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Abstract

When designing hydraulic structures, civil engineers have to evaluate design floods, i.e. events generally much rarer that the

ones that have already been systematically recorded. To extrapolate towards extreme value events, taking advantage of further

information such as historical data, has been an early concern among hydrologists. Most methods described in the hydrological

literature are designed from a frequentist interpretation of probabilities, although such probabilities are commonly interpreted

as subjective decisional bets by the end user. This paper adopts a Bayesian setting to deal with the classical Poisson–Pareto

peak over treshold (POT) model when a sample of historical data is available. Direct probalistic statements can be made about

the unknown parameters, thus improving communication with decision makers. On the Garonne case study, we point out that

twelve historical events, however imprecise they might be, greatly reduce uncertainty. The 90% credible interval for the 1000

year flood becomes 40% smaller when taking into account historical data. Any kind of uncertainty (model uncertainty,

imprecise range for historical events, missing data) can be incorporated into the decision analysis. Tractable and versatile data

augmentation algorithms are implemented by Monte Carlo Markov Chain tools. Advantage is taken from a semi-conjugate

prior, flexible enough to elicit expert knowledge about extreme behavior of the river flows. The data augmentation algorithm

allows to deal with imprecise historical data in the POT model. A direct hydrological meaning is given to the latent variables,

which are the Bayesian keytool to model unobserved past floods in the historical series.
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1. Introduction

In a recent survey, Berger (1999) emphasized the

very large development of Bayes ideas and appli-

cations in the technical literature of many applied

domains during the last 10 years. Berger argued that

methodological developments are made possible

through the use of Monte Carlo Markov Chains

simulation techniques and that we are likely to see

growth in application of Bayesian ideas for this reason

(if no other). Strangely enough, hydrometeorological

studies are poorly represented in this survey. For risk

analyses of extreme environmental events for

instance, with some exceptions such as Kuczera

(1999), significant contributions such as Coles and

Powell (1996) or Coles and Tawn (1996), have mostly

been published in statistical reviews, and did not hold

the attention of hydrologists. The Bayesian paradigm

allows to revisit many old hydrological problems
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within an open-minded and decision-oriented per-

spective. Among such classical problems are the

assessment of risks induced by river floods. In this

widely explored field, further difficulties arise when

the available ‘objective’ information consists in

systematic records completed with historical data.

The Bayesian point of view benefits from the long

history of modeling floods in the hydrological

literature (Bernier, 1967). In this paper we are not

concerned with the general problem of modeling

distributions of hydrological extremes by complete

generalized Pareto distributions (NERC, 1975) or not

(USWRC, 1992), validation of assumptions about

thresholds (Davison and Smith, 1990), etc. There is

also an important literature about incorporation of

historical data following the seminal paper of

Stedinger and Cohn (1986) until the last develop-

ments in Martins and Stedinger (2001a,b).

Specifically, the coherence of a complete Bayesian

approach of risks analysis is herein exemplified for a

case study with the particular and realistic Poisson–

Pareto peak over threshold (POT) model. Our

arguments are far from new but the availability of

new estimation techniques: ‘data augmentation’

algorithms (Tanner, 1996), MCMC computation

methods (Kuczera and Parent, 1998) together with a

better understanding of Bayesian concepts in action,

now allow new applications which, in turn, should

give to such ideas more convincing support among the

hydrologists community.

The paper is organized as follows. Sections 2 and 3

present the case study and the classical and Bayesian

paradigms. Section 4 recalls the theoretical materials

for a Bayesian to deal with Poisson–Pareto POT

models. In Section 5, the historical data are modelled

according to the simplest of two censoring

approaches. In Section 6, advantage is taken from

the intrinsic conditional structure of the model to

implement Gibbs sampling combined with the ‘data

augmentation Algorithm (DAA)’ of Tanner (1996).

Numerical results from the Bayesian analysis are

exposed in Section 7. It is found that the Bayesian

90% credible interval for the typical (1000 years

return) design value is reduced by 60% when taking

into account historical evidence. In Section 8,

perspectives and limits of the use of data augmenta-

tion for incorporating historical data in extreme value

analysis are discussed.

2. Garonne case study

The Garonne river is the most important river in the

south-western part of France. Fig. 1 shows the sample

of systematic data spanning over the period 1913–

1977. They were recorded at a gauging station located

near the city of Agen.

The 12 main historical events for the period 1770–

1912 are very well documented, thanks to the long life

work of Pardé (1935) devoted to the history and the

hydrology of the Garonne river and its tributaries. The

characteristics of the historical floods are summed up

in Table 1. Many of the estimated flows are rather

imprecise.

3. Classical versus Bayesian interpretations

of probabilities

Basic theoretical framework of extreme value

models and inferential techniques can be found in

Coles (2001). Frequentist and Bayesian settings share

common probabilistic tools for statistical modeling.

However, the practical interpretation of these tools is

different. For example, a Bayesian hydrologist would

understand a 1000 year return flood Q1000 as the event

which returns in the mean every 1000 year period. At

the opposite, the bayesian interprets the return period

as ‘a quantitative degree of subjective belief’ used as a

guess in his decisional behavior and does not refer to a

hypothetical. future 1000 year period.

Basic theoretical framework of extreme value

models and inferential techniques can be found in

Coles (2001). Frequentist and Bayesian statisticians

share common probabilistic tools for statistical

modeling. However, the practical interpretation of

these tools is different because Bayesians and

frequentists do differ when ascertaining values for

unknown quantities. Consider the following state-

ment: ‘the 100 year return flood Q100 of the Garonne

river has a confidence interval: 6070–7550 m3/s with

a probability greater than 90%’. Such a result can be

obtained for instance from the software package

Hyfran from INRS-EAU (Hyfran, 2000) and relies on

maximum likelihood (ML) estimation techniques

(Hosking, 1985; Martins and Clarke, 1993). The

correct interpretation of such a frequentist confidence

interval is that it reflects the asymptotic long-term
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performance of the estimation procedure for the

unknown Q100 over a large number of data sets. The

problem is that most, if not all, decision makers would

understand the previous statement as a direct

probabilistic belief about the unknown parameter

Q100: ‘there are 90% of chances that the random value

Q100 lies between 6070 and 7550 m3/s, given the

sample data’. These misunderstandings distort the

communication between classical hydrologists and

decision makers. Indeed the frequentist interpretation

of judgments becomes rather uneasy in the case of

samples completed with partial, imprecise and

scattered historical data. In addition, such situations

of mixed information often depart from the math-

ematical setting of independently identically distrib-

uted samples of random variables for which

the asymptotic properties of ML estimates have

been established.

On the other hand, the Bayesian paradigm gives

firm and coherent theoretical justification to the

decisional interpretation of probability as a subjective

concept (Berger, 1985; Bernardo and Smith, 1994;

Gelman et al., 1995). In our experience, decision

Fig. 1. 151 peaks over a 2500 m3/s threshold for the Garonne river at Mass d’Agenais spanning over the period 1913–1977.

Table 1

Historical floods for the Garonne river at Mas d’ Agenais (Miquel,

1984)

Date Height

(m)

Estimated flow

(m3/s)

April 1770 10.34 From 7000 to 7400

September 1772 6300

March 1783 From 7000 to 7200

May 1827 6500

May 1835 6400

Jan. 1843 6500

June 1855 9.96 7000

May 1856 9.62 6200

June 1856 9.88 6600

June 1875 10.56 From 7000 to 7500 (maybe 8000)

Jan. 1879 9.62 6300

Feb. 1879 10.02 7000

May 1918 9.51 6000

1913 Systematic records of the river began

March 1927 9.97 6700

March 1930 10.72 From 7000 to 7500 (maybe 8000)

March 1935 9.95 6700

Feb. 1952 10.26 From 6000 to 7000

Jan. 1955 9.32 from 5200 to 5700
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makers have no difficulty to understand that pre-

ventive action can be triggered by a ‘quantitative

degree of subjective belief’ concerning the occurrence

of such events. Bayesian probabilistic judgments are

relative to the object of interest (assumption or

parameter interval) and conditional to the available

information including historical data, even qualitative

one such as the expert knowledge (Bernier and Parent,

2002).

Finally, much freedom in model design has been

gained owing to the recent methodological advances

in Bayesian computation with Monte Carlo Markov

Chain (MCMC) methodology, which is by now the

standard in the statistical profession. Asymptotic

approximations are no longer necessary to avoid

burdensome computations, inference can nowadays

be achieved within large parametric families of

models, and models become more and more realistic

with the introduction of latent variables, such as

missing data. Taking into account historical data in

POT models can be formulated as a latent variable

problem, to be solved by a Bayesian data augmenta-

tion algorithm. The basic idea behind the data

augmentation algorithm is to complement the

observed data (systematically measured or histori-

cally recorded) by the missing past data (unobserved

or forgotten flood events) via appropriate Gibbs

sampling simulations.

4. Bayesian modeling

4.1. POT likelihood model (Poisson—generalized

Pareto)

The POT model (Rasmussen et al., 1994) is

described by the generalized Pareto distribution with

Poisson arrival rate, as studied by Wang (1991)

following Pickands (1975). A regular time-spaced

sequence of independently and identically distributed

random variables X1;X2;…;Xi;…;Xj;… (river flows)

defines a POT series by considering only the (flood)

peaks …X1;…;Xj;… above a specified threshold level

u. The threshold u is assumed sufficiently high so that

Pickhands’ asymptotic theorem applies. We use a

specific parametrization u ¼ ðm; r;bÞ for this Pois-

son–Pareto model:

PrðXj # xlXj $ uÞ ¼ Gðxlr;b; uÞ

¼
ð1 2 ð1 2 bðx 2 uÞr=b for b – 0

1 2 expð2rðx 2 uÞ for b ¼ 0

(
ð1Þ

PrðN{Xj $ u} ¼ nlin T yearsÞ

¼
ðmTÞn expð2mTÞ

n!
ð2Þ

where N{Xj $ u} is the number of peaks over or equal

to u in T years.

Hydrological presentations of this model usually

refer to parameter j ¼ 2b=r rather than b. Hydro-

logically, j is the natural dimensionless parameter

determining the heaviness of the Pareto tail distri-

bution. The main interest of the parametrization by j

is its invariance with the threshold u. As we consider

here a fixed level u, we nevertheless keep on working

with the parameter u ¼ ðm; r;bÞ which is far more

advantageous for semi-conjugate Bayesian inference

purposes, as shown later.

The likelihood for u ¼ ðm; r;bÞ based on an

observed series x of n data x1; x2;…; xn over the

threshold u during T years is given by the probability

density function f ðxluÞ of x given u. This function can

be seen as the product of two parts:

† the probability of N, let:

Pðnlm; uÞ ¼ PrðN{Xj $ u} ¼ nlin T yearsÞ and

given by 2,

† the probability density gðxlu; nÞ of the sample

x1; x2;…; xn given n, such as:

gðxlu; nÞ ¼
Yi¼n

i¼1

dGðxilr;b; uÞ
dxi

¼ rn expðr2 bÞSnðx;bÞ

owing to the mutual independence of members of

the sample where

Snðx;bÞ ¼
1

b

Xn

i¼1

logð1 2 bðxi 2 uÞÞ
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and

Snðx; 0Þ ¼ 2
Xn

i¼1

ðxi 2 uÞ

Then the likelihood is:

f ðxluÞ ¼ Pðnlm; uÞ £ gðxlu; nÞ

¼
ðmTÞn expð2mTÞ

n!

� �
½rn expðr2 bÞSnðx;bÞ�

ð3Þ

A useful property of the POT model concerns the

change of threshold from u to up $ u: The new

model of exceedance remains a process of the same

type, but with parameters up ¼ ðmp; rp;bpÞ such

that

mp¼mð12Gðuplr;b;uÞÞ¼mð12bðup
2uÞÞr=b ð4Þ

rp¼
r

12bðup2uÞ
ð5Þ

bp¼
b

12bðup2uÞ
ð6Þ

The usual annual quantile qðp;uÞ corresponds to the

design value with annual failure probability 12p:

Evaluating the inverse cumulative function for the

maximum of random POT values with T ¼1 (1

year) leads to the analytical expression of the flood

with return period 1=p

qðp;uÞ¼uþ
1

b
12 2

logðpÞ

m

� �b=r" #
ð7Þ

4.2. Semi-conjugate prior structure

According to the Bayesian line of reasoning, the

prior distribution is part of model specification.

We assume that prior beliefs about u ¼ ðm; r;bÞ

can be represented by the following probability

density function:

pðuÞ ¼
cn

GðnÞ
mn21 expð2cmÞ

wgðbÞ

GðgðbÞ
rgðbÞ21

£ expð2wðbÞrÞp0ðbÞ ð8Þ

In other words, the marginal prior for b is p0ðbÞ:

p0ðbÞ is arbitrary and its functional shape is left to the

expert to encode his prior knowledge. Conditionally

to these prior beliefs for b, the pdf for r is

approximated by a gamma distribution with hyper-

parameters ðgðbÞ;wðbÞÞ that are functions of b. If not,

b and r are a priori independent. It is also assumed

that the priors for m and ðb; rÞ are independent, which

is realistic as many experts often proceed separately

when dealing with the yearly expected number of

floods and when estimating their intensity once they

occur. Prior belief about m is taken in the conjugate

Poisson family, that is a gamma distribution with

hyperparameters ðn;cÞ:

Arguments for choosing such a functional form as

Eq. (8) are:

† The prior model (8) is quite flexible and the

quantities ðp0ðbÞ; n;c;gðbÞ;wðbÞÞ need to be

elicitated from the experts’ knowledge about

extreme behavior of the river flows or

chosen according to a non-informative structure.

They can also be estimated through a

regional analysis of extreme events in the

vicinity of the river basin or themselves appear

as a first layer of at-site effects in a hierarchical

model.

† Advantage is taken from partial conjugate

structure; as the likelihood (3) belongs to a

partly exponential family (conditioned upon b),

prior and posterior pdfs for u will exhibit

conjugate (given b) properties for r and m.

In the simple case of a systematic sample x

(with no historical data), the joint posterior distri-

bution pðulxÞ has the same conditional structure as the

prior pdf:

† m remains a posteriori independent from ðb; rÞ: It

follows a gamma distribution with hyperpara-

meters ðnþ n;cþ TÞ:

† Conditionally upon b, r is also gamma distributed

with updated hyperparameters ðgðbÞ þ n;wðbÞ2

Snðx;bÞ:

† The marginal posterior density of b, pðblxÞ
and the posterior pdf of b conditioned on r,

pðblr; xÞ are explicitly known up to a constant

of normalization.
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The conjugate prior distribution is chosen for

mathematical convenience (cf. Raiffa and Schlaifer,

1961), but this general form is flexible enough to

represent a large family of quantified expert beliefs.

We refer to Bernier and Parent (2002) for a

presentation of proper priors based on expert assess-

ments for the same data. In this paper, a non-

informative prior (Box and Tiao, 1973) is derived by

letting ðp0 ! 1; n! 0;c! 0;gðbÞ! 0;wðbÞ! 0Þ in

order not to hide the effect of historical information

by any prior observation. Note that historical

evidence is generally a valuable source to help

subjective introspection when attempting to formu-

late a prior in Bayesian contexts. In the present

approach, we deliberately choose not to consider

historical information for prior elicitation but we will

directly incorporate it into the analysis as part of the

objective data set.

5. Models of historical data

We do not deal here with paleo floods and we

assume that the historical sample consists of r

historical maxima y ¼ ðy1; y2;…; yrÞ; although not

necessarily annual maxima as in Smith (1986).

They have been observed and assessed by various

methods (Pardé, 1935) during a historical period H

ðr # HÞ: For the time being, we make the

additional hypothesis that the historical data were

assessed without errors.

The POT likelihood as formulated by Eq. (3) does

not apply to the Garonne data containing both

systematic records (x) and historical values (y). In

the flood literature, two ways of incorporating

historical evidence in extreme value analysis are

currently proposed. They correspond to two different

censoring procedures:

1. Censoring by threshold. A perception level up is

considered and it is assumed that the historical

floods were recorded because they were the only

ones that overcome this perception level up:

With this assumption, the component of the

likelihood due to the historical data y is just a

reformulation of Eq. (3) with up ¼ ðmp; rp;bpÞ

given by Eq. (4) þ Eq. (5) þ Eq. (6):

f ðhÞðy;mp
;rp;bpÞ

¼
ðmpHÞr expð2mpHÞ

r!
ðrpÞr

£exp
ðrp2bpÞ

bp

Xr

j¼1

logð12bpðyj2upÞÞ

2
4

3
5 ð9Þ

This expression is rather simple but needs two

additional parameters: H and up:

2. Censoring by number. Here the only assumption

made is that the historical sample contains all

the r highest events from the historical period.

To evaluate the historical contribution to the

likelihood, it is useful to condition upon the

number of floods that exceed the threshold u

during H years. The number K of past

exceedances follows the Poisson distribution

with parameter Hm: Given K¼k; the historical

sample consists of the r highest values and all

we know about the remaining k2r values is that

they stand below yð1Þ (with probability

Gðyð1Þlr;b;uÞ since each of them is a POT

variable but can only occur anywhere in the

interval ½u;yð1Þ�Þ:

f ðhÞðy;m;r;bÞ

¼
Xþ1

k¼r

ðmHÞk expð2mHÞ

k!

k!

ðk2rÞ!

�Gðyð1Þlr;b;uÞk2r
Yr

i¼1

gðyilr;b;uÞ ð10Þ

The summation is straightforward:

f ðhÞðy;m;r;bÞ

¼ðmrHÞr exp½2mHð12Gðyð1Þlr;b;uÞÞ�

£expððr2bÞSrðy;bÞÞ ð11Þ

Although the generalized extreme value cdf

Gðyð1Þlr;b;uÞ in Eq. (11) is known in closed form,

this second model for including historical infor-

mation is often believed to be less tractable that

E. Parent, J. Bernier / Journal of Hydrology 274 (2003) 95–108100



the one given by Eq. (9). But it is more

parsimonious since only H is to be included in

the study and it does not need to estimate the

poorly defined parameter up: Furthermore, the two

modeling approaches (11) and (9) merge when:

up¼yð1Þ

The way to incorporate historical information

belongs to the modeling process. It requires

assumptions and new external parameters such as

H and the perception levels up: But both H and up

are uncertain parameters and referring to the

Bayesian paradigm, we could use priors to take

their uncertainty into account. In many cases, little

is known about them, it is preferable to deal with

their uncertainties by a mere sensitivity analysis. In

the Garonne case study there are hydrological and

historical justifications (Pardé, 1935) to let the

historical period begin in 1770.

Although model (9) is widely used in most extreme

values studies from the North American literature, the

perception parameter up is questionable, both in

theory and in practice. Such a level of perception

may have varied between time periods. It can also be

very difficult to assess since the only relevant

information concerning up is carried by yð1Þ; the

smallest record in the historical sample. Conse-

quently, in what follows, we prefer censoring by

number.

6. Bayesian estimation by Gibbs and ‘data

augmentation’

6.1. The Gibbs sampling algorithm complements

the historical records

Bayesian analysis does not suffer from the usual

difficulties brought by eventual non-regularity of the

likelihood (3) pointed out by Smith (1985) or of the

likelihood completed by any form of the two historical

contributions (9) or (11). We even avoid to implement

the computation of these likelihoods by relying on the

data augmentation algorithm. The intuitive idea

behind the data augmentation algorithm used in this

case is to complement the observed data ðx; yÞ ¼

y1; y2;…; yr; x1; x2;…; xn (historically recorded or

systematically measured) by the missing past data

Z1;Z2;…; ZK2r (unobserved or forgotten flood

events)so as to regenerate a complete sample on the

period H þ T ; i.e.K events during the historical period

H and n events during the recent period T. As an

illustrative example, such a data augmented sample

could re-assemble the series as: ðZ1;Z2; y1; y2

;Z3; Z4; y3;…;Z5; yr; Z6;…; ZK2r; x1; x2;…; xnÞ:

Gibbs sampling is an iterative algorithm allowing

computation of a multi-dimensional k-joint distri-

bution Prðz1;…; zi;…; zkÞ from the knowledge of the

k one-dimensional distributions Prðzil{zj–i}; called

complete conditionals. Its theoretical justification is

that, under suitable regularity conditions, such a

joint distribution can be considered as the ergodic

limit of an homogeneous Markov chain having a

transition probability density defined as the product

of the complete conditional densities Prðzil{zj–i}

(Gelfand and Smith, 1990). This is still true when

using a block-component {z1;…; zi;…; zk}

decomposition of the argument of the multi-dimen-

sional distribution.

A Gibbs sampling algorithm to evaluate the joint

pdf of ðu;K;ZlðX ¼ x;Y ¼ yÞÞ can be implemented

as follows (with the previous notations: k ¼ 3; z1 ¼ ul
x; y; z2 ¼ Klx; y; z3 ¼ Zlx; y):

Let uð0Þ; kð0Þ; zð0Þ denote arbitrary starting values

and uðs21Þ; kðs21Þ; zðs21Þ the values generated at step

s 2 1: Step s of the Gibbs sampler consists of the

following three phases:

(1) using the structural conditional decomposition

of the posterior pðulx; y; zðs21ÞÞ; draw 21uðsÞ ¼

ðmðsÞ; rðsÞ;bðsÞÞ

(2) based on the Poisson distribution with parameter

HmðsÞ; generate the number K ¼ kðsÞ of data

during period H with K $ r; the number of

missing values for the unobserved sample Z is

ðkðsÞ 2 rÞ:

(3) sample the ðkðsÞ 2 rÞ values Z1;Z2;…;ZðkðsÞ2rÞ

independently from the truncated distributions

(a) gðzlrðsÞ;bðsÞ; uÞ=GðuplrðsÞ;bðsÞ; uÞ defined on

the interval ½u; up� for the model (9) with

historical data censored by threshold up;

(b) gðzlrðsÞ;bðsÞ; uÞ=Gðyð1ÞlrðsÞ;bðsÞ; uÞ defined on

the interval ½u; yð1Þ� if the model (11) with

historical data censored by number is

chosen.
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No difficulty is encountered when running the third

phase of the Gibbs sampler since GEV distributions

are available in closed form and random generation is

directly based on inverse cumulative density function

like Eq. (7). In practice, as up is often elicited close to

yð1Þ the two possible procedures of the third phase do

not differ much.

Iterating these three phases guarantees that the

Gibbs sampler chain converges to the correct

equilibrium distribution of Prðu;K;Zlðx; yÞÞ: The

posterior sample from Prðulðx; yÞÞ is straightforwardly

derived by subsequent direct marginalisation. Dem-

onstrations of MCMC ergodic properties and practical

implementation of such techniques are now exten-

sively published and so will not be recalled here.

Details can be found for instance in Robert and

Casella (1998) or in Tanner (1996).

6.2. Benefits from Gibbs sampling and a data

augmentation algorithm

6.2.1. A missing value perspective for hydrological

interpretation

Missing values Z can be interpreted as latent (i.e.

unobserved) variables which can be put in the model

as conditionally linked between observed variables

and parameters. This contributes to a simpler

interpretation of the model and suggests the coherent

Gibbs computation method of marginal posterior

distributions via complete conditional ones.

6.2.2. Imprecision can be dealt with an additional

loop in the Gibbs sampling scheme

Now a look at Table 1 reveals that historical

floods are not as precise as everyday data since they

have not been evaluated with the same measuring

devices. Most of them are just past experts

assessments with a rule of thumb or present

evaluation of their magnitude on the basis of past

damages reported in archives. In addition, at times

of extremely high water levels, gauging stations, if

any, did not work well or did not work at all (as it is

generally still the case nowadays!). It is fairly easy

to represent the poor quality of the historical data yj

in our algorithms by assuming that all we know

about it is that it has occurred in the range

½ymin
i ; ymax

j �: We therefore consider that historical

values stem from a random mechanism on

the interval ½ymin
i ; ymax

j �; for instance a uniform

draw or a truncated distribution centered on a

reference value �yi: An additional stage in the Gibbs

sampler is necessary to introduce this uncertain

historical evidence: at each loop a value for yj is

drawn accordingly. The independence of draws is

assumed here for illustration purposes only. The

data augmentation algorithm would work with any

other model of imprecision. However, assessing a

model for the imprecision of the historical data is a

rather uneasy task because strong modeling assump-

tions are to made. Using this very parsimonious

model simply (but quantitatively) illustrates the

decreasing value of historical information with the

decreasing precision.

6.2.3. Decision analysis as a side-product

of the Gibbs sampler

Finally the same algorithms are suitable for a

complete decisional analysis of the risk problem.

With regards to the balance between the cost of

protection and the possible damages, the failure

level 1 2 p is generally set to probabilities typically

as small as 1/100 or 1/1000 in flood risk analysis.

This means extrapolating the model far away from

the range of values for which it was adjusted (very

few gauged stations possess as much as 100 years

of data and 1000 years is always out of reach).

Consequently, one should not forget that the values

given by Eq. (7) are blurred by a lot of

uncertainties. Of course, the decision maker

wishes to adopt only one single design value d

which mitigates the possible damaging conse-

quences. Without entering here into a

complete analysis of these consequences, a con-

ventional ‘cost’ function like Eq. (12) can roughly

sketch the consequences of errors between d and

qðp; uÞ:

upðd; uÞ ¼ ð1 2 cÞ½maxð0; d 2 qðp; uÞÞ�l

þ c½maxð0; qðp; uÞ2 dÞ�l ð12Þ

For instance, were an overestimation of qðp; uÞ

assumed to be less damaging than an under-

estimation, then the weighting coefficient c should

be chosen such that ð1 2 cÞ . c: The index l is

used to tune the relative compensations between
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high and small deviations. The traditional least

squares criterion corresponds to c ¼ 1=2 and l ¼ 2:

Bayesian decision theory (Tribus, 1972; Berger,

1985) deals with uncertainty about u by picking the

decision d that minimizes the expected predictive

cost:

EðdÞðulx; yÞ ¼
ð

upðd; upðulx; yÞdu ð13Þ

The computation of EðdÞðulx; yÞ is a fairly easy by-

product of the MCMC algorithm that provides

samples from pðulx; yÞ:

7. Results

7.1. Inference with systematic data only

7.1.1. Implementation

When dealing with data systematically recorded,

the posterior distribution pðulxÞ is known up to a

constant. However, as a practical consequence of

the semi-conjugate structure when conditioning

upon b, a very simple random sampling scheme

can be achieved: an easy univariate random

generation of b by a numerical inverse

probability method , followed by a gamma

generation for r (conditioned on b) and then m is

drawn independently from its own posterior gamma

distribution.

7.1.2. Parameter and percentile inference

Table 2 shows posterior pdf for parameters and

usual design percentiles. One cannot exclude that

parameter b may be negative, leading to a Weibull

bounded type distribution for floods. Fig. 2 shows a

sample of the percentiles drawn from their posterior

distribution. They are not bell-shaped but highly

skewed.

Fig. 2. Posterior samples of quantiles based on (systematic) data spanning on the period 1913–1977.

Table 2

Posterior characteristics for model parameters based on systematic

data

Mean Median Sup 95% Inf 95%

m 2.33 2.32 2.65 2.02

1000b 0.11 0.12 0.20 20.01

1000r 0.83 0.82 0.99 0.68

q10 5550 5520 6010 5195

q100 7165 7005 8520 6355

q1000 8395 8000 11,090 6930
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The range of the 90% credible interval for the 1000

year return flood is close to 4000 m3/s, to be compared

with the expected value Eulxðqð1023; uÞÞ ¼ 8400 m3=s:

7.2. Inference with historical data

7.2.1. Parameter and quantile inference

Table 3 shows 90% credible intervals for par-

ameters and usual design percentiles when dealing

with the historical þ systematic information based on

the posterior pdf pðulx; yÞ: It is now very likely that

parameter b is positive, thus excluding finite end point

distributions for maximum floods. Fig. 3 compares the

parameter posterior marginal distributions with and

without historical data. The pdfs for parameters b and

r are less diffuse, as expected, when both types of

information are take into account. m posterior

marginal pdf remains unaffected except in terms of

a little shift in the mean. This pdf does not depend on

the very values of the historic sample but on the

number of historical observations and the length of the

historical period H.

The range of the 90% credible interval for the 1000

year return flood is now close to 2600 m3/s, i.e. 65% of

the corresponding range when only systematic data are

used. The mean value Eulxðqð1023; uÞÞ ¼ 8600 m3=s

is a larger than in the previous case. Fig. 4 shows

the increase of precision for various return periods on a

log scale.

7.2.2. Decision making and predictive analysis

Fig. 5 plots the expected costs (Eq. (13)) with

c ¼ 2=3; l ¼ 1:5 and c ¼ 2=3; l ¼ 3 for designing

a 100 and a 1000 year return flood. In uncertain

situations, depending how they weight under and

overestimations, decision makers should generally

pick a design value larger than the previous

posterior mean estimates.

The aim of current engineering practice is to

protect against a maximum probable flood on a given

period of time. Fig. 6 plots maximum flood predictive

pdfs for various spanning periods, with and without

Fig. 3. Parameter posterior pdfs with and without historical data.

Table 3

Posterior characteristics for model parameters based on

systematic þ historical data

Mean Median Sup 95% Inf 95%

m 2.33 2.32 2.65 2.02

1000b 0.11 0.12 0.17 0.03

1000r 0.77 0.77 0.93 0.64

q10 5740 5740 6020 5480

q100 7420 7360 8200 6890

q1000 8640 7970 10,300 7640
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Fig. 4. Mean return quantiles and a 60% credibility interval with and without historical data.

Fig. 5. Expected cost function for 100 and 1000 year return design floods with c ¼ 2=3; l ¼ 1:5 and l ¼ 3:
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historical evidence. These curves are the predictive

distributions of the maximum flood, i.e. the pdf for the

maximum flood on a given period P after integrating

out the uncertainty over the parameters. They are less

diffuse when historical information is incorporated

into the analysis.

7.3. Imprecise historical data

In the following application, imprecise historical

values are represented by a normal variable centered

on the recorded reference �yi with a standard deviation

s and truncated to the interval ½ymin
i ¼ 6000 m3=s;

ymax
j ¼ 8500 m3=s�: For the 12 historical records, the

corresponding loop is added into the data augmenta-

tion algorithm. The width of the 90% credible interval

for the 1000 year return percentile reaches 3700 m3/s

with s ¼ 1000 m3=s and 3060 m3/s with s ¼ 500 �

m3=s; which are intermediate states between the

ranges with precise historical data and no historical

data. As expected, this width increases with the

variance of the error of measurement, but also

depends on the information carried by the truncations

boundaries.

8. Discussion and concluding remarks

8.1. Frequentist versus Bayesian approaches

for flood analysis

On the basis of the systematic records and a point

process model with Poisson occurrence for floods

exceeding a threshold and Weibull pdf for their

magnitudes, Miquel (1984) performed an asymptotic

Bayesian estimation for the same case study. Table 4

gives confidence intervals for the 1000 year return

design floods with the historical sample. Since that

date, it seems that most flood analyses were based on

the frequentist North American approach. We did not

follow this avenue of thought for the reasons

Fig. 6. Predictive maximum flood pdf over periods of 1, 100 and 1000 years with and without historical data.

Table 4

Asymptotic Bayesian credible Intervals for Garonne quantiles

(Miquel, 1984) around the Max likelihood estimates (normal

approximation)

Estimate Sup 95% Inf 95%

q10 5510 5940 5090

q100 6810 7550 6070

q1000 8730 9370 7550
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presented in the introduction. The Garonne example

illustrates our arguments:

† Traditional frequentist interpretation of prob-

ability can be misleading: for extreme values, the

conceptual point of view of repeating experiments may

appear paradoxical and unrealistic. In addition, usual

frequentist criteria such as unbiasedness or minimum

sampling variance are worthless for operational

purposes. On the contrary, most decision makers

would not give the same weight to over and under-

estimation, which should be formalized by the analy-

sist. Eq. (12) gives an illustrative cost function to meet

such requirements. As a consequence, the expected cost

curves from Eq. (13) on Fig. 5 are not symmetrical.

† With a locally uniform prior (as taken in this

case), maximum likelihood estimates are asymptoti-

cally identical to the mode of the posterior pdf.

However, asymptotic normal conditions to be met by

ML estimates are not fulfilled here, even with 151

records: Fig. 2 highlights that percentile posterior pdfs

are highly skewed. This illustrates that some tra-

ditional floods frequency analyses (Ouarda et al.,

1998) can be far from coherent when based on

asymptotic confidence intervals without validation.

† Model uncertainty can be illustrated by the

previous Bayesian inference. Compared with the

Exponential model ðb ¼ 0Þ; the generalized POT,

here letting b free to vary, increases the range of the

90% credible interval by 180% and lowers by 22% the

estimation of the 1000 years percentile when systema-

tic data are used. Conversely, Monte Carlo simulations

conditioned upon fixed ML values of the model

parameters completely miss the point of model

uncertainties. Extreme values frequentist studies with

historical data or not, such as in Martins and Stedinger

(2001a,b), would therefore ignore parameter (and

model) uncertainty and only partially test the proper-

ties of old or new estimates. Such model uncertainty

may, as in the Garonne case, represent a great part of the

unknown, even when restricting the possible models to

the GEV family. Consequently, most traditional flood

frequency studies give the end user (reasoning with

decisional bets) a fallacious feeling of overconfidence

in the results derived this way, however, computer

intensive the simulation experiment may be.

† The managers rather interpret probabilities in a

subjective manner. On the other hand, the frequentist

setting ismostlyadoptedbyhydrologists.Thismaylead

to costly misunderstandings until both agree to work

and tocommunicate in thesameconceptual framework.

† Missing floods are naturally interpreted as latent

variables and the data augmentation algorithm is an

essential part of the estimation process. The concept

of latent (or hidden) variables extends to many other

models such as the binomial censored data model of

Stedinger and Cohn (1986) in which the only

information used is the number of exceedances

above a threshold.

† To incorporate past historical data into the

analysis, strong additional modeling assumptions

must be made. The most stringent one is the

stationarity of the hydraulic regime, which states

that the three parameters of the POT model have not

changed since 1770. Due to the limiting number of

historical events, designing alternate models getting

rid of this stationarity assumption is an open challenge

since only very few additional parameters can be

considered to describe a drift with time or the

influence of covariates.

9. Conclusions

The following conclusions have been attained:

† The Garonne case study highlights that conditional

model structures are conveniently handled within

the Bayesian perspective. The data augmentation

algorithms not simply a ‘nice Bayesian trick’, but it

unties the implicit mathematical constraints of

tractability that curbed the creativity of the analyst.

We believe that the released conceptual effort

should now be reinvested with much profit into the

worthwhile task of modeling.

† The data augmentation algorithm has a direct

hydrological interpretation. For a practitioner it

seems quite natural to fill the gaps left by the missing

values. Bayesian methodology provides the prob-

ability-basedguidelines to put this idea into practice.

Recent advances in graphical representation of the

model properties and conditional thinking (Spie-

gelhalter et al., 1996) can further improve the

communication between scientists and end users.

† Historical evidence, even imprecise, provides

highly valuable information to reduce model

uncertainty. On the Garonne example, the design
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value and its credible interval are notably changed

when incorporating historical evidence in the study,

even if this information is not very precise.
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