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Abstract

A Bayesian approach for calibrating a hidden Markov model (HMM) to long-term multi-site rainfall time series is presented.

Using a HMM approach for simulating long-term persistence is attractive because it has an explicit mechanism to produce long-

term wet and dry periods which are a feature of many long-term hydrological time series. The ability to fully evaluate parameter

uncertainty for the multi-site HMM represents an advance in the stochastic modelling of long-term persistence in multi-site

hydrological time series. The challenges in applying the Bayesian Markov chain Monte Carlo (MCMC) method known as the

Gibbs sampler to infer the posterior distribution of the multi-site HMM parameters are fully outlined. The specification of

appropriate prior distributions was found to be crucial for the successful implementation of the Gibbs sampler. It is described

how using synthetic data led to the development of an appropriate prior specification. Further synthetic data analysis showed

how the benefits of space-for-time substitution for identifying the long-term persistence structure are dependent on the spatial

correlation that exists in multi-site data. A methodology for handling missing data is also described. This study highlights the

important role of the priors in Bayesian analysis using MCMC methods by illustrating that misleading inferences can result if

the priors are inappropriately specified.
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1. Introduction

Numerous stochastic models have been developed

to simulate multi-site long-term hydrological data for

long-term water resources planning. To ensure

optimal planning decisions for drought risk assess-

ments are made it is important that the model has a

conceptual framework to reproduce the long-term

persistence of the hydrological data. The most popular

models are the ARMA–type processes (Grayson et al.,

1996; Salas, 1993; Salas and Smith, 1981; Srikanthan

and McMahon, 2000). As an alternative to the ARMA

approach, Thyer and Kuczera (2000) applied a hidden

Markov model (HMM) for simulating long-term

persistence in single site rainfall time series. The

motivation was that unlike the ARMA approach,

the HMM has an explicit mechanism to produce

time series with long-term wet and dry periods. These
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long-term wet and dry regimes are prominent in

Australian hydrological data due to the influence of

quasi-cyclic global climatic mechanisms (e.g. the El

Niño phenomenon). Thyer and Kuczera’s (2000)

results supported the notion that the HMM provides

a conceptually sounder approach for simulating long-

term persistence in hydrological time series than the

ARMA-type processes.

This study presents a Bayesian approach for fully

quantifying the parameter uncertainty of a HMM for

simulating long-term rainfall time series at multiple

sites. This extension to a multi-site HMM framework

for modelling long-term persistence has several

advantages over the single site HMM used by Thyer

and Kuczera (2000). Firstly, the single site HMM is

inadequate for larger water resource systems where

multi-site simulations are required for drought risk

assessments. Secondly, Thyer and Kuczera (2000)

showed in a single-site analysis that the length of

historic records limited the ability to identify long-

term persistence. In a multi-site framework the long-

term persistence structure is assumed to be regional.

As a result, space-for-time substitution arising from

the use of multi-site data may provide more

information to better identify the long-term persist-

ence structure than would a single-site analysis.

Finally, by exploiting the spatial correlation that

exists in multi-site data a methodology for handling

missing data can be developed. This enables greater

utilization of the available rainfall information for the

identification of the long-term persistence structure.

Several researchers have previously applied the

HMM framework for modelling hydrological time

series. Jackson (1975) was one of the first to suggest a

two-state HMM for modelling drought lengths in

streamflow time series. However, Jackson (1975) only

made limited progress with parameter estimation

noting that it was a difficult problem. Thyer and

Kuczera (2000) presented a full Bayesian solution to

this problem for a single site HMM. In the multi-site

context Zucchini and Guttorp (1991) used a HMM to

describe the occurrence of wet/dry days at multiple

sites. Hughes and Guttorp (1994) built on this

approach to relate daily multi-site precipitation

occurrence to synoptic scale atmospheric data using

a nonhomogenous hidden Markov model (NHMM).

This has been extended to include a model for

precipitation amounts (Bellone et al., 2000; Charles

et al., 1999a). The NHMM approach shows great

potential for applications such as assessing climatic

change because precipitation processes are related to

atmospheric variables, as shown by Charles et al.

(1999b). However, it is not suitable for long-term

rainfall simulation as currently there is no method

available for stochastically simulating long-term

atmospheric data (Thyer and Kuczera, 2000). In this

study the motivation for applying the HMM concept

for simulating long-term persistence is for water

resources applications. Therefore, a simpler approach

was adopted where the hidden states could be

simulated without recourse to auxiliary atmospheric

variables. Furthermore, this previous research has

only considered procedures which derive single value

parameter estimates for the HMM. In contrast, this

study will present a Bayesian procedure for fully

evaluating parameter uncertainty of a multi-site

HMM.

Thyer and Kuczera (2000) used a Markov chain

Monte Carlo (MCMC) method known as the Gibbs

sampler to evaluate the parameter uncertainty of a

single site HMM. Originally it was thought that the

extension of this procedure to the multi-site case

would be a straightforward exercise. However,

several unexpected challenges were encountered,

primarily regarding the specification of appropriate

priors. The purpose of this paper is to describe these

problems and how they were overcome to ensure

successful implementation of the Gibbs sampler.

Using synthetic data it is also investigated how the

expected benefit of space-for-time substitution for

identifying the long-term persistence structure is

influenced by the spatial correlation between sites.

In the companion paper (Thyer and Kuczera, 2003)

the multi-site HMM will be applied to real rainfall

data. That analysis provides insight into the existence

of a regional long-term persistence structure in some

major water supply catchments on the east coast of

Australia and also outlines some challenges, which

still exist for the Bayesian calibration procedure of the

multi-site HMM.

This paper is organised as follows: A description of

the multi-site HMM model is given in Section 2.

Section 3 outlines the calibration procedure using the

Gibbs sampler approach; it includes an explanation of

the difficulties faced in specifying appropriate priors

and a description of the methodology used to handle
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missing data. In Section 4 the synthetic data analysis,

which led to the development of a suitable prior

specification, is presented. Included is an investi-

gation of the effects of spatial correlation in multi-site

data on the identification of long-term persistence

structure. In Section 5 the discussion outlines the

unresolved issues and limitations that require further

investigation for the presented Bayesian calibration

procedure of the multi-site HMM.

2. Multi-site hidden Markov model

The HMM framework (Fig. 1) assumes the climate

is in one of two states: wet (W) or dry (D). Each state

has an independent rainfall distribution. The persist-

ence in each state is governed by the state transition

probabilities. For example, if P(Dry ! Wet) is low

there will be long-term persistence in the dry state.

This provides an explicit mechanism to produce

rainfall time series with long-term wet and dry

periods. If these varying wet and dry periods are

viewed as manifestations of nonlinear climate

dynamics then the HMM conceptualization can be

viewed as an attempt to simulate these dynamics by

introducing an external variable—the climate state

‘wet’ or ‘dry’. Thus, while not directly modelling the

complex climatic processes the HMM can emulate

their influence on long-term hydrological time series.

In this multi-site HMM the climate state is assumed to

be ‘regional’, i.e. it is common to all rainfall sites at

any point in time. This notion of a regional climate

state strengthens the conceptual link to the climatic

mechanisms that produce the long-term wet

and dry periods. These climatic mechanisms have

a large-scale impact and therefore it is intuitive to

think in terms of a regional climate state.

The simulation of rainfall values follows a two-

step process. In the first step, the climate state at time

step t, st; is simulated by a Markovian process:

stlst21 , MarkovðPÞ ð1Þ

where P is the state transition matrix defined by:

P ¼ ½pij� ¼ Prðst ¼ ilst21 ¼ jÞ ð2Þ

where i, j ¼ climate state (W or D). Once the climate

state at time step t is known the vector of rainfall

values, yt at r multiple sites can be simulated using:

yt ¼

y1
t

..

.

yr
t

0
BBBB@

1
CCCCA ,

NrðmW;SWÞ if st ¼ W

NrðmD;SDÞ if st ¼ D

(
ð3Þ

where Nrðm;SÞ denotes a multivariate Gaussian

distribution in r dimensions, with mean vector m
and covariance matrix S:

The vector of unknown parameters for the multi-

site HMM, u; is therefore:

u0 ¼ ðmW;SW;mD;SD;P; SNÞ ð4Þ

where SN ¼ {s1; s2;…; sn}; the hidden state time

series, is included with the model parameters because

it is assumed unknown apriori and must be estimated

during model calibration.

3. Model calibration procedure

A Bayesian framework is used to infer the posterior

distribution of the model parameters, u, for the

observed time series data, Yobs
N : In this multi-site

approach Yobs
N represents a matrix of the time series of

N vectors of the observed rainfall at r sites. If these

time series are not contiguous then all the years when

the sites are missing data are denoted as Ymis and are

treated as additional unknown parameters. Hence, in

the presence of missing data the posterior distribution

is denoted as pðu;YmislYobs
N Þ: For the HMM it is not

possible to derive an analytical expression for this

posterior hence a MCMC method known as the Gibbs

sampler is used to simulate values from the posterior.

Further explanation of MCMC methods is provided

by Chib and Greenberg (1995), Gelman et al. (1995)

and Gilks et al. (1996).Fig. 1. Model framework of the hidden Markov model.
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3.1. The Gibbs sampler

The Gibbs sampler simulates a Bayesian pos-

terior by drawing samples, in turn, for each

component of the parameter vector from the

distribution of that component conditioned on the

data and the remaining parameters (referred to as

the full conditional posteriors). This iterative

sequence of samples is a Markov chain. Given

certain conditions the distribution of these samples

converges to a stationary distribution, which is the

posterior. Tierney (1994) provides an extensive

treatment of the theoretical aspects of MCMC

convergence.

At the ith iteration of the Gibbs sampler

(hereafter referred to as a Gibbs iteration), each

component of the parameter vector is sampled from

the following conditional posterior (note: x i refers

to the ith sample of parameter x):

ui
j , pðujlui21

2j ;YNÞ j ¼ 1;…; d ð5Þ

where ui21
2j represents the components of u, except

for uj; at their current values, such that ui21
2j ¼

ðui
1;…; ui

j21; u
i21
jþ1 ;…; ui21

d Þ; where d represents the

number of components of u. The term ‘component’

is used because uj can refer to either a scalar or a

subvector of u.

The role of the priors in the Gibbs sampler is

illustrated by expanding Eq. (5) using Bayes’ rule:

pðujlui21
2j ;YNÞ ¼ pðYN luj; u

i21
2j Þpðujlui21

2j Þ ð6Þ

where pðujlui21
2j Þ is the prior distribution for uj; which

can be dependent on the other parameter values ui21
2j :

Thyer and Kuczera’s (2000) procedure for

applying the Gibbs sampler to the single site

HMM is adapted to the multi-site version by

modifying the conditional posteriors to enable the

sampling of the multi-site state rainfall parameters

and the missing data. The missing data values are

sampled from their full conditional distributions.

These sampled missing data values then augment

the observed data to form the complete time series,

YN ; that would have been observed in the absence

of missing data (Gelman et al., 1995), such that:

YN ¼ ðYobs
N ;YmisÞ ð7Þ

Thus, the full conditional posteriors for this

implementation of the Gibbs sampler become:

Si
N , pðSN lmi21

;Si21
;Pi21

;Yi21
N Þ

Pi , pðPlSi
NÞ

Ymisi

, pðYmisi

lSi
N ;m

i21
;Si21

;Yobs
N Þ

Yi
N ¼ ðYobs

N ;Ymisi

Þ

mi
k;S

i
k , pðmk;S

i
klSi

N ;Y
i
NÞ

ð8Þ

where k refers to the hidden state, wet or dry. The

sampling procedures for SN and P are given in

Thyer and Kuczera (2000).

3.2. Specification of priors for the state rainfall

parameters

In a Bayesian framework it is generally

recommended that prior distributions be chosen to

represent what is known as diffuse or uninformative

priors (Gelman et al., 1995) to ensure that the

inferences are unaffected by information external to

the data YN : However, for the state rainfall

parameters mk, Sk the additional complexity of the

multivariate state distributions causes some com-

plications for implementing the Gibbs sampler that

prevent the use of uninformative priors which

are independent of the data. Therefore, data-based

empirical Bayes approximations as priors

are developed. The reasons for being forced to

adopt this less than ideal approach are outlined

below.

For the state rainfall parameters it is convenient to

use the parameterisation where m and the inverse

of the covariance matrix S21 are considered to be

jointly unknown. In this case the corresponding

joint prior density is pðm;S21Þ: Using the relationship

pðm;S2 1Þ ¼ pðmlS2 1ÞpðS2 1Þ the priors for the

state rainfall parameters can be specified. For pðml
S21Þ; a conjugate prior density, the multivariate

Gaussian density is used. Similarly for pðS21Þ a

conjugate prior, the Wishart density is used. This

results in the following parameterisation for pðm;
S21Þ (Gelman et al., 1995):

S21
k , Wrðn0;W0Þ mklS21

k , Nrðm0;S=k0Þ ð9Þ
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where Wrðn;WÞ denotes a Wishart distribution with n

degrees of freedom and scale matrix W. As it controls

the form of the precision matrix S21 it is convenient

to think of the prior scale matrix W0 as a prior

precision matrix (DeGroot, 1970).

The major challenge found in implementing the

Gibbs sampler was choosing suitable values for the

hyperparameters: The prior degrees of freedom n0

and the prior precision matrix W0 for the Wishart

distribution, the prior mean vector m0 and the

number of prior measurements on the S scale k0

for the multivariate Gaussian distribution. Hyper-

parameter values can be chosen to produce

noninformative improper priors. However, for both

the Wishart and multivariate Gaussian distributions

if improper priors are used the posteriors will

become improper if the number of data is less than

the dimension of the distribution. This can readily

occur during the Gibbs iterations when the hidden

state time series is sampled with the number of

rainfall values in a particular state being less than

the number of sites. Hence, the use of improper

priors is prohibited because it can lead to improper

posteriors which are not allowed in a Bayesian

analysis (Diebolt and Robert, 1994).

Hyperparameter values therefore must be chosen

which result in proper priors. Initially, m0 and W0

were set to arbitrary constant values. Every element of

m0 was set to 1000.0 and the diagonals of W0 were set

to values representative of a standard deviation of

300.0 and the off-diagonal terms were set to values

that represented the spatial correlation structure based

on the assumption that the correlation between sites

decayed as a function of their inter-site distance. The

constants n0 and k0 were set to values suitably low

enough to ensure a diffuse proper prior. Using these

hyperparameter values attempts to calibrate the multi-

site HMM with the Gibbs sampler were unsuccessful

because of the existence of computational ‘trapping’

states. During the Gibbs iterations when a low number

of rainfall values are assigned to one state there is

little or no information about the rainfall parameters

for that state and they are sampled directly from their

priors. If the priors are such that the sampled mean

vector and covariance matrix are not reasonably close

to the rainfall data there is a very low chance that any

observed rainfall data will be assigned to that state in

the next iteration. Thus, the process repeats itself and

the chain of parameter samples becomes stuck in a so-

called trapping state, and therefore the Gibbs sampler

is unlikely to converge.

Several studies use the technique of reparameter-

isation to resolve the problem of trapping states in

MCMC algorithms (Billio et al., 1999; Robert, 1996;

Robert and Mengersen, 1999; Robert and Tittering-

ton, 1998). In the context of the HMM, the idea in

reparameterisation is to express the rainfall par-

ameters for one state as a perturbation of the

parameters of the opposing state. This has two

advantages: It allows noninformative priors to be

used and more importantly it eliminates the trapping

states, as all the data contribute to the sampling of all

the parameters. Robert and Mengersen (1999) demon-

strated this technique for a model with univariate

Gaussian state distributions. Attempts were made to

extend their ideas to the multivariate Gaussian state

distributions of the multi-site HMM. Reparameterisa-

tion of the mean vector was theoretically possible.

However, no satisfactory method for the expression of

the covariance matrix for one state as a perturbation of

the covariance matrix for the other state was found.

Hence, for now at least, the technique of reparameter-

isation was not applied to the multi-site HMM.

In this analysis the approach taken was to find

suitable hyperparameter values which minimize the

chance of the Gibbs sampler becoming stuck in a

trapping state. Robert (1996) proposed the use of

empirical Bayes approximations as priors, with the

following data-based hyperparameter values:

m0 ¼ �y ð10Þ

W0 ¼
2S21

ðn0 2 3Þ
ð11Þ

where �y and S are the sample mean vector and

covariance matrix of the entire data set Yobs
N : The

constants n0 and k0 are set to values of 6 and 1,

respectively, to reduce prior information. Eq. (11)

implies a prior expectation forSk of S=2 asn0 !1:The

priors defined by the hyperparmeter set given in Eqs.

(10) and (11) will hereafter be referred to as prior P1.

It was found that the application of prior P1

provided a means for the Gibbs sampler to escape

from the trapping states. The empirical Bayes

approximations gave m0 and W0 a structure which

resembles the actual rainfall data. This is key, because

M. Thyer, G. Kuczera / Journal of Hydrology 275 (2003) 12–2616



now when no rainfall data is assigned to a particular

state plausible values for state rainfall parameters are

still sampled from their respective priors. Thus, in the

next iteration of the Gibbs sampler it is more likely

that observed rainfall data will be assigned to that

state and therefore the chain of parameter samples is

able to escape from the trapping state.

Although these empirical Bayes approximations

were able to alleviate the problem of the trapping

states, in Section 4.1 it is shown that for certain

synthetic data examples the value for W0

proposed by Robert (1996) gives results which

are counterintuitive. It is not explicitly stated by

Robert (1996) why the values of 2 and ðn0 2 3Þ

were assigned to W0. A more intuitive and

flexible approach, which was found to be effective,

was to use:

W0 ¼
S21

n0 2
r þ 1

2

� 	 ð12Þ

This implies a prior expectation for Sk of S as

n0 !1; which for this application seems more

reasonable than S/2. The ðr þ 1Þ=2 term in the

denominator was required because at low values of

n0 the Wishart distribution is highly skewed and

the expected value is significantly different from

the mode of the prior density. The addition of the

ðr þ 1Þ=2 term provided the necessary adjustment to

ensure that the mode is approximately equal to S

for low values of n0. In addition, it was found not

always suitable to set n0 at a constant value of 6 as

proposed by Robert (1996). Alternatively, n0 should

be adjusted depending on the number of sites to

ensure an adequately diffuse proper prior—refer

Section 4.1 for further explanation. The priors

defined by the hyperparameter values given in Eqs.

(10) and (12) will hereafter be referred to as prior

P2. The reader is referred to Section 4.1 for a full

explanation of why prior P2 was chosen in

preference to prior P1.

3.3. Sampling distribution for the missing data values

The sampling of the missing data values from their

full conditional distribution utilises the properties of

multivariate Gaussian distributions. This procedure

has the constraint that for every time step there must

be at least one site with an observed data point. For

each time step t (classified in state k) which has

missing data, the vector of missing data Ymis
t with

m , r values is sampled conditioned on the known

values of mk and Sk and the vector of observed values

for that time step, Yobs
t ; such that:

Ymis
t lYobs

t ;mk;Sk , Nmðmm;SmÞ ð13Þ

where the values for mm and Sm are derived using

Yobs
t ; mk and Sk; as given by Tong (1990) and re-

iterated here:

mm ¼ mmis
k þ Smislobs

k ðSobs
k Þ21ðYobs

t 2 mobs
k Þ

Sm ¼ Smis
k 2 Smislobs

k ðSobs
k Þ21Sobslmis

k

ð14Þ

withthepartitioningofmk andSk toobtain thevaluesfor

mmis
k ;Smislobs

k ; etc. undertaken in the following fashion:

mk ¼
mmis

k

mobs
k

" #
Sk ¼

Smis
k Smislobs

k

Sobslmis
k Sobs

k

2
4

3
5 ð15Þ

3.4. Initialising the parameter vector

In applying the Gibbs sampler the parameter vector

must be first initialised with arbitrary starting values.

In this implementation a heuristic procedure based on

the method for the single site version provided in

Thyer and Kuczera (2000) with some modifications to

accommodate the multi-site framework and the

inclusion of missing data was used. The first step is

to estimate the missing data values using the expected

value based on correlations with the observed data

from the multiple sites. Next, the hidden state time

series is estimated by combining the rainfall infor-

mation from all the multiple sites. First the rainfall

values from each site were smoothed using a five-year

moving average filter. These smoothed values were

then standardized using their mean and standard

deviation. A single time series was then created by

summing the standardized smoothed values from each

site at each time step. This time series is considered to

represent an estimate of the relative wetness or

dryness of the region as indicated by the multi-site

rainfall data. Hence if a particular value of this time

series was positive, the hidden state was classified as
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wet, if it was negative it was classified as dry. For P

the starting values were sampled using the method

given by Chib (1996). Starting values for mW; mD and

SW; SD were calculated from the data sets, YW and

YD derived from the complete data series, YN ; using

the estimated hidden state time series.

3.5. Assessing convergence

Once initialised, the Gibbs sampler is allowed to

continuously sample until the Markov chain

induced by the sampler has converged to a

stationary distribution. The most critical issue in

implementing the Gibbs sampler is how to

determine if convergence has been achieved. In

this study multiple chains were allowed to

independently explore the parameter space and a

variety of diagnostic tools were monitored for signs

of convergence failure. This approach, as used by

Thyer and Kuczera (2000) for the single site case,

was advocated by Cowles and Carlin (1996). The

diagnostics included inspection of the percentiles of

the sample distributions for all parameters and the

R statistic (as defined by Gelman et al. (1995)),

which was calculated to ensure the multiple chains

were mixing properly in the parameter space.

In the multi-site case additional diagnostics were

required to determine whether a particular chain was

caught in a computational trapping state. Diagrams

showing the Gibbs samples for each individual

parameter and a diagnostic referred to as the hidden

state frequency (HSF) time series were also examined.

During iterations of the Gibbs sampler the HSF time

series plots the relative proportion of allocation to

each state for each year in the time series thus far in

the iterative sequence. Essentially, the HSF time

series is equivalent to the posterior of the hidden state

time series but it is simply prior to the Gibbs sampler

achieving convergence. By comparing the HSF time

series for an individual chain to the HSF time series

for all the other chains combined provided immediate

and unambiguous feedback when a particular chain

became stuck in a trapping state. If all the diagnostic

tools indicated convergence had been achieved, the

remaining simulated output was treated as samples

from the posterior distribution.

3.6. Other implementation issues

In this application 10 chains were used. The

reduction from the 100 chains used in single site

case (Thyer and Kuczera, 2000) was found to be more

computationally efficient and was not found to affect

the inferences. Once convergence had been achieved,

the last 1000 samples were used from each chain,

producing 10,000 samples, which provides a good

approximation to the posterior.

Another consideration in formulations like the

two-state HMM is that the posterior distributions can

have two modes which are mirror images of each

other, referred to as aliasing (Gelman et al., 1995).

During Gibbs iterations the chains can move between

each mode, which can significantly decrease the rate

of convergence. In the HMM this is where the wet

state parameters can become the dry state parameters

and vice versa. To remove the effects of aliasing, the

constraint that the sampled wet state mean vector is

always greater than the dry state mean vector was

enforced.

4. Verification of model calibration procedure

using synthetic data

In this section the Gibbs sampler will be used to

calibrate the multi-site HMM using synthetic data

generated by the multi-site HMM. The aim is to gain

an understanding about what factors adversely affect

the ability of the Gibbs sampler to identify the true

parameter values, and therefore the true underlying

persistence structure of the synthetic data. The main

issue that will be investigated is how adding more

sites to the analysis influences the ability of the Gibbs

sampler to identify the true parameter values.

When an extra site is included in the analysis there

are a plethora of factors that could affect whether the

true synthetic parameter values can be recovered. In

this study only the influence of the correlation

between the sites will be examined. Multi-site

synthetic rainfall data was generated using the

HMM with the same hidden state time series and

the same wet and dry state rainfall parameters at each

site. The synthetic parameter values used for the wet

and dry state mean and standard deviation for all

the sites are given in Table 1. For different sets of
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multi-site data the spatial correlation between the sites

was varied, hence different wet and dry state

covariance matrices were produced. Table 1 also

shows the values used for the transition probabilities.

These synthetic parameter values were chosen

because they were typical of the posterior expected

values obtained from a real data site with a well-

identified two-state persistence structure (refer to the

companion paper Thyer and Kuczera (2003).

In the following analysis synthetic replicates of

300 years were generated. Using the values for the

transition probabilities the expected number of data in

the wet E(nW) and dry E(nD) states and the expected

number of transitions from either state to the other

E(trans.) can be calculated for a time series of a given

length (Thyer, 2001). A length of 300 years was

chosen because for the parameter values given in

Table 1 this results in EðnWÞ ¼ 105; EðnDÞ ¼ 195 and

E(trans.) ¼ 31, which is considered to be an adequate

number of wet and dry periods to identify the

synthetic parameter values. The Gibbs sampler was

then applied to these synthetic replicates to see if the

posteriors could identify the true parameter values.

4.1. Development of P2 prior specification

To generate the first set (S1) of multi-site synthetic

data the wet and dry state correlations between every

site was set to 0.95. Fig. 2 compares percentile box

plots to compare the transition probability posteriors

for the analyses with the number of sites varying from 1

to 5, using Robert’s prior P1. The transition probability

posteriors were chosen because if these posteriors

indicated the transition probabilities were well ident-

ified then the remainder of parameters would also be

well identified. For both pWD and pDW there is a clear

trend of increasing posterior variance with increasing

number of sites. This seems an intuitive result because

when more sites are included in the analysis, more

parameters are required to be identified. Every time the

number of sites is increased by one to a total of r sites,

the number of parameters increases by 2ðr þ 1Þ: When

the number of sites increases from four to five this

represents 12 additional parameters. If there is little

new rainfall information from the extra site because the

sites are highly correlated then it would be expected

that the parameter uncertainty would increase, as is the

case in Fig. 2.

One would expect that this increase in parameter

uncertainty (as measured by the increased posterior

variance) due to an increasing the number of sites

should be able to be offset by a decrease in the prior

variance of the parameters. To investigate this the

prior variance on m and S21 was decreased by

increasing n0. Given the influence of the priors on the

posteriors (Eq. (6)) and the interrelationship between

the posteriors of each parameter through the con-

ditional posteriors (Eq. (8)) it would be expected that

if the prior variance of the m and S21 was decreased

then the posterior variance on the pWD and pDW would

also decrease. However, the results were not as

expected. Fig. 3(a) and (b) shows that when n0 was

increased for a four site analysis with prior P1 the

posterior variance of pWD and pDW clearly did not

decrease with a decrease in the prior variance of the m
and S21: To understand why this occurred the

posteriors for sW and sD for one site is compared to

the P1 prior for the two cases of n0 ¼ 6 and n0 ¼ 100

in Fig. 4(a) and (b). For the n0 ¼ 6 case the sD

posterior is clearly bimodal, while for n0 ¼ 100

both the sD and sW posteriors are bimodal. In both

Fig. 4(a) and (b) the mode of the sD posterior with the

lower parameter value coincides with the mode of the

prior P1 while in Fig. 4(b) the mode of the sW

posterior with the higher parameter value coincides

with the true synthetic parameter value. This suggests

that one mode in the posteriors is induced by the prior

P1 while the other is induced by the data. The question

is: Why does prior P1 induce a different mode in the

sk posteriors to the data? The explanation is that from

Eq. (11) it is known that for prior P1 the expected

value for Sk is S/2 as n0 !1: Hence, the expected

prior value for sk is the empirical estimate of the

standard deviation for the entire time series sy divided

by
ffiffi
2

p
: For the case of n0 ¼ 100 (Fig. 4(b)) the

bimodal posteriors indicate that some of the Gibbs

sampling chains converge to this prior mode for sk of

Table 1

State rainfall parameters used to generate multi-site synthetic data

Parameter Synthetic value

uWðsWÞ 1250 (300)

uDðsDÞ 850 (250)

pWD 0.15

pDW 0.08
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Fig. 2. Posteriors of the transition probabilities for synthetic series set S1 (0.95 correlation between sites) for a varying numbers of sites (1–5)

with prior P1. Solid horizontal line indicates the true synthetic parameter value. In these percentile box plots the bottom and top of the box

structure corresponds to the 5th and 95th percentiles, the middle solid line is the median (50th percentile), and the two dashed lines are the 25th

and 75th percentiles of the posterior.

Fig. 3. Posteriors of the transition probabilities for synthetic series set S1 (0.95 correlation between sites) for the four-site analysis and varying

prior degrees of freedom (a) and (b) are with prior P1, (c) and (d) are with prior P2. Solid horizontal line indicates the true synthetic parameter

value. Refer to Fig. 2 for explanation of the box structure.
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sy=
ffiffi
2

p
despite the fact that data may not have a true

synthetic parameter value for sW or sD of sy=
ffiffi
2

p
: The

high R statistic for this case also indicated the chains

were not mixing properly and converging to two

different modes. Even for the case of n0 ¼ 6 (Fig. 4(a))

the bimodal sD posterior indicates some of the chains

are converging to the prior mode for sk of sy=
ffiffi
2

p
:

Inspection of the mW and mD posteriors for this n0 ¼ 6

case revealed they were also bimodal. This apparent

aberration where bimodal posteriors are induced by

the prior suggests that the wisdom of specifying a

prior expectation for Sk of S/2 should be questioned.

In the context of wet and dry state annual rainfall it is

rarely the case that the expected posterior value for

sW and sD was sy=
ffiffi
2

p
: Results from the single site

analysis (Thyer and Kuczera, 2000) indicate sW was

often significantly larger than sy.

These results led to an alternative specification for

the hyperparameter W0 known as prior P2 (refer Eq.

(12)) to be trialled. In this context, the prior P2

implies a more intuitive prior expectation for Sk of S

as n0 !1 while ensuring that for low values of n0

the mode of the prior density was close to S. The

results for prior P2 when the n0 was increased are

shown in Fig. 3(c) and (d). Notice the difference from

Fig. 3(a) and (b). For pWD there is only a slight

decrease and for pDW there is clear decrease in the

posterior variance as the prior variance is decreased.

This is because prior P2 does not produce bimodal sW

and sD posteriors, as shown in Fig. 4(c) and (d). Also,

notice how for the n0 ¼ 6 case the modes of the sW

and sD posteriors are closer to their true synthetic

values with the prior P2 (Fig. 4(c)) than with prior P1

(Fig. 4(a)). Similarly Fig. 5 shows that the posterior of

Fig. 4. Comparison of the sW and sD posteriors to the P1 and P2 priors with varying prior degrees of freedom n0 for one site from the four-site

analysis of synthetic series set S1 (0.95 correlation between sites). Solid vertical line represents the true synthetic parameter values, sW ¼ 300

and sD ¼ 250:
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the hidden state time series is closer to true synthetic

time series with prior P2 than with prior P1. Based on

these results it was concluded that prior P2 represents

a more intuitive prior specification, which does not

induce an unwanted mode in the posterior. Hence it

was adopted for use in all further analysis.

For the P2 prior specification a new issue arises—it

is not immediately clear what to use for n0: Robert

(1996) gave no rationale for choosing n0 ¼ 6 for his

prior P1. Ideally, the prior should be as diffuse as

possible to minimise its influence on the posterior

inferences. Given that the prior must be proper, a

minimum value of n0 ¼ r þ 2 was adopted. Using this

minimum value the prior distribution was generated

for a differing number of sites. It was found that as the

number of sites increased the prior variance for the

mean and standard deviation of each site also

increased. For the prior variance to be constant as

the number of sites increased it was necessary to

increment n0 as shown in Table 2. This scheme was

used in all further analysis with the synthetic series to

ensure the prior had minimal influence when compar-

ing posteriors for differing numbers of sites.

4.2. Influence of spatial correlation between sites

Fig. 6 shows the transition probability posteriors

for synthetic series S1 for a varying number of sites

using prior P2. Set S1 has a high correlation of 0.95.

For pWD there is a clear increase in posterior variance

as the number of sites increases from one to four, and

it then decreases for five sites. For pDW the general

trend is a slight decrease in the posterior variance.

Fig. 7 shows the transition probability posteriors for

synthetic series S2, which was generated with no

correlation between the sites (independent). There is a

definite decrease in the posterior variance for when

the number of sites increases. For the real rainfall data

used in the companion paper Thyer and Kuczera,

(2003) the average spatial correlation is approxi-

mately 0.8. Fig. 8 shows the posteriors for synthetic

series S3, which was generated using a correlation of

0.8 between the sites. For pWD the posterior variance

decreases as up to four sites are added and increases

for the five-site analysis, whereas for pDW the

posterior variance decreases.

The general trend from Figs. 6–8 indicates that the

spatial correlation between the sites has an influence

on the posterior variance of the transition probabilities

when more sites are included in the analysis. The

higher the spatial correlation the more likely the

posterior variance of the transition probabilities will

increase as more sites are included in the analysis. In

comparison, when there was no correlation between

sites the posterior variance for both pWD and pDW

decreased as more sites were added.

5. Discussion

In Section 1 it was stated that one of the

motivations for developing the multi-site HMM was

to exploit the potential benefit of space-for-time

Fig. 5. Comparison of the time series plots of the posterior probability of a year being classified as wet Pðst ¼ WlYN Þ for the four-site analysis of

synthetic series set S1 (0.95 correlation between sites) using prior P1 and P2 with n0 ¼ 6 to the true synthetic hidden state series.

Table 2

Prior degrees of freedom to give consistent prior variance for mean

vector and covariance matrix as number of sites increases

Number of sites, r Prior degrees of freedom, n0

1 ðr þ 2Þ ¼ 3

2 ðr þ 3Þ ¼ 5

3 ðr þ 3Þ ¼ 6

4 ðr þ 4Þ ¼ 8

5 ðr þ 4Þ ¼ 9
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substitution. It was believed that the extra information

contained within multi-site data would make the two-

state persistence structure easier to identify. From the

results of the synthetic analysis presented in Figs. 6–8

it can be seen that the benefits of space-for-time

substitution are dependent on the spatial correlation of

multi-site data. When there was no spatial correlation

the benefits of space-for-time substitution are appar-

ent. However, when the spatial correlation is high the

benefits of space-for-time substitution are signifi-

cantly reduced. This is because when a single extra

site is added to the analysis for a total of r sites, the

number of parameters increases by 2ðr þ 1Þ: If the

rainfall data from that site is highly correlated with

other sites then there is little extra information

provided in the multi-site rainfall data to identify

these extra parameters.

Figs. 6–8 show that in some cases the true

synthetic parameter value for pWD is outside the 5

and 95% limits of the posterior, more so for cases with

highly correlated data. There are two possible

explanations for this result: Firstly, because only

one replicate of 300 years was used the effects of

sampling variability means that this replicate could be

one of the 10% whose true synthetic parameter value

is outside the 5 and 95% limits of the posterior. The

other possible explanation is that the calibration

procedure presented for the multi-site HMM has

Fig. 6. Posteriors of the transition probabilities for synthetic series set S1 (0.95 correlation between sites) with varying number of sites (1–5) and

prior P2 with varying prior degrees of freedom, as given in Table 2. Solid horizontal line indicates the true synthetic parameter value. Refer to

Fig. 2 for explanation of the box structure.

Fig. 7. Posteriors of the transition probabilities for synthetic series set S2 (independent sites—no correlation between sites) for varying number

of sites with prior P2 and varying prior degrees of freedom, as given in Table 2. Solid horizontal line indicates the true synthetic parameter value.

Refer to Fig. 2 for explanation of the box structure.
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difficulty recovering the true synthetic parameter

value as more highly correlated sites are included in

the analysis. Given these results, it is strongly

recommended that prior to calibrating the multi-site

HMM using the Bayesian approach outlined in this

study the spatial correlation between all the sites

should be determined. If the sites are highly

correlated, then the procedure should be used with

caution.

The limitation associated with highly correlated

sites needs further work. Such work could consider

alternative multi-site HMM parameterisations in

which the covariance structure is constrained so as

to benefit from space-for-time substitution in multi-

site analysis. For example, following the approach

of Hughes et al. (1999) the correlation can be

expressed as a function of the distance and

direction between sites.

Another motivation for the multi-site framework

arose from its ability to handle missing data which

enables greater utilisation of the available rainfall

information. The procedure for handling missing data

presented does have the following limitations. Firstly,

for every time step there must be at least one site with

an observed data point. Secondly, as each missing

data point is modelled as an additional model

parameter if one or more sites have a large number

of missing data points then the additional uncertainty

introduced by these extra parameters may mean the

inference of the long-term persistence structure is not

enhanced by including these sites. McDonald and

Zucchini (1997) present an approach for computing

the likelihood function of a HMM in the presence of

missing data which is not subject to the above

constraints. Application of this procedure using

a Bayesian approach would require the use of another

MCMC method, the Metropolis algorithm, instead of

the Gibbs sampler and is the subject of ongoing

research.

In this study synthetic data was used to investigate

the effects of only one factor, the influence of the

spatial correlation between sites. In a multi-site

context there are several more factors that will likely

affect whether the two-state persistence present in

synthetic HMM data can be identified when more sites

are added to the analysis. These include whether the

site has the same hidden state time series and the

separation of the wet and dry states. Future research

should include further analysis with synthetic data to

understand the influence of these factors on the

identification of the two-state persistence structure.

A major problem with generalizing the results and

trends from synthetic data is the issue of sampling

variability. A synthetic replicate of finite length

represents only one sample from an overall popu-

lation. Hence, due to sampling variability two

different replications of a synthetic series generated

from the same process may give results with

Fig. 8. Posteriors of the transition probabilities for synthetic series set S3 (0.8 correlation between all sites) for varying number of sites with prior

P2 and varying prior degrees of freedom, as given in Table 2. Solid horizontal line indicates the true synthetic parameter value. Refer to Fig. 2

for explanation of the box structure.
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completely different trends. However, in this study the

use of one replicate is justifiable because only one

example is needed to demonstrate that prior P1 was

found to be unsuitable for this application.

The analysis that led to development of the P2 prior

specification highlights the crucial role of the priors in

Bayesian MCMC methods. The existence of compu-

tational trapping states and the bimodal posteriors

induced by the P1 prior (Fig. 4) are evidence of the

potential dangers of using inappropriate prior speci-

fications in the Gibbs sampling framework. Impor-

tantly, it illustrates that because of the relationship of

the conditional posteriors, misspecification of the

prior for only a subset of the parameters can lead to

misleading inferences for the entire parameter set.

Ideally noninformative priors should be used to

ensure minimal prior influence on the inferences.

However, as this is not possible for the multi-site

HMM it was necessary to develop a diffuse

informative prior formulation (prior P2) that is

not independent of the data. The use of a data-

based priors is not ideal in a Bayesian context, as

priors are supposed to represent information

available prior to inspection of the data. The

justification for the P2 prior is practically motiv-

ated. The P2 specification overcomes the problem

of computational trapping states when using the

Gibbs sampler and avoids the artefact of bimodal

posteriors when using the P1 prior formulation

suggested by Robert (1996). Without the use of

diffuse data-based priors the quantification of

parameter uncertainty via the Gibbs sampler and

its attendant insights would not be possible.

The problem of trapping states needs to be put

in perspective. In our study trapping states arose

when the Gibbs sampler visited the small region of

the parameter space where one-state behaviour is

dominant. Without a diffuse data-based prior such

as P2 the Gibbs sampler gets ‘stuck’ in this small

region of parameter space. Nonetheless the Gibbs

sampler does visit the bulk of the parameter space

without the need of such assistance. The art in

formulating the prior is therefore to make it as

diffuse as possible while avoiding trapping states.

The important finding of this study is that the

analyst needs to be aware that diffuse data-based

priors may be required to help the Gibbs sampler

avoid computational trapping states in some regions

of parameter space. It is therefore essential that the

prior and posterior distributions be compared to

ensure that the prior is relatively diffuse compared

to the posterior in order that the posterior be

dominated by the likelihood function. The challenge

remains to find a reparameterisation of the multi-site

HMM that reduces the dependence of the Gibbs

sampler on data-based priors.

6. Conclusions

A Bayesian approach for calibrating a multi-site

HMM to long-term rainfall time series was presented.

The HMM framework is attractive for modelling

long-term persistence in rainfall time series because it

has an explicit mechanism to emulate the influence of

the dominant physical processes on long-term rainfall

data. The motivation for using a multi-site approach is

that large water supply catchments require multi-site

simulations of hydrological inputs. In addition use of

multi-site data offers the potential benefit that space-

for-time substitution may lead to better identification

of the long-term persistence structure; moreover it

enables the development of a procedure for handling

missing data.

The main focus of this paper was to describe the

development of a Bayesian calibration procedure

for the multi-site HMM. A MCMC method known

as the Gibbs sampler was used to infer the

posterior distribution of the model parameters.

Several challenges had to be overcome in the

implementation of this algorithm. The specification

of appropriate priors for the state rainfall distri-

butions was a crucial issue. The prior recommen-

dations made by Robert (1996) were found to be

unsuitable for this application. Using synthetic data

it was shown how a suitable prior specification was

developed. This paper highlights the important role

of priors in Bayesian MCMC analysis and the

potential pitfalls that can be encountered if the

priors are not carefully chosen. A methodology for

handling missing data in the multi-site framework

was also presented and its limitations discussed.

Further investigation with synthetic data case

studies showed that the benefit of space-for-time

substitution in multi-site data is dependent on the

spatial correlation of the multi-site data. The discus-
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sion outlined the unresolved issues and limitations

that apply to this current implementation of the

Bayesian approach for calibrating the multi-site

HMM.
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