a new approach to solve the above singularity problem inherent to a finite fault in the Cartesian coordinate. We shall
show analytical and numerical methods to avoid this singularity. In order to avoid the singularity for a finite fault analytically, we may introduce
asymptotic solutions for I L and I W with very small denominators, as follows:

IL ≡ exp i Lε − 1

iε
∼ L (ε = ω/vr − C12kx − C22ky ± C32� � 1) , (31)

IW ≡ exp iWε − 1

iε
∼ W (ε = −C11kx − C21ky ± C31� � 1) . (32)

Multiplying the S-wave potential (15) by (31) and (32), we can deal with VTSE from a finite fault directly.
The analytical approach is exact, but in order to obtain practically accurate seismograms for a finite fault, we recommend the following
numerical device because this procedure can be easily implemented in the discrete wavenumber algorithm. We give a small but finite number
to horizontal wavenumbers, kx and ky, instead of zero to avoid the singularity, for example,

kx = 2π

Lx
n (n 
= 0) , (33)

= δk (n = 0) , (34)

so as for ky. Hereafter, we call these waves with a small horizontal wavenumber δk approximated VTSE and waves represented by eqs (15),
(31) and (32) exact VTSE.

In order to confirm the accuracy of seismograms and estimate the effect of VTSE for a finite fault, we synthesize seismograms in the
following example. We calculate surface displacements in a homogeneous half-space for a vertical dip-slip fault whose top is 10 km deep and
stations locations shown in Fig. 4. The fault is 20 km long and 10 km wide. Details of fault parameters are listed in Table 1. P- and S-wave
velocities are 5.6 and 3.2 km s−1, respectively.

At first, we estimate a reasonable value of δk to replace zero. Hirata (1992) used such finite values of kx and ky, but as small as δk =
10−15 for a point source. He showed that even such a small value of δk does not give accurate synthetic seismograms. Uebayashi et al. (1992)
calculated seismic motions due to a rectangular fault in 3-D sedimentary basin, using δk = 10−3 instead of zero without checking whether
it is the appropriate value or not, particularly for a very low frequency in which the effect of VTSE is strong. Fig. 5 compares seismograms
with δk = 10−5 as approximated VTSE with those with exact VTSE, observed at a station (x , y) = (10, −10) in Fig. 4. Both seismograms are
virtually identical and their static displacements agree very well with an analytical solution of Okada (1985) represented by broken lines.
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Figure 5. Comparison between synthetic seismograms including exact VTSE and approximate VTSE, that is, using finite value δk = 10−5, at station x = 10,
y = −10 in Fig. 4. Dotted lines are static displacements obtained by Okada’s analytical solutions. Slid lines are synthesized seismograms by using a S-wave
potential (15), that is, exact VTSE and circles are those with approximate VTSE.

^ ^

surface

exact VTSE

approximate VTSE

 β k

Figure 6. Schematic illustrations of vertically travelling S-waves. Thick lines show exact VTSE and dotted lines show approximate VTSE.
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Changing various values of δk, we can obtain accurate enough seismograms for a finite fault with δk = 10−5 and express those seismograms as
‘with VTSE’ in the following figures. Since the amplitude of displacement spectra decreases in proportion to ω, for a finite fault (i.e. 26–28),
the effect of VTSE decreases as frequency increases. This can be found in the expressions for I L and I W , (29) and (30). As a result, the effect
of VTSE for the static component become important, as previous studies such as Hirata (1992) pointed out. Nevertheless, the discrepancy
between exact VTSE and approximated VTSE is rather small in a very low frequency range even with δk = 10−5. This is because their
wavelengths are considerably larger than the depth of a finite fault, as schematically shown in Fig. 6. In summary, VTSE in a low frequency
range has large energy in a finite fault case, but it can be approximated well with a small finite value of k, as illustrated in Fig. 6. We can
obtain accurate seismograms including static displacement for a finite fault by adding δk = 10−5 to horizontal wavenumbers without using
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Figure 7. Comparison between synthetic seismograms with and without VTSE for a vertical dip-slip fault. Depth of fault top is 10 km. Station locations are
shown in Fig. 4.
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the special VTSE potential (15), which requires an additional procedure of the coordinate transform proposed by the previous studies for a
point source.

As mentioned above, Hirata (1992) showed that the finite value of δk does not give satisfactory values for a point source. That is why
VTSE has been dealt with a special potential scheme in Section 3. We found that a relatively large value of δk (i.e. 10−5) can produce accurate
seismograms for a finite fault without any special correction in the algorithm of the discrete wavenumber method. For a finite fault, the energy
corresponding to VTSE (i.e. kx = ky = 0) is radiated only from a very small fraction of the fault at a given observation point. The majority
of the energy comes from the other parts of the fault, so that a relatively large value of δk can give accurate seismograms for a finite fault.

Fig. 7 shows waveforms observed at stations above the fault, comparing those with and without VTSE. While an absolute value of the
difference in static displacement is constant for all the stations, waveforms at a distant station without VTSE are largely distorted due to
inaccurate static displacement, because of relatively small amplitude of seismograms there. Using the value of δk = 10−5, that is, with VTSE
in Fig. 7, we confirm that accurate seismograms of both dynamic and static displacement can be obtained. In the case of a vertical dip-slip
fault, we obtain θ s = 0 from eq. (13). Since the displacement from VTSE is polarized, perpendicular to the fault strike, there is little difference
in the parallel component between with and without VTSE at all the stations.

Fig. 8 shows synthetic seismograms for three fault models whose tops are at different depths. We can find that an absolute value of the
difference in static displacement between with and without VTSE is almost the same as that of Fig. 7, regardless of fault depths. The energy
of VTSE decreases with the fault depth, but its decreasing ratio is very small, as long as we consider a buried finite fault. In the case of
ω = 0, the energy of VTSE decreases as the depth of fault top increases in proportion to exp( −ωi zo

β
) where ωi is an imaginary part of angular

frequency. Referring Bouchon & Aki (1977), we chose ωi = π

2T in this study, where T is a duration of time window. Applying T = 32 (s),
the amount of static displacement from VTSE is not more than 30 per cent of the entire seismograms for these fault models. It means that the
attenuation by the effect of VTSE in space is slower than the attenuation of seismograms due to geometrical spreading. For this reason, the
difference in seismograms between with and without VTSE must be large for a deep fault.

For a very shallow finite fault, waves with large horizontal wavenumbers should have the large amount of energy (e.g. Honda & Yomogida
2002), but the contribution of VTSE to surface displacement becomes relatively small. On the other hand, the contribution of VTSE becomes
large as a fault is depth, because of the lack of the energy related to large wavenumbers.

without VTSEwith VTSE
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0.00
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Figure 8. Same as Fig. 7 for faults with various depth. Horizontal component directing perpendicular of the fault strike of static displacements. The station
is located at y = −10 km in Fig. 4.
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6 C O N C L U S I O N S

We investigated the effect of VTSE, vertically travelling plane S-wave element, from a finite fault. Because of the singularity in the formulation
originated from the finiteness of a fault, in addition to the singularity for a point source, we need to develop a new method to remove these
singularities. Using a potential with an appropriately formulated fault finiteness term, we confirm that we can obtain accurate seismograms
for both dynamic and static components, only by introducing a finite but not very small value of δk in stead of kx = ky = 0. We found that
the difference between seismograms with and without VTSE is nearly constant at all the stations, implying nearly constant contribution of
VTSE. Observed waveforms at a distant station appear to be largely distorted because of relatively small amplitude of seismograms there.
For a shallow fault, the convergence in wavenumbers becomes very slow and the contribution of lager wavenumbers becomes relatively large
(e.g. Honda & Yomogida 2002), while the contribution of VTSE (i.e. very small wavenumbers) does not depend on the top depth of a fault.

Together with our previous study (Honda & Yomogida 2002) on the problem of poor convergence in wavenumber domain, we can
calculate surface displacements including the static component accurately in any finite fault accurately, simply by choosing 4 km−1 as the
truncation number and the limiting number of 10−5 to horizontal wavenumbers kx and ky. Although we used a fault in a homogeneous half
space, the above procedure and values can be applied to any layered media, which will be presented in another paper. Comparing synthetic
seismograms proposed in this study with GPS or strong motion data, we will gain more quantitative estimations for fault processes than
before.

A C K N O W L E D G M E N T S

We wish to thank Prof. Junji Koyama for his valuable comments and checking our manuscript. We are deeply grateful to Dr Simon Tod and
an anonymous reviewer for their valuable comments.

R E F E R E N C E S

Aki, K. & Richards, P.G., 1980. Quantitative Seismology: Theory and Meth-
ods, W. H. Freeman & Co., San Francisco.

Bouchon, M., 1979. Discrete wave number representation of elastic wave
fields in three-space dimensions, J. geophys. Res., 84, 3609–3614.

Bouchon, M., 1981. A simple method to calculate Green’s function for elastic
layered media, Bull. seism. Soc. Am., 71, 959–971.

Bouchon, M. & Aki, K., 1977. Discrete wave-number representation of
seismic-source wave fields, Bull. seism. Soc. Am., 67, 259–277.

Hirahara, K. et al., 1996. GPS observations fo post-seismic crustal move-
ments in the focal region of the 1995 Hyogo-ken nanbu earthquake -Static
and real-time kenematic GPS observations, J. Phys. Earth, 44, 301–315.

Hirata, K., 1992. Synthetic near-field seismograms due to rupture propaga-
tion fault models, J. Phys. Earth, 40, 535–554.

Honda, R. & Yomogida, K., 1999. Synthetic Seismograms Near a Finite
Fault System, J. fac. Sci., Hokkaido Uni., geophys., 1.11, 611–632.

Honda, R. & Yomogida, K., 2000. Accuracy of static displacement calcu-
lated by the discrete wave-number method, in Abstract of Japan Earth and
Planetary Science Joint Meeting, Si005, The Joint Meeting Organization
Office, Tokyo, 25–28 Jun., 2000.

Honda, R. & Yomogida, K., 2002. Static and dynamic displacement near a
fault with the discrete wavenumber method, Phys. Earth planet. Inter., in
press.

Horike, M., Uebayashi, H. & Takeuchi, Y., 1990. Seismic response in three-
dimensional sedimentary basin due to plane S wave incidence, J. Phys.
Earth, 38, 261–284.

Kennett, B.L.N. & Kerry, N.J., 1979. Seismic waves in a stratified half space,
Geophys. J. R. astr. Soc., 57, 557–583.

Luco, J.E. & Apsel, R.J., 1983. on the Green’s functions for layered half-
space. part 1., Bull. seism. Soc. Am., 73, 909–929.

Ohori, M., Koketsu, K. & Minami, T., 1992. Seismic responses of three-
dimensionally sediment-filled valleys due to incident plane waves, J. Phys.
Earth, 40, 209–222.

Okada, Y., 1985. Surface deformation due to shear and tensile faults in a
half space. Bull. Seism. Soc. Am., 75, 1135–1154.

Takenaka, H., 1990. Theoretical Studies of Seismic wave fields in Irregularly
layered media, in japanese, PhD thesis, Hokkaido University, Sapparo,
Japan.

Uebayashi, H., Horike, M. & Takeuchi, Y., 1992. Seismic motion in a three-
dimensional arbitarily-shaped sedimentary basin, due to a rectangular dis-
location source, J. Phys. Earth, 40, 223–240.

A P P E N D I X A : P O T E N T I A L S I N T H E C Y L I N D R I C A L C O O R D I N A T E

To obtain formulations in the cylindrical coordinates from the Cartesian, we change variables by kx = kr sin(θ ′ + �), ky = kr cos(θ ′ + �),
x = r sin(�) and y = r cos(�). r is the epicentral distance and kr is the horizontal wavenumber. � and θ ′ are the azimuth of a receiver
measured from the y (east) direction and the angle between the directions of the receiver and kr, respectively (Fig. 2). The area element dkxdky

is replaced by kr dkr dθ ′ over the whole horizontal wavenumber plane (−∞ < kx < ∞; −∞ < ky < ∞) being covered by the range of 0 ≤ kr

< ∞ and 0 ≤ θ ′ < 2π . After some calculations for (2) ∼ (4) (see, for example, Bouchon 1981), we obtain potentials in the form of Bessel
functions J o(krr) and J 1(krr):

φ± = i Mo

8π2µk2
β

∫ ∞

0

kr

ν

(
A0 J0(krr ) + A1 J1(krr )

)
exp(∓iν(z − zo)) dkr , (A1)

ψSV ± = i Mo

8π 2µk2
β

∫ ∞

0

(
B0

sv J0(krr ) + B1
sv J1(krr )

)
exp(∓iν(z − zo)) dkr , (A2)

ψSH± = i Mo

8π 2µ

∫ ∞

0

1

γ

(
B0

sh J0(krr ) + B1
sh J1(krr )

)
exp(∓iν(z − zo)) dkr , (A3)
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where

A0 = −k2
r sin2 �Mxx − k2

r sin 2�Mxy − k2
r cos2 �Myy − ν2 Mzz, (A4)

A1 = − kr

r
cos 2�Mxx + 2kr

r
sin 2�Mxy − kr

r
cos 2�Myy ± 2iνkr (sin �Mxz + cos �Myz), (A5)

B0
sv = ∓k2

r sin2 �Mxx ∓ k2
r sin 2�Mxy ∓ k2

r cos2 �Myy ± k2
r Mzz, (A6)

B1
sv = ∓ kr

r
cos 2�Mxx ± 2kr

r
sin 2�Mxy ∓ kr

r
cos 2�Myy + kr

(
k2

β − 2k2
r

)
i

γ
(sin �Mxz + cos �Myz), (A7)

B0
sh = − kr

2
sin 2�Mxx + kr cos 2�Mxy + kr

2
sin 2�Myy, (A8)

B1
sh = 1

r
sin 2�Mxx − 2

r
cos 2�Mxy − 1

r
sin 2�Myy ± iγ (cos �Mxz − sin �Myz) (A9)

There are several integral representations of Bessel functions. To obtain our point source formulations in the cylindrical coordinate
system, we use the following representations:

Jn(x) = 1

2π

∫ 2π

0
exp i(x sin θ − nθ ) dθ,

= 1

2π i n

∫ 2π

0
exp i(x cos θ + nθ ) dθ,

and J −n(x) = (− 1)n J n(x) where n is an integer. When n is extended to be real ν, another representation of Bessel functions is available with
a Gamma function � as follows:

Jν(x) = 1

π
1
2 �

(
ν + 1

2

) ( x

2

)ν
∫ π

0
exp(i x cos θ ) sin2ν θdθ .

In order to compare the potentials for a finite fault in Cartesian coordinates, we also consider a circular crack on a horizontal plane.
Assuming that the crack grows at a constant velocity c until it stops at the final radius R and integrating point source potentials around the
reference point in horizontal plane, Bessel functions in (A1), (A2) and (A3) are replaced by

Jo(krr ) ⇒
∫ 2π

0
exp(ikrr cos θ ′)

exp i R
(−kr cos θ ′ + ω

c

) {
1 − i R

(
ω

c − kr cos θ ′)} − 1(−kr cos θ ′ + ω

c

)2 dθ ′
, (A10)

J1(krr ) ⇒
∫ 2π

0
exp i(krr cos θ ′ + θ ′)

exp i R
(−kr cos θ ′ + ω

c

) {
1 − i R

(
ω

c − kr cos θ ′)} − 1

i
(−kr cos θ ′ + ω

c

)2 dθ ′
. (A11)

In the formulations in the Cartesian coordinate, the fault finiteness terms (31) and (32) go to zero with the horizontal wavenumber kx = ky =
0. In contrast, the fault finiteness terms in above the formulations, (A10) and (A11), do not show this kind of problems even with kr =
0 (Remember that the discrete wavenumber method introduces a small imaginary part of angular frequency). In the cylindrical coordinate,
we can therefore deal with VTSE directly, using eqs (A10), (A11) and (15)–(25).
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