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Abstract

The objective-function algorithm (OFA) on the basis of hard division is presented in the paper to separate polyphase fault/slip data. The

separation is made by detection of linear structures existing in the data in Fry’s (1999) sigma space. Different from other exhaustive-search

methods, the OFA is direct and robust in theory without any arbitrary assumptions. Polyphase fault/slip data are simulated under prescribed

tensors in order to validate the method. The results show its efficiency in stress estimation. The accuracy of stress estimation is controlled by

random errors in the orientation of fault striations and by similarity between prescribed stress vectors related to different tectonic phases. The

similarity between controlling stress vectors has an obvious effect on the estimation either when random errors are sufficiently large or when

some similarity coefficients between the vectors are large enough. The accuracy of stress inversion tends to decrease as the range in errors

increases. The OFA makes a very good approach to recognition of similar controlling stress vectors from polyphase fault/slip data, which are

often associated with spatial and temporal variation of the tectonic stress field in a region, thus critical to understanding of the formation of

geological structures.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Stress inversion from fault/slip data is an important

technique in brittle tectonics for quantification of in-situ

palaeostress states in the upper crust. Since the pioneering

work of Carey and Brunier (1974), numerous methods have

been developed to solve the inverse problem (Angelier,

1979, 1994; Etchecopar et al., 1981; Armijo et al., 1982;

Huang, 1988; Fleischmann and Nemcok, 1991; Hardcastle

and Hills, 1991; Nemcok and Lisle, 1995; Nemcok et al.,

1999; Yamaji, 2000; Lisle et al., 2001). Existing methods

can be roughly divided into two categories according to

fault/slip data character. The first category assumes that

fault/slip data are monophase, i.e. faults were active almost

contemporaneously within a certain tectonic phase. The

second category is concerned with the heterogeneity of

fault/slip data, which can be formed as the response to

multiple tectonic phases. It is known that faults in the brittle

crust are weak zones that are frequently reactivated in

subsequent stress fields (e.g. Nemcok et al., 1999). There-

fore, polyphase fault/slip data are found more often than

monophase fault/slip data in the field. When the polyphase

nature of fault/slip data is not realized, the application of

monophase methods undoubtedly leads to erroneous results.

In the case of polyphase fault/slip data, the critical task is

how to separate the data into homogeneous subsets. Not all

methods of the second category succeed in this task.

Hardcastle and Hills (1991) utilized the exhaustive grid-

search method to study the heterogeneity of fault/slip data.

The fault/slip data are classified into a series of acceptable

subsets, mutually dependent or independent, according to

the deviation of the measured slip vectors of the faults from

slip vectors calculated from the regularly chosen stress

tensors. The tensor configuration that explains the largest

percentage of data below the specified deviation threshold is

considered the best-fit stress tensor and then taken as a

criterion for separation of fault/slip data. This process is

repeated until no best-fit tensor can be extracted from the

remaining data. There is a drawback, however. Because the

deviation threshold is the criterion for acceptance of a fault/

slip datum into a subset related to a certain stress tensor,
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there exists the possibility that it cannot separate hetero-

geneous data in which some or all of the controlling stress

vectors are somewhat similar to each other in Fry’s (1999)

sigma space (Fig. 1). This means that the tensors obtained

are likely to lie between real geological solutions (Will and

Powell, 1991; Nemcok and Lisle, 1995; Nemcok et al.,

1999). Furthermore, the role of the arbitrarily specified

deviation threshold is like a filter on the separation. Too

large or too low a value tends to lead to underestimation or

overestimation of stress for polyphase fault/slip data.

Optimization of the deviation threshold seems to be the

best remedy to the routine, but has not attracted enough

attention.

This intrinsic drawback is also found in other

approaches, whether similar or different in philosophy.

Nemcok and Lisle (1995) describe attributes of fault/slip

data, relating them to a number of chosen stress tensors, and

then apply an ordinary clustering method to group the data

into subsets. The deviation threshold is still adopted in the

definition of fault attributes. Its effect is difficult to decipher

in subsequent grouping. However, we believe that the

application of clustering analysis can help overcome the

drawback to some degree, because the grouping or

separation is based on similarity between the fault/slip

data. Their approach is a comparatively good way for

analysing the heterogeneity of fault/slip data.

However, Nemcok et al. (1999) expanded the above

method recently. After separating fault/slip data in the

same way, they replaced the classic inversion method by

calculation of the orientation matrix defined on a

stereonet by the right-dihedral solution for each separated

fault/slip subset. The calculated orientation matrix is

considered to correspond to the predicted stress tensor.

This replacement makes it somewhat more convenient to

see on a stereonet whether the separated fault/slip data is

homogeneous or not. The same drawback still exists in

their approach.

In his multiple inversion method Yamaji (2000) sampled,

in a binomial pattern, k-element subsets from the fault/slip

data set and calculated stress tensors of these subsets by the

grid search method. He believed that the calculated tensors

clustered around real stress states that he determined

manually by projecting them onto the stereonet. This

empirical assumption is valid for monophase data but

lacks theoretical basis for polyphase data. In fact, there is a

complex relationship between the clustering of calculated

tensors and the fault/slip data. Apart from tectonic stresses

and the number of fault/slip data in each phase, the sampling

of the data is an important factor in controlling clustering.

All these factors are commonly unknown for a fault/slip

data set obtained in the field. It is thus imprudent to correlate

the clustering of calculated tensors with controlling stress

tensors for any fault/slip data set.

Other approaches include Simón-Gómez’s (1986) Y–R

diagram method, the backstripping method of Kleinspehn

et al. (1989), Huang’s (1988) method for Andersonian

faults, etc. They all have limited application, and we do not

discuss them here. Interested readers may look at the articles

Fig. 1. A two-dimensional analogue of Fry’s (1999) sigma space showing the failure in discrimination of a two-phase fault/slip data set. Unfilled and filled

circles represent the fault/slip data related to F1 and F2 controlling stress tensors, respectively. The subset (grey area), related to a meaningless stress tensor F0,

has the largest percentage of the data below the specified deviation threshold (dashed lines). The six-dimensional sigma space has orthogonal axes for the

values of the six independent matrix elements s11, s22, s33, s12, s13, s23 of the stress tensor.
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of Nemcok and Lisle (1995) and Nemcok et al. (1999) for

thorough reviews.

The nonlinear feature of stress inversion makes it rather

complicated to calculate stress tensors directly from

fault/slip data. This is probably the reason that some

geologists even now prefer the ‘direct’ grid-search

methods—an inefficiently global search in the parameter

space—to ‘indirect’ numerical methods (Fleischmann and

Nemcok, 1991). On the other hand, after some transform-

ation, stress inversion can become a linear problem in which

fault/slip data in response to the same tectonic phase will

form a hyperplane or possess a linear structure in sigma

space (Fry, 1999). The goal of our paper is to present an

objective-function algorithm (OFA) on the basis of hard

division. By utilizing modern clustering analysis (Bezdek,

1974, 1981), the method has the ability to separate

polyphase fault/slip data by detecting linear structures

existing in the data. It does not have the disadvantage of the

deviation threshold in stress estimation. Polyphase fault/slip

data are simulated for its validation (see later). By hard

division we mean that a fault/slip data set can be divided

into independent subsets, as do most existing methods.

Otherwise it is called soft division (Guo and Zhuang, 1993).

2. New technique

2.1. Foundation

In inversion methods, the traction caused by stress

difference on the fault plane is considered null in direction

perpendicular to the striation (Angelier, 1979). It equals

nssT ¼ 0 ð1Þ

where s is the unknown stress tensor, n is the unit vector

normal to the fault plane, s is the directional vector

perpendicular to the fault striation within the fault plane

and the superscript T is the operation of matrix transposi-

tion. Both n and s are derived from the fault/striation datum.

Another geometrical meaning of Eq. (1) is that the fault slip

recorded by the striation is parallel to the direction of

maximum resolved shear stress on the fault plane. Other

additional assumptions include independence between slips

on different faults and homogeneity of the tectonic stress

field (Carey and Brunier, 1974; Angelier, 1979; Etchecopar

et al., 1981). These require that deformation recorded by

faults be slight on a macroscopic scale (Twiss and Unruh,

1998). However, Wojtal and Pershing (1991) confirmed that

it is also appropriate to apply inversion methods to

intensively thrusted regions, which is attributed to low

resistance to frictional sliding along the thrust surfaces and

to material property without any memory of incremental

stress in the process of large-offset thrusting.

Let us have a number N of fault/slip data in a single

tectonic phase. Each fault/slip datum must satisfy Eq. (1).

The misfit is caused by measurement errors. Accordingly,

we have a number N of such linear equations for fault/slip

data, which allows solving for stress tensor s by the least

squares method. However, these equations provide an

infinite number of solutions because each reduced stress

tensor is related to the full tensor by sfull ¼ PI þ Rsreduced

where Pand R are any positive real numbers and I is the unit

matrix (Angelier, 1979). Therefore, in order to reach a

specific solution, additional constraints are required (modi-

fied after Fry, 1999):

X3

i¼1

sii ¼ 0 ð2Þ

1

2

X3

i¼1

X3

j¼1

1 þ dði; jÞ
� �

s2
ij ¼ 1 ð3Þ

where Kronecker delta d(i,j ) equals one when i ¼ j or zero

when i – j. sij is the element of stress tensor s. Because of

its symmetry, the nine unknown elements of the full tensor

s reduce to six unknown elements. And these constraints

further reduce the parameter space from six to four

dimensions without any distortion. In summary, Eqs. (1)–

(3) constitute the basis of the stress inversion.

The left side of Eq. (1) may be rewritten as:

X3

i¼1

X3

j¼1

nisijsj ¼
X3

i¼1

X3

j¼1

nisj

� �
sij ¼

X3

i¼1

X3

j¼1

cijsij ð4Þ

where n ¼ [n1, n2, n3], s ¼ [s1, s2, s3] and cij ¼ nisj. Because

of symmetry of the stress tensor, it changes into:

1

2

X3

i¼1

X3

j¼i

2 2 dði; jÞ
� �

ðcij þ cjiÞsij ð5Þ

It is further modified by introducing the first constraint

(Eq. (2)) to:

btT ¼
X5

i¼1

biti ð6Þ

where b ¼ [b1, b2, b3, b4, b5] ¼ [c11 2 c33, c22 2 c33,

c12 þ c21, c13 þ c31, c23 þ c32] and t ¼ [t1, t2, t3, t4,

t5] ¼ [s11, s22, s12, s13, s23]. b is the vector of fault/slip

datum and t is the unknown stress vector in five dimensions.

Therefore, following Fry (1999), a concise formulation

of Eq. (1) with the first constraint (Eq. (2)) is:

btT ¼ 0 ð7Þ

Eq. (7) has a distinct geometrical meaning. It states that the

stress vector t is perpendicular to vectors of fault/slip data

b,or that the Euler distance between the unknown stress

vector and the five-dimensional stress plane with normal b is

null. Because of the symmetry of stress tensor and the two

constraints (Eqs. (2) and (3)), the parameter space is now a

reduced sigma space. For convenience, we will make no

distinction between them below. The second constraint (Eq.

Y. Shan et al. / Journal of Structural Geology 25 (2003) 829–840 831



(3)), is expressed in the unknown stress vector t as:

ttT ¼ 1 ð8Þ

2.2. Objective function

The stress inversion can be defined as an optimum

problem with a variety of corresponding algorithms. Here

we define the objective function as the sum of the squares of

the left side of Eq. (7). Assuming the homogeneity of fault/

slip data, the objective function F(t ) becomes:

FðtÞ ¼
XN
i¼1

ðbitÞ
2 ¼

XN
i¼1

tðbib
T
i Þt

T ¼
XN
i¼1

tAit
T

¼ t
XN
i¼1

Ai

 !
tT ¼ tAtT ð9Þ

where bi is the stress vector related to the ith fault/slip

datum, Ai ¼ bib
T
i , and A is the sum of Ai. Different from

many inversion methods, our method builds on and provides

a firmer mathematical justification of the method of Fry

(1999), who referred to A as the second moment tensor and

evaluated the eigenvector having the lowest eigenvalue. Our

formulation optimizes the objective function under the

constraint of Eq. (8). A variety of algorithms (Chen, 1996)

can be used to solve the optimum problem. However, we

propose a simple algorithm instead of these iterative

algorithms (see Appendix B). In order to elucidate the

competence of the algorithm, a data set from Fry (1999) is

calculated (Table 1). It contains seven fault/slip measure-

ments. Results from both Fry (1999) and us are listed in

Table 2. There is only a slight difference between them.

When the fault/slip data are polyphase, the objective

function F(w,t ) is defined as:

Fðw; tÞ ¼
XK
i¼1

XN
j¼1

wijtðiÞAjtðiÞ
T ð10Þ

where K is the number of monophase subsets, wij is the

characteristic parameter and t(i ) is the unknown stress

vector for the ith subset. wij is defined as:

wij ¼
0 dij . dp

j

1 dij ¼ dp
j

(
ð11Þ

where dij is the Euler distance between the vector of the jth

fault/slip datum bj and the ith stress vector ti, and dp
j is the

smallest Euler distance between the vector of the jth

fault/slip datum bj and the stress vectors. wij equals one

when the jth datum belongs to the ith subset, or zero when it

does not. Since wij discrete, equals zero or one, it is

impossible for a fault/slip datum to belong to more than one

subset. This algorithm is called hard division. It can be

recasted to a soft division, in which wij may become any

value between zero and one. This case requires an elaborate

fuzzy clustering algorithm (Bezdek, 1974, 1981) for

optimization (Shan et al., 2002). The soft division is beyond

the scope of the paper.

2.3. Procedure

Both character parameters w and stress tensors t in the

objective function (Eq. (10)) are unknown. They are

obtained by minimizing the conditional objective function.

The procedure to realize the OFA is as follows:

1. Set the division number K, or number of the monophase

fault/slip subsets, which is more than one and usually

smaller than six, select the initial division w (0) by

random sampling for K homogeneous subsets, and let

i ¼ 0,

2. Apply the characteristic-equation method, which is

described in Appendix B, in the division w (i ) in order

to optimize the stress vector t (i ) for each subset,

3. Calculate w (iþ1) for each fault/slip datum according to

Eq. (11), and

4. Compare w (iþ1) with w (i ). If there is a difference

between them, let i ¼ i þ 1 and return to step 2. If there

is no difference, terminate the iteration and output the

result.

Table 1

Fault/slip data in the example from Fry (1999)

No Fault plane Striation

Dip direction (8) Dip angle (8) Bearing (8) Plunge (8)

1 283 86 12 18

2 110 35 20 6

3 89 32 9 7

4 147 36 200 15

5 45 47 328 13

6 360 90 270 8

7 50 66 325 12

Table 2

Comparison between Fry’s (1999) result and our result. Stress ratio f is defined as (s1 2 s2)/(s2 2 s3)

s1 s2 s3 Stress ratio (f )

Azimuth (8) Angle (8) Azimuth (8) Angle (8) Azimuth (8) Angle (8)

Fry’s result 359.00 2.00 263.00 73.00 90.00 17.00 4.00

Our result 1.00 1.09 267.01 74.70 91.30 15.26 3.83
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The above algorithm is very effective and quick to

converge. Sometimes the objective function may have a

variety of local minima in the parameter space, and the

final division is more or less related to the initial

division (Guo and Zhuang, 1993). We do not have any

good way to overcome a local minimum now. Our way

is to perform a large number of runs, for example 100

(Fig. 2). Each has a different random seed. Then we

select the one that has the least value of the objective

function. The division of this run is considered to be the

optimum one.

3. Test

In order to validate the use of OFA for solving for

stress tensors, polyphase fault/slip data are simulated for

numerically generated monophase sets. We make a

validation set of polyphase fault/slip data consisting of

three monophase subsets, each caused by stress with

stress ratio of two (Table 3). For each tectonic phase,

20 fault/slip data are generated in two steps by Monte-

Carlo sampling. In the first step, fault orientations are

randomly selected from specific ranges, including fault

dip directions ranging from 08 to 3608 and dips from

458 to 858. In the second step, the directions of

maximum resolved shear on fault planes are calculated

under the given stress tensor within each phase. Two

different calculations were made. The second one

incorporated simulated random errors into the fault/slip

data, and the first one was exact. Therefore, for the

OFA validation we have two sets of 60 artificial fault/

slip data with monophase subsets related to three

tectonic phases equally mixed (see Appendix C).

3.1. Case 1

Case 1 is an idealized polyphase data set, in which the

orientation of simulated striation is strictly parallel to the

direction of maximum resolved shear stress on the fault

plane. Data are shown in Fig. 3a. The application of our

OFA method to the simulated data (Appendix C) gave rise

to results listed in Table 4.

Optimum stress tensors (Table 4) related to the division

numbers, K, are compared with prescribed ones (Table 3).

From this comparison it is apparent that calculated tensors

are spurious for K , 3. Therefore it is dangerous to consider

polyphase fault/slip data as monophase. The calculated

tensor is almost meaningless in estimation except for

representing some statistics of the data.

Fig. 2. Minimum values of the objective function F in 100 runs with different random seeds. Used fault/slip data are shown in case 2 in Fig. 3b. The number of

subsets is three. Dashed line represents the least value of F at present runs. One hundred runs is large enough to find the least F that approximately equals 0.2.

Table 3

Stress states of three prescribed tectonic phases. s1, s2 and s3 are the maximum, intermediate and minimum principal stresses, respectively. Stress ratio f is

defined as (s1 2 s2)/(s2 2 s3).

Phase s1 s2 s3 Stress ratio (f )

Azimuth (8) Angle (8) Azimuth (8) Angle (8) Azimuth (8) Angle (8)

1 180.00 10.00 89.00 5.65 329.93 78.48 2.00

2 140.00 5.00 235.00 44.89 45.04 44.67 2.00

3 100.00 1.00 195.00 78.67 9.80 11.28 2.00
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The minimum value of the objective function F

decreases with K. It approximately equals zero when

K ^ 3. There is little difference in either orientation or

in stress ratio between the prescribed and optimum

stress tensors for K ^ 3. Their divisions are exactly or

almost identical to what we set before. This indicates

that our method is able to separate polyphase fault/slip

data and make the stress inversion. Furthermore,

although F becomes less, a large subset number is not

necessary for accurate estimation. For example, with K

being five, the fourth optimum stress tensor is somewhat

ambiguous in correlation. It probably reflects a subtle

structure in the data that has nothing to do with

prescribed stress tensors.

3.2. Case 2

This case represents a polyphase set in which not all

orientations of the striations are exactly parallel to the

direction of the maximum shear stress in the fault planes.

The deviation from parallelism might be caused by such

factors as measurement error, interaction between different

faults and heterogeneity of the stress field. The latter two

factors are in conflict with the assumptions of inversion

methods. The striation plunge in case 2 is modified so as to

simulate random errors in a range from 258 to 58 (Fig. 3b).

Random errors are considered to have an even distribution

within the specific range. Results calculated from this data

set (Appendix C) by our method are listed in Table 5.

Fig. 3. Lower-hemisphere, equal-area projection of simulated polyphase fault/slip data listed in Appendix C. The fault striation is strictly parallel to the

direction of maximum resolved shear on the fault plane in case 1, and subject to random deviations in case 2. Unfilled, half-filled and fully filled circles

represent the normal to fault planes of the prescribed subsets 1, 2 and 3, respectively. Short lines represent plunges of the fault striations.

Table 4

Estimation of stress tensors in case 1 with different division numbers (K ). f is the stress ratio and F is the minimum value of objective function

Division number (K ) Phase s1 s2 s3 f F

Azimuth (8) Angle (8) Azimuth (8) Angle (8) Azimuth (8) Angle (8)

1 1 165.45 3.94 257.49 27.32 67.89 62.35 1.95 5.70

2 1 148.27 16.22 244.25 19.70 21.57 64.03 3.08 1.61

2 82.35 13.34 196.18 59.60 345.48 26.77 1.79

3 1 180.00 10.00 89.00 5.65 329.94 78.48 2.00 1.6 £ 1027

2 140.00 5.00 235.00 44.89 45.04 44.68 2.00

3 100.00 1.00 194.99 78.67 9.80 11.28 2.00

4 1 180.00 10.00 89.00 5.65 329.94 78.48 2.00 0.0 £ 1027

2 140.00 5.00 235.00 44.89 45.04 44.68 2.00

3 100.00 1.00 194.99 78.67 9.80 11.28 2.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 1 180.00 10.00 89.00 5.65 329.94 78.48 2.00 0.0 £ 1027

2 140.00 5.00 235.00 44.89 45.04 44.68 2.00

3 100.00 1.00 194.99 78.67 9.80 11.28 2.00

4 307.84 4.13 58.49 78.42 217.05 10.80 1.95

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Comparison of results with those in case 1 (Table 4)

shows that the decrease of the F value with K is quite small

(Table 5). For example, for K ¼ 5, F reaches 0.0 £ 1027 in

case 1 and only 5.1 £ 1022 in case 2. The optimum stress

tensors differ more from prescribed ones, and become more

difficult to correlate. Calculated optimum divisions in the

case 2 data set are not satisfactory. For K ¼ 3 just 50% or a

little more of the data fits the category of prescribed subsets

(Table 6).

Evidently, the introduction of random errors into the

orientation of fault striations gives rise to the low accuracy

of stress estimation. The least value of the objective

function tends to increase with the range of errors (Fig. 4).

Additionally, the similarity between prescribed stress

vectors is another factor that must be taken into consider-

ation. Random errors, on their own, generally cause

approximately the same accuracy of estimation of the

different controlling tensors. But this is far from what we

expect (Table 5), which implies the influence of one or more

other factor. In the presence of errors in the data, the more

similar are the prescribed vectors and the greater is the

possibility of misallocation of a fault/slip datum to a

prescribed subset; thus the less accurate tends to be the

estimation of the controlling stress vectors. Similarity

coefficients between the three prescribed stress vectors are

listed below:

Stress vector 1

Stress vector 2

Stress vector 3

1:000 0:812 0:673

0:812 1:000 0:904

0:673 0:904 1:000

2
664

3
775

The similarity coefficient between prescribed stress

vectors 2 and 3 reaches the maximum, 0.904, and that

between prescribed stress vectors 1 and 3 reaches the

minimum, 0.673. Their effect on the estimation is therefore

obvious, especially for a relatively large range of errors in

data (Fig. 4). It is interesting to note that the prescribed

vector 1 is somewhat distinct for relatively low similarity

coefficients between it and other vectors, so that the

accuracy of its estimation becomes relatively high (Table 6).

4. Discussion

In essence the OFA on the basis of hard division is a

peculiar recast of fuzzy clustering algorithms of Bezdek

(1974, 1981). Therefore, it is different from other inversion

methods designed for polyphase data separation. The OFA

is the most direct way we know for analyzing the

heterogeneity of fault/slip data. The goal is completed by

Table 5

Estimation of stress tensors in case 2 with different division numbers. See Table 4 for explanation

Division number (K ) Phase s1 s2 s3 f F

Azimuth (8) Angle (8) Azimuth (8) Angle (8) Azimuth (8) Angle (8)

1 1 158.69 4.94 252.05 34.11 61.48 55.4 1.08 5.16

2 1 319.31 24.96 228.16 2.48 132.84 64.90 0.28 1.12

2 145.18 28.87 253.38 29.53 19.84 46.37 0.22

3 1 182.37 22.43 89.29 7.41 342.09 66.25 0.72 2.2 £ 1021

2 312.58 7.08 217.52 35.36 52.32 53.72 3.66

3 212.56 0.08 302.61 33.03 122.44 56.97 0.08

4 1 174.97 11.34 269.03 19.45 56.39 67.26 3.10 1.1 £ 1021

2 139.65 2.93 232.60 45.12 46.74 44.73 1.70

3 356.14 24.87 91.66 11.73 204.81 62.15 0.09

4 285.62 2.82 188.41 68.62 16.71 21.18 0.83

5 1 10.33 24.55 220.39 62.17 106.04 12.28 5.54 5.1 £ 1022

2 140.63 10.55 239.96 41.06 39.11 47.01 1.17

3 179.21 11.12 88.93 1.43 351.69 78.79 2.28

4 315.62 36.46 218.96 8.92 117.32 52.11 0.31

5 172.51 26.56 265.08 5.13 5.18 62.87 1.32

Table 6

Comparison between divisions in cases 1 and 2, both with a division number of three

Prescribed subsets Optimum subsets in case 1 Optimum subsets in case 2

1 2 3 Total number 1 2 3 Total number

1 20 0 0 20 13 0 7 20

2 0 20 0 20 4 10 6 20

3 0 0 20 20 4 8 8 20

Total number 20 20 20 60 21 18 21 60

Percentage 33.33 33.33 33.33 100.00 35.00 30.00 35.00 100.00
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detection of linear structures existing in the data in Fry’s

(1999) sigma space. Variables in the OFA, including stress

vectors and data division, are solved in iteration. And the

run is relatively fast. On this point, we dare to say the OFA

is robust in theory. Except for the assumptions necessary for

stress inversion, it is free from other assumptions or limits,

for example the deviation threshold for accepting a fault/slip

datum into a certain subset related to a given stress tensor.

As shown in Fig. 1, the disadvantage of the threshold used in

grid-search methods (Hardcastle and Hills, 1991) is that it is

often inappropriate or even invalid for the polyphase data in

which some or all similarity coefficients between the

controlling stress vectors are large in sigma space. That is

to say, subtle tectonic stresses may not be recognized

through grid-search methods. In contrast, the OFA makes a

very good approach to stress inversion from fault/slip data

of this kind. Its failure in stress estimation is not due to its

theory but due to the data. It is able in most cases to

recognize subtle tectonic stresses that are often associated

with spatial and temporal variation of the tectonic stress

field in a region, which is important to understanding the

formation of geological structures.

However, the drawback of the OFA is sometimes its low

efficiency in overcoming local minimum in the presence of

large random errors in the data. At present we have no good

way but to make many runs and choose the least one. In our

test we have confirmed that 100 runs are sufficient (Fig. 2),

but we are not sure whether there exists a minimum number

of runs for any fault/slip data set or not. Fewer runs might

not be enough for successful data separation and for

calculation of controlling stress tensors, and more runs

take a lot of time. Moreover, neither slip sense nor frictional

law is included in the method. Because of this, our OFA

method needs further improvement.

As shown in the test, the OFA is competent in separating

polyphase fault/slip data into monophase subsets. The

accuracy of stress estimation is controlled by errors in the

orientation of fault striations and by similarity between

prescribed stress vectors of different tectonic phases. The

method is particularly efficient if fault striations are strictly

or approximately parallel to the direction of maximum

resolved shear on fault planes. Optimum stress tensors are

apparently in good agreement with prescribed ones in this

case. However, if random errors are included in the

orientations of fault striations, optimum tensors become

inconsistent with prescribed ones. Size of the random errors

is closely associated with the accuracy of stress estimation

(Fig. 4). This effect is especially obvious in the case when

some or all controlling stress vectors are mutually similar.

This further implies that only the field data related to distinct

tectonic phases are easy to separate. We believe that this is a

common problem for all inversion methods for polyphase

data sets.

The effect of similarity of the different prescribed stress

vectors on the accuracy of stress estimation remains rather

unclear if errors exist in the data. The more similar the

controlling stress vectors the less accurate the estimation. It

is frustrating to note that no exact solution exists to deal with

this problem because we have no prior knowledge about the

intrinsic deviation from linear structures in fault/slip data.

The only way to try this now is to combine other geological

data into the analysis. Field data similar to case 2 require

that calculated stress tensors should be carefully interpreted

and only those consistent with other geological data

accepted with confidence.
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Appendix A

List of symbols and their definitions

Symbol Definition Comment

s Stress tensor See Eqs. (1) and (A1)

sij The element of the stress tensor, i,j ¼ 1,2,3 See Eqs. (3)–(5) and (A2)–(A5)

sfull Full stress tensor

sreduced Reduced stress tensor

n The unit vector normal to the fault plane See Eqs. (1) and (A1)

ni The element of the vector n, i ¼ 1,2,3 See Eqs. (4) and (A2)

s The directional vector perpendicular to the fault striation See Eqs. (1) and (A1)

si The element of the vector s, i ¼ 1,2,3 See Eqs. (4) and (A2)

cij cij ¼ nisj, i,j ¼ 1,2,3 See Eqs. (4), (5) and (A2)

t The stress vector See Eqs. (6)–(9) and (A5)–(A12)

ti The element of the vector t, i ¼ 1,2,…,5 See Eqs. (6) and (A5)

t(i) The ith stress vector, i ¼ 1,2,…,K See Eq. (10)

t p The optimum stress vector for a monophase fault/slip data set See Eq. (A12)

b The vector of fault/slip datum See Eqs. (6), (7), (A5), (A6) and (A8)

bi The element of the vector b, i ¼ 1,2,…,5 See Eqs. (6), (A5) and (A8)

b(i ) The vector of the ith fault/slip datum, i ¼ 1,2,…,N See Eqs. (9) and (10)

N The number of fault/slip data

K The division number

P and R Any two real positive numbers

I A 3 £ 3 unit matrix

Ai The matrix for the ith fault/slip datum, i ¼ 1,2,…,N See Eqs. (9), (10) and (A8)

A The sum of Ai, i ¼ 1,2,…,N See Eqs. (9), (A8) and (A10)–(A12)

Wij The characteristic parameter, i ¼ 1,2,..,K, j ¼ 1,2,…,N See Eqs. (10) and (11)

d(i,j ) Kronecker delta, one when i ¼ j or zero when i – j See Eqs. (3), (5), (A4) and (A5)

dij The Euler distance between the vector bj and the stress vector

ti, i ¼ 1,2,..,K, j ¼ 1,2,…,N

See Eq. (11)

dp
j The smallest Euler distance between the vector bj

and the stress vector, t, j ¼ 1,2,…,N

See Eq. (11)

F(t ) The objective function for monophase fault/slip data See Eqs. (9), (A8) and (A9)

F(w,t ) The objective function for polyphase fault/slip data See Eq. (10)

l The Lagrange parameter or the eigenvalue See Eqs. (A9)–(A12)

l p The least eigenvalue See Eq. (A12)

P(t,l ) The composite objective function See Eqs. (A9) and (A10)
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Appendix B. Algorithm for monophase fault/slip data

One of the fundamental assumptions of stress

inversion is the parallelism of the fault slip to the

direction of maximum resolved shear stress on the fault

plane (Angelier, 1979):

nssT ¼ 0 ðA1Þ

where s is the stress tensor, n is the unit vector normal

to the fault plane, n ¼ [n1, n2, n3], s is the directional

vector perpendicular to the fault striation within the

fault plane, s ¼ [s1, s2, s3], and the superscript T is the

operation of matrix transposition. The left side of Eq.

(A1) is rewritten as:

X3

i¼1

X3

j¼1

nisijsj ¼
X3

i¼1

X3

j¼1

nisj

� �
sij ¼

X3

i¼1

X3

j¼1

cijsij ðA2Þ

where cij ¼ nisj.

Let us have a number N of fault/slip data in a single

tectonic phase. We have a number N of such Eq. (A1), one

for each datum. Because these equations are not enough to

make a specific resolution, additional constraints are

required to reduce the parameter space (modified after

Fry, 1999):

X3

i¼1

sii ¼ 0 ðA3Þ

1

2

X3

i¼1

X3

j¼1

1 þ dði; jÞ
� �

s2
ij ¼ 1 ðA4Þ

where Kronecker delta d(i,j ) equals one when i ¼ j or zero

when i – j. sij is the element of stress tensor s.

Because of the symmetry of stress tensor, Eq. (A2) is

further modified to:

1

2

X3

i¼1

X3

j¼i

2 2 dði; jÞ
� �

ðcij þ cjiÞsij

which with the first constraint (Eq. (A3)) leads to:

btT ¼
X5

i¼1

biti ðA5Þ

where b ¼ [b1, b2, b3, b4, b5] ¼ [c11 2 c33, c22 2 c33,

c12 þ c21, c13 þ c31, c23 þ c32] and t ¼ [t1, t2, t3, t4,

t5] ¼ [s11, s22, s12, s13, s23]. b is the vector of fault/

slip datum and t is the unknown stress vector in five

dimensions.

Therefore, Eq. (A1) with the inclusion of the first

constraint (Eq. (A3)) is expressed as (Fry, 1999):

btT ¼ 0 ðA6Þ

The expected stress vector t is five-dimensional and

perpendicular to vectors of fault/slip data.

In terms of stress vector, the second constraint (Eq. (A4)

is rewritten as:

ttT ¼ 1 ðA7Þ

In order to make stress inversion, we define the objective

function, F(t ), as the sum of the squares of the left side of

Eq. (A6):

FðtÞ ¼
XN
i¼1

ðbitÞ
2 ¼

XN
i¼1

tðbib
T
i Þt

T ¼
XN
i¼1

tAit
T

¼ t
XN
i¼1

Ai

 !
tT ¼ tAtT ðA8Þ

where bi is the stress vector related to the ith fault/slip

datum, Ai ¼ bib
T
i , and A is the sum of Ai. The matrix Ai is

symmetrical by its definition, so the sum, matrix A, is also.

Thus, stress inversion becomes optimization of the objective

function with one constraint (Eq. (A7)). Instead of optimum

methods (Chen, 1996), we use the characteristic-equation

method for the conditional minimization. It is derived by

introducing a new composite objective function P(t,l ), in

which the constraint is included:

minPðt;lÞ ¼ FðtÞ2 lðttT
2 1Þ ðA9Þ

where l is the Lagrange parameter. The routine way to

solve it is to set the partial derivatives from P(t,l ) null

and then solve these equations. The partial derivative of

t from P(t,l ) is:

›Pðt;lÞ

›t
¼ 2tA 2 2lt ðA10Þ

Let it be zero. After division it becomes:

tA ¼ lt ðA11Þ

where l is also called the eigenvalue. This is a

characteristic equation and might be solved in numeric

methods such as the Jacobi method (Agterberg, 1974;

Yuan et al., 1992). Let l p and t p be the least

eigenvalue and its corresponding eigenvector. Inserting

them into Eq. (A9) results in:

Pðtp;lpÞ ¼ tpAtpT 2 lpðtptpT 2 1Þ

¼ ðlptpÞtpT 2 lpðtptpT 2 1Þ ¼ lp ðA12Þ

The function P(t,l ) has a positive quadratic form. It

can be proven (Xue and Pei, 1994) that the value of

P(t p,l p) reaches the minimum. Therefore, t p is the

optimum stress vector which we search for.

Y. Shan et al. / Journal of Structural Geology 25 (2003) 829–840838



Appendix C. Simulated fault/slip data with monophase subsets related to three tectonic phases (Table 3)

No. Case 1 Subset Case 2 Subset

Fault plane Striation Fault plane Striation

Dip direction (8) Dip angle (8) Plunge (8) Pitch (8) Dip direction (8) Dip angle (8) Plunge (8) Pitch (8)

1 348.70 53.07 12.57 50.58 1 348.7 53.07 12.8 50.53 1

2 187.03 50.29 183.08 50.22 1 47.61 79.97 132.39 79.93 1

3 314.71 45.98 9.88 30.59 1 171.21 83.05 240.77 70.77 1

4 171.21 83.05 242.94 68.76 1 276.96 72.57 5.19 5.63 1

5 114.77 75.77 191.80 41.51 1 108.1 69.88 175.05 46.91 1

6 248.12 80.16 163.02 26.22 1 240.95 63.67 185.09 48.59 1

7 108.10 69.88 171.13 51.07 1 79.71 83.33 352.18 20.29 1

8 297.41 71.77 24.89 7.62 1 349.33 50.17 7.95 48.65 1

9 168.00 83.45 244.98 62.98 1 358.47 52.72 0.96 52.69 1

10 79.71 83.33 351.57 15.54 1 240.35 59.89 180.97 41.3 1

11 198.42 83.81 116.79 53.33 1 293.17 61.96 11.97 20.03 1

12 46.56 63.03 330.31 25.03 1 288.66 67.76 12.18 15.43 1

13 358.47 52.72 358.73 52.72 1 34.96 82.94 305.94 82.94 1

14 246.74 71.71 172.07 38.65 1 323.83 50.54 21.88 32.74 1

15 134.04 48.05 173.25 40.76 1 352.78 63.02 18.83 60.46 1

16 293.17 61.96 12.43 19.28 1 88.14 80.93 10.55 53.41 1

17 166.10 77.07 228.18 63.89 1 299.83 79.35 215.6 28.1 1

18 204.86 63.42 162.51 55.90 1 263.15 75.77 192.84 53.03 1

19 34.96 82.94 124.33 5.11 1 96.07 56.59 74.56 54.66 1

20 228.33 80.98 143.72 30.60 1 292.1 47.27 356.54 25.03 1

21 49.90 76.45 56.68 76.36 2 143.81 46.97 109.41 41.48 2

22 352.78 63.02 274.87 22.36 2 91.22 62.86 168.36 23.48 2

23 63.44 54.79 342.53 12.62 2 79.76 46.24 148.81 20.47 2

24 323.39 66.23 327.55 66.18 2 111.55 61.87 168.22 45.79 2

25 299.83 79.35 25.29 22.85 2 287.47 57.06 353.8 31.77 2

26 327.23 74.24 263.93 57.86 2 134.53 46.72 126.07 46.41 2

27 276.96 54.21 349.59 22.49 2 112.99 46.6 134.6 44.51 2

28 96.07 56.59 165.02 28.57 2 173.53 67.33 105.78 42.2 2

29 271.07 77.46 356.88 18.17 2 245.83 68.73 320.44 34.28 2

30 20.39 65.22 106.69 7.96 2 0.97 50.06 298.9 29.23 2

31 143.81 46.97 114.10 42.94 2 69 46.84 144.78 14.68 2

32 39.19 55.14 116.56 17.43 2 280.12 71.22 4.68 15.58 2

33 160.78 52.74 107.32 38.05 2 149.2 73.08 84.7 54.77 2

34 79.76 46.24 146.77 22.18 2 263.87 61.5 338.22 26.41 2

35 241.13 57.39 319.57 17.40 2 33.43 45.52 307.83 4.46 2

36 151.84 53.15 108.02 43.92 2 282.65 54.21 348.38 29.69 2

37 287.47 57.06 356.78 28.59 2 283.4 50.31 356.45 19.36 2

38 90.64 59.95 168.70 19.66 2 232.76 79.55 304.65 59.31 2

39 15.48 84.16 103.17 21.56 2 177.36 52.57 107.54 24.26 2

40 112.99 46.6 139.51 43.42 2 26.65 82.07 114.88 12.49 2

41 32.73 64.28 310.61 15.9 3 42.64 80.38 318.33 30.35 3

42 201.01 84.11 290.02 9.49 3 51.5 80.79 140.17 80.79 3

43 245.83 68.73 329.19 16.54 3 113.14 83.93 27.05 32.7 3

44 17.74 45.11 339.85 38.38 3 173.35 64.49 254.49 17.9 3

45 45.57 74.89 316.66 4.05 3 237.92 78.05 149.52 78.04 3

46 69 46.84 131.8 25.98 3 334.47 60.21 57.48 11.99 3

47 129.16 76.12 43.73 17.87 3 101.25 64.53 76.71 62.36 3

48 235.96 73.44 323.1 9.52 3 33.16 54.02 317.37 18.69 3

49 149.2 73.08 61.92 8.88 3 194.33 72.7 107.93 11.41 3

50 172.74 74.32 262.6 0.52 3 201.29 61.95 120.07 15.98 3

51 148.49 48.38 65.16 7.45 3 86.3 45.19 119.79 40.01 3

52 33.43 45.52 316.44 12.91 3 156.9 68.07 73.05 14.91 3

53 150.32 76.41 62.34 8.29 3 240.22 83.76 327.48 23.62 3

54 82.86 51.05 126.78 41.71 3 60.96 48.46 135.16 17.09 3

55 283.4 50.31 281.89 50.3 3 190.12 69.13 166.86 67.46 3

56 355.58 70.86 74.94 28.03 3 240.32 67.32 318.73 25.69 3

57 310.93 77.83 222.29 6.28 3 121.39 52.16 59.61 31.33 3

58 177.36 52.57 245.82 25.63 3 105.71 66.3 55.53 55.57 3

59 43.14 47.96 314.5 1.51 3 260.37 73.62 339.42 32.86 3

60 333.6 73.6 62.19 4.78 3 267.62 53.47 321.85 38.27 3
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