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S U M M A R Y
The analysis of wide-angle recordings in controlled source seismics has been an important
tool for imaging deep features of the lithosphere. Here we present a simple method of di-
rectly calculating the depth to a reflector from wide-angle reflection data without knowing any
velocity information or the interface structure of the overlying layers. The method has also
been extended to evaluate the average velocity above the reflector. Both theoretical and field
examples demonstrate the efficiency of the method.

Key words: average velocity, depth, wide-angle reflection.

1 I N T RO D U C T I O N

The wide-angle reflections from various subsurface boundaries
within the earth, are generally identifiable in the post-critical range,
even with small impedance contrast (Richards 1961; Winterstein
& Hanten 1985). Examples may be found in Giese (1976) who
presented a review of wide-angle experiments in Central Europe.
However, to date, no method exists to directly calculate the depth
to a reflector (e.g. Mohorovicic discontinuity) from wide-angle re-
flection (PmP) traveltime data. The most commonly used method in
order to calculate the interval velocity and thickness of a layer needs
an accurate estimate of the root mean square (rms) velocity and the
zero-offset two-way (ZOT) time (Dix 1955). Applying Dix’s hy-
perbolic formula to the non-hyperbolic wide-angle reflection times
causes large errors in the rms velocity and ZOT time (Sain & Kaila
1994a) and hence in calculating layer parameters.

A number of 1-D methods (Stoffa et al. 1981; Schultz 1982;
Gonzalez-Serrano & Claerbout 1984; Sain & Kaila 1994b), all as-
suming a laterally homogeneous velocity structure, exist to calcu-
late interval velocities from large-offset/wide-angle reflection times.
The advantages and disadvantages of these methods have been de-
scribed by Sain & Kaila (1996), who proposed a method of di-
rectly calculating interval velocities and layer thickness from a series
of wide-angle reflection times from various subsurface interfaces.
Since all of these methods are based on the layer stripping technique,
errors in the overlying layers would cause errors in the underlying
layers. Recently, de Franco (2001) has proposed a method of esti-
mating the interval velocity and thickness of a layer in a horizontally
stratified medium from wide-angle reflection data, but it requires the
same ray parameter at the top and bottom of the layer concerned.
For field data, determination of the same ray parameter at the top
and bottom of the layer may be difficult.

Here we present a method that can estimate the depth to a reflec-
tor directly from large-offset/wide-angle reflection data without any
knowledge of the overlying velocity and interface structure. This

method provides a quick starting model for fast computation of 2-D
forward or inverse modelling to further refine the velocity struc-
ture. This method also serves as an independent test to validate the
existing 2-D models by calculating the average 1-D model.

2 M E T H O D O L O G Y

Here we present an approach to estimate the reflector depth in 1-D
layered structures without initially estimating the seismic velocity as
a separate parameter. The mean average velocity above the reflector
can be estimated once the depth has been calculated. The method
assumes that the traveltimes for any layer are similar to the single-
layer case.

Let us use an n-layered (e.g. four-layer) earth model (Fig. 1a), in
which the ray leaves the source, S at the surface, traverses through the
layers following Snell’s law, becomes reflected at O from the base
of the nth (fourth) layer, returns through the overlying layers and
eventually emerges at the receiver R at a distance X after time T . X
and T are related to the layer parameters (velocities and thicknesses)
by non-hyperbolic parametric equations (Slotnick 1959) as

T (p) = 2
n∑

i=1

hi

Vi

(
1 − p2V 2

i

)1/2 (1)

X (p) = 2p
∑ hi Vi(

1 − p2V 2
i

)1/2 (2)

where p = sin θ i/V i = constant is the ray parameter, θ i , V i and hi

are the angle of emergence, the velocity and the thickness of the ith
layer, respectively.

Kaila & Krishna (1979) defined the effective velocity V eff along
the ray path SOR as the sum of the straight paths (dashed line)
divided by the actual traveltimes T through the curved path for a
reflector at depth Z and thus

Veff = (SO + OR)/T = (X 2 + 4Z 2)1/2/T . (3)
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Figure 1. (a) A conceptual model representing a multilayered earth. The solid line (——–) is the ray path for a reflection from a horizontal boundary underlying
a vertically inhomogeneous medium consisting of isotropic and horizontally homogeneous layers. The broken line (- - - - - -) represents the straight path at
the same reflection point if the whole layered model is replaced by a single medium. The traveltimes (Fig. c) generated from the bottom of the model can be
matched either to a single layer of constant velocity and varying effective depth shown in (b) or by a constant depth and varying effective velocity field shown
in (d). The abscissae of (b)–(d) are plotted as offset/depth.

Fig. 1 shows the concept of an effective medium. The traveltime
curve of the reflection (Fig. 1c) from the bottom layer of the multi-
layered model in Fig. 1(a) can be matched either by a single layer
with the same velocity (e.g. the average velocity of the model) and a
depth function (Fig. 1b) called the effective depth Z eff or by a single
layer with the same depth and a varying velocity function (Fig. 1d)
called the effective velocity V eff. Properties of V eff and Z eff are as
follows:

Veff > Vav and Zeff < Z for|X | > 0

Veff = Vav and Zeff = Z forX = 0.

In an attempt to determine the depth to a reflector from large-
offset/wide-angle reflection traveltime data, Kaila & Krishna (1979)
used a T 2 − X 2 fit that produces the rms velocity (Dix 1955) for
near zero-offset data and the slant path rms velocity (Robinson 1983;
Al-Chalabi 1974) for larger offset data. The slant path rms veloc-
ity is always larger than the rms velocity, which in turn is larger
than the average velocity (V av). Sain & Kaila (1994a) show that
the percentage errors in both rms velocity and ZOT time increase
monotonically by a hyperbolic fit to the successively increasing off-
set traveltime segments. Hence, the method of Kaila & Krishna
(1979) will produce an overestimation of the depth and the error

increases monotonically with increasing offset. Besides, Kaila &
Krishna (1979) did not perform any velocity analysis.

For a single-layer configuration in which the time–distance rela-
tion is purely hyperbolic, V eff is nothing but the actual velocity V
of the layer. The traveltime equation for a single-layer medium is

T 2V 2 = X 2 + 4Z 2. (4)

Bearing in mind deriving an expression for depth Z that is inde-
pendent of the velocity V , we take the logarithm on both sides of
eq. (4) and then differentiate after T , which results in

Z = 0.5

√
XT

(
d X

dT

)
− X 2, (5)

where dT/dX is the slope of the time–distance curve, and is defined
as

dT

d X
= lim

�X→0

�T

�X
= lim

�X→0

T (X + �X ) − T (X )

�X
.

Application of eq. (5) can accurately determine the depth to the
reflector for a single-layer configuration. However, application of
eq. (5) to non-hyperbolic reflection data sets from a multilayered
earth model overestimates the depth to the reflector owing to the
varying velocity function V eff. The estimated depth increases with
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a subsequent increasing offset and we define the increasing depth
as the slant depth, analogous to the slant path rms velocity.
To compute the correct depth for non-hyperbolic data the travel-
times from each reflector of the model, shown in Fig. 1(a), are
generated at 200 m spacing up to an offset/depth of 6 using eqs
(1) and (2) and slant depths using eq. (5). We then establish an
empirical linear relation between the slant depths and the square
of offsets. Therefore, when plotting Z versus X 2, the linear re-
gression line yields the correct depth to the reflector at zero off-
set (Fig. 2a), as non-hyperbolicity and hyperbolicity coincide only
near zero-offset (dV/dX ≈ 0). Once the depth is known the effec-
tive velocities at various offsets can be calculated using eq. (3).
Here we find that the linear regression of the square of the ef-
fective velocity versus the square of the offset yields the average
velocity at zero offset (Fig. 2b) above the reflector. The average
velocities corresponding to two successive reflectors are then uti-
lized to calculate the interval velocity in the corresponding depth
interval. Depths and average velocities calculated by this method
are close to the actual values (see the table in Fig. 2) even for very
large-offset reflection data up to an offset/depth ratio of 6, which is
more than sufficient for recording of crustal wide-angle reflection
data.

The depth estimation using the method discussed above and us-
ing the conventional normal moveout equation (T 2 − X 2) has been
compared in Fig. 3 for a four horizontal plane layer case to show
the magnitude of the error involved. To know the effect of increas-

Figure 2. (a) The estimated slant depths (open circles) obtained using eq. (5) and the zero-offset values are the estimated depths for the corresponding layer.
(b) Open circles represent the square of the effective velocity versus the square of the offset. The zero-offset values are the square of the estimated average
velocities at the corresponding reflectors. Solid lines denote the regression lines for (a) Z versus X2 and (b) V 2

eff versus X2, respectively.

ing offset to the estimated depths using both the methods, we have
generated reflection traveltime data up to an offset/depth ratio of
6 with 200 m spacing and grouped them in such a way that the
first group includes the first to jth data points, the second group
contains the second to ( j + 1)th, and so on until all data are in-
cluded (here we use j = 20). Using the procedure explained in
Fig. 2, we calculated the depth to all reflectors taking the succes-
sive traveltime segments containing 20 data points. The Z values
for each segment are assigned at the mid-point of the each seg-
ment. Small discrepancies between the estimated and real values are
caused by the assumption of linearity between Z versus X 2 within
the shown range of offset by depth ratio (Fig. 3). It is evident that
the depths calculated using the conventional normal moveout equa-
tion are greater than the real depths and the discrepancy increases
significantly with increasing offset. This is a result of the conven-
tional normal moveout equation that takes the slant path rms velocity
(which is always higher than the actual rms velocity) in the depth
calculation.
Now we extend the method for dipping layers with reversed seismic
data coverage. Eq. (5) has been derived from eq. (3), which is valid
only for a plane horizontal layer case. In the case of a dipping layer,
application of this horizontal layer equation to the reverse cover-
age data assumes two horizontal layers: one in the updip direction
passing through Q (i.e. QQ′), and the other in the downdip direction
passing through P′ (i.e. PP′) cutting the reflector plane just below
the shot points (Fig. 4). So for the dipping layer case two depth
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Figure 3. A simplified crustal model showing the reflecting boundaries at
10, 20, 30 and 40 km. The depths to each reflector have been estimated using
the present method and the conventional normal moveout (X2 − T 2) equa-
tion. The conventional normal moveout equation overestimates the depth
with increasing offset.

Figure 4. A plane dipping layer case having two shot points SP A and SP
B separated by a distance X . Z1 and Z2 are the vertical depths, while h1

and h2 are the normal depths to the reflector QP′. Application of horizontal
layer eq. (5) for this dipping layer case is equivalent to two horizontal layers,
one passing through Q (i.e. QQ′) for updip shooting and the other passing
through P′ (i.e. PP′) for down-dip shooting.

values (Z 1 for shot point SP A and Z 2 for shot point SP B) are
obtained that lie just below the shot point. Synthetic traveltimes at
200 m spacing are calculated from each reflector of the velocity
model (Fig. 5a) up to an offset/depth ratio of 6 for both forward and
reverse shot points (SP A and SP B). Using the procedures described
in Figs 2(a) and (b) we generate plots of Z versus X 2 as shown in
Fig. 5(b) and V 2

eff versus X 2 as shown in Fig. 5(c). The zero-offset
values of the linear fit in Figs 5(b) and (c) are the respective depths
and square of average velocities of various reflectors in the model
(Fig. 5a). Here we obtain two interval velocities for two shot points
and the arithmetic mean of these two velocities is the estimated inter-
val velocity of the respective layer (Fig. 5a). The estimated depths
and interval velocities match quite well with the actual values. It

is to be mentioned here that the depth to the dipping reflector can
be calculated by this method up to a dip angle of ≤10◦. Beyond
this dip angle, the approximate linearity between the X 2 versus Z
no longer holds well. While studying a number of velocity mod-
els with dipping (>10◦) layers, it has been observed that the present
method works for traveltime data with an offset/depth ratio of greater
than 2.

The method works very well for the synthetic data. However, for
field data that contain noise it may suffer from the following limita-
tions. (1) dT/dX is very sensitive to the spatial sampling of the data,
(2) the term within the square root of eq. (5) must always be positive
and (3) field data are not exactly 1-D. To overcome the limitations,
we smooth the field data by fitting a low-order polynomial of the
form

T 2 = C0 + C2 X 2 − C4 X 4. (6)

One should not go for higher-order polynomials, as the higher-order
polynomials tend to oscillate widely between the observed values
and will not mimic the exact traveltime nature of the 1-D model.

Eq. (6) yields,

dT

d X
= C2 X − 2C4 X 3

T
; T �= 0. (7)

Putting eq. (7) in eq. (5)

XT

(
d X

dT

)
− X 2 = XT

T

C2 X − 2C4 X 3
− X 2

= C0 + C2 X 2 − C4 X 4

C2 − 2C4 X 2
− X 2;

≥ X 2
(
C2 − 2C4 X 2

)
C2 − 2C4 X 2

− X 2; if C0 ≥ 0

≥ 0; if C4 ≥ 0 and C2 ≥ 2C4 X 2

and therefore the term within the square root of eq. (5) must be
positive.

3 S Y N T H E T I C A N D F I E L D E X A M P L E S

A crustal-scale 1-D velocity model consisting of four layers, each
10 km thick and with velocities of 5.0, 6.0, 6.6 and 6.8 km s−1,
respectively, is shown in Fig. 6(a). Synthetic traveltime data were
generated at a wide-angle range from the reflector at 40 km depth.
Subsequently, Gaussian noise (mean = 0 and standard deviation =
0.1 s) was added to the synthetic data and then they were plotted
(T 2 versus X 2) as shown in Fig. 6(b). A polynomial with an rms
error of 0.014 s in T has been fitted (see the inset). The coefficients
thus determined were used to evaluate dT/dX using eq. (6) and
Z values were computed using eq. (5). The Z values were then
plotted against X 2 while the linear regression gives an estimated
depth of 41 km at zero-offset as compared with the original depth
of 40 km (Fig. 6c). The depth thus obtained is used to calculate
the effective velocities at various offsets using eq. (3). The linear
regression of the square of the effective velocity versus the square
of the offset yields an estimated average velocity of 6.10 km s−1 at
zero-offset (Fig. 6d), which is close to the actual average velocity of
6.01 km s−1.

We have also studied the effect of velocity variations within the
model on the estimated depth of a deeper reflector with increasing
offset. The depths have been calculated by segmenting the traveltime
data with 20 data points in each segment with increasing offset (as
described in Fig. 3). Fig. 7(a) shows the percentage error in depth

C© 2003 RAS, GJI, 152, 740–748

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/152/3/740/692332 by guest on 21 January 2022



744 P. Kumar, K. Sain and H. C. Tewari

Figure 5. The slant depths and effective velocities for the traveltime data from two reversed shots (SP A and SP B) were calculated on the basis of a dipping
layer model (a) and are plotted in (b) and (c) up to an offset/depth ratio of 6. The average velocities calculated below each shot point are then converted to
interval velocities using the corresponding depth values. The arithmetic mean of the interval velocities is the estimated interval velocity of the respective depth
interval.

for the 40 km depth reflector of four-layered crustal models that
comprise different interval velocities for the individual layers but
constant thicknesses, while Fig. 7(b) shows the percentage errors
for the same reflector based on models with variable thicknesses of
the individual layers but the same velocity structure. It is evident
from this study that for the depth estimation of the deep reflector
the velocity variations (error ±5 per cent in Fig. 7a) in the overlying
layers have more effect than the thickness variations (error ±3 per
cent in Fig. 7b).

Finally, we apply the presented method to a field data set that
was collected in the western Dharwar craton on the Indian penin-

sula shield. A crustal velocity structure (Fig. 8) was derived by
Sarkar et al. (2001) using 2-D forward modelling of the wide-angle
reflection data from shotpoints SP 370, 570 and 600. Two sets of
traveltime data, one from the mid-crustal level and the other from
the Moho level, are displayed in Fig. 8 by different symbols. The
data are fitted by a low-order polynomial as mentioned earlier and
dT/dX is calculated using eq. (6). Depths and average velocities
are then estimated as described in Fig. 2 and are plotted below the
shot points (Fig. 8). The estimated depth values are 25.82, 22.78
and 23.73 km for the mid-crustal layer and 40.41, 38.56 and 33.23
km for the Moho, respectively. The arithmetic means of interval
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Figure 6. The T 2 − X2 data based on the 1-D velocity model in (a) have been fitted by a polynomial with an rms error of 0.014 s (b). (c) Represents the plot
of Z versus X2 (Z, slant depth; X , offset). The zero-offset Z value obtained by linear regression, is 41 km, which is comparable to the actual depth of 40 km (c).
(d) Shows the effective velocity versus X2. The estimated average velocity (6.10 km s−1) matches quite well with the actual average velocity (6.01 km s−1).
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Figure 7. (a) Percentage errors in depth for constant thickness and velocity variations of the overlying layers above the reflector at 40 km depth and are plotted
against the offset/depth ratio. The errors are within ±5 per cent (i.e. ±2 km). The table shows the different velocity–depth models A1–A4 having four layers
with constant thickness of 10 km each and A5 with only a single crustal layer. (b) Percentage error in depth for constant velocities and varying thicknesses of
the overlying layers for the reflection from the depth of 40 km and are plotted against the offset/depth. The errors are within ±3 per cent (i.e. ±1.2 km). In
both cases, the near-offset errors are small. The table shows the different velocity–depth models T1–T6. While using the constant velocity within the individual
layers, their thicknesses were varied.

velocities estimated for the respective layers are 6.13 and 6.73 km
s−1. The solutions are in close agreement with the depths and layer
velocities calculated by the 2-D forward modelling technique.

4 A DVA N TA G E S A N D L I M I TAT I O N S

(1) Here we presented a very simple method in order to de-
termine the depth to any reflector from any large-offset reflection
data.

(2) This method can also be employed to reverse coverage re-
flection data to estimate the dips of the reflectors provided the dip
of the reflector is small (<10◦). For dips greater than 10◦, one has
to use the traveltime data beyond an offset/depth ratio of 2.

(3) The effective velocity function for a given model can be de-
termined directly from the traveltime reflection data.

(4) The average velocity above a reflector and hence the interval
velocity between two successive reflectors can also be determined
from the reflection traveltime data.
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Figure 8. Crustal section through the western Dharwar craton of the Indian peninsula shield. The inverted solid triangles represent the shot point locations
(SP600, 570 and 370). The solid lines in the 2-D model represent the reflectors defined by Sarkar et al. (2001) based on the ray-tracing method. The estimated
depths (�,•, �) derived from the respective reflection traveltimes (shown by corresponding symbols) of three shot points are displayed. The numbers in italics
are the estimated mean interval velocities of corresponding individual layers.

(5) The method can be applied to field data, which are not
severely disturbed by tectonic activities, and generates an average
1-D velocity model. The traveltime data should not contain large
gaps.
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