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Abstract

Existing methods for the palinspastic reconstruction of structure maps do not adequately account for heterogeneous rock strain and hence

cannot accurately treat features such as fault terminations and non-cylindrical folds. We propose a new finite element formulation of the map

reconstruction problem that treats such features explicitly. In this approach, a model of the map surface, with internal openings that honor the

topology of the fault-gap network, is constructed of triangular finite elements. Both model building and reconstruction algorithms are guided

by rules relating fault-gap topology to the kinematics of fault motion and are fully automated. We represent the total strain as the sum of a

prescribed component of locally homogeneous simple shear and a minimum amount of heterogeneous residual strain. The region within

which a particular orientation of simple shear is treated as homogenous can be as small as an individual element or as large as the entire map.

For residual strain calculations, we treat the map surface as a hyperelastic membrane. A globally optimum reconstruction is found that

unfolds the map while faithfully honoring assigned strain mechanisms, closes fault gaps without overlap or gap and imparts the least possible

residual strain in the restored surface. The amount and distribution of the residual strain serves as a diagnostic tool for identifying mapping

errors. The method can be used to reconstruct maps offset by any number of faults that terminate, branch and offset each other in arbitrarily

complex ways.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Convenient and reasonably accurate methods for the

palinspastic reconstruction of cross-sections have been

known for several decades (e.g. Dahlstrom, 1969; Gibbs

1983; Rowan and Kligfield, 1989). Cross-section recon-

struction is used to test the consistency of structural

interpretations with geometric, kinematic and geological

rules expected to govern the growth of the structure. In

their general forms, the rules governing palinspastic

reconstruction apply to three dimensions. Further restric-

tions are required to reduce the reconstruction procedure

to a set of steps that can be applied to cross-sections

using graphical methods (Gibbs, 1983). Chief among

these restrictions are the plane-strain assumption and the

assumption of homogenous strain within fault blocks.

The first assumption implies that folds are cylindrical and

faults are pure dip-slip. The second assumption precludes

the accurate treatment of heterogeneous strain associated

with terminating faults. Together, these assumptions

allow the restored shape of each fault block to be

determined independently. Complex structures involving

many faults can then be restored in a fault-block-by-

fault-block recursive manner. However, misfit between

fault blocks tends to accumulate as successive blocks are

restored, so that the final blocks require a dispropor-

tionate share of the deformation. Even so, for most well

chosen cross-sections, problems associated with non-

cylindrical folding, out of the plane motion, terminating

faults and solution order are relatively minor. As first

described, cross-section reconstruction methods were

intended for manual implementation (Dahlstrom, 1969;

Gibbs, 1983; Rowan and Kligfield, 1989). More recently,

computer-aided implementations of the same procedures

have become available that make their routine use

practical (e.g. Morretti and Larrere, 1989; Worrall and

Snelson, 1989; Schultz-Ela, 1991; Erickson et al., 2000).
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However, these computer-aided implementations have the

same limitations as the graphical methods upon which

they are based.

Petroleum structural traps are inherently three-dimen-

sional in nature. Hence, there is interest in extending

reconstruction methods to test the validity of structure

maps developed in petroleum exploration. However,

problems associated with heterogeneous strain and sol-

ution order that produce minor errors in most cross-section

reconstructions become a significant source of error in map

reconstructions. Early approaches to map reconstruction

amounted to little more than the application of the cross-

section rules to the horizontal plane (Barr, 1985). In Barr’s

method, the effects of folding are removed by an optional

cylindrical roll-over correction to the surface area of each

fault block. Then fault gaps are closed one-at-a-time by

applying simple shear in the horizontal plane in an

assigned direction. Gratier et al. (1991), Gratier and

Guiller (1993) and Rouby et al. (1993, 2000) describe

progressive improvements on a method that addresses the

problems of non-cylindrical folding and heterogeneous

strain. In their approach, complex maps with terminating

faults are first subdivided into separate fault blocks along

artificial breaks and then the fault blocks are further

subdivided into triangular elements. The reconstruction is

performed in stages. Initially, the restored shape of each

triangle is computed independently, assuming flexural slip

or simple shear (Rouby et al., 2000). This allows for local

variations in strain. The restored positions of the triangles

within a fault block are then automatically computed by a

recursive least-squares algorithm such that there is the

least possible overlap and gap between adjacent restored

triangles. The corner points of neighboring triangles are

then shifted so they coincide. This cosmetically restores

the continuity between adjacent triangles, but at the cost of

the accuracy of local area preservation. Next, the fault

blocks are fit back together one-at-a-time, again with the

least square overlap and gap. Although this method

represents a significant step forward, the problems

associated with solution-order artifacts and the accurate

treatment of terminating faults still remain to be resolved.

In this paper, we describe a map reconstruction method

that extends the ideas of Rouby et al. (2000) in two

important ways. First, we develop a more complete

geometric model that faithfully represents both the geo-

metry and topology of complexly faulted horizon surfaces.

Rather than breaking maps into separate fault blocks, fault

terminations and complexly shaped internal fault gaps are

treated explicitly. The geologic significance of points and

curves that define the fault gaps are automatically

recognized and recorded during model construction. This

allows the reconstruction to also be fully automated. The

second extension of the ideas of Rouby et al. (2000) is to

treat map reconstruction as a global optimization problem.

In this way, solution-order artifacts are avoided. We seek a

reconstruction in which fault gaps are closed, while strict

continuity is maintained between the triangular elements

defining the map surface and the deformation of the surface

is removed according to a prescribed simple shear

mechanism. To the extent possible, this is done without

additional distortion of the surface. Heterogeneous strain

around fault terminations and at mismatching fault cutoff

curves is accommodated using a large-strain elasticity

formulation. We use the amount and distribution of the

heterogeneous strain as a diagnostic tool to judge the

validity of the original map.

2. Horizon model

2.1. Representing the topology of faulted map surfaces

The key to reconstructing faulted maps by an automatic

algorithm is to start with a geometric model that faithfully

represents not only the shape of faulted horizons, but also

the topology and geologic attributes. In general, geologic

horizons are dissected by arbitrarily complex gap networks

(Fig. 1). The gaps are bounded by horizon cutoff curves,

which define the intersections between the horizon and

crosscutting surfaces. The cutoff curves join at their ends to

form closed loops, except where they artificially terminate

at map edges. Depending on the type of the crosscutting

surfaces, cutoff curves have different geologic significance.

They may define the intersection between the horizon and

faults, salt or unconformities. Fault-cutoff curves may

define either the footwall or hanging wall side of a fault

gap. Individual cutoff curves are broken into separate

segments where different horizon-cutting surfaces intersect.

As a first step in the model building process, we manually

identify the type of crossing surface that produced each

cutoff curve (Fig. 1b). We then digitize individual cutoff

curve segments in a counter-clockwise direction around the

gap network and order segments within curves in a counter-

clockwise sequence. Curve direction is used by the model

building algorithm to discriminate between gap areas and

areas that are part of the map surface. The horizon cutoff

network is resampled into line elements that are linked in

closed counter-clockwise loops around openings in the map

surface. A surface model composed of triangular elements is

automatically generated using a tessellation algorithm

similar to those described by Green and Sibson (1978),

Deljouie-Rakhshandeh (1990) and Jin and Wiberg (1990)

(Fig. 2a). The algorithm fills the regions between the map

boundary and the cutoff curve network with triangular

elements that have sides that coincide with the linear

elements of the cutoff network, the map boundary or are

completely internal to the map surface (Fig. 2b). The

vertical coordinates of the triangle nodes are constrained to

honor horizon elevation data or digitized contours in a least-

squares sense.
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2.2. Kinematic rules governing horizon cutoff curves

Recognizing the kinematic significance of different kinds

of cutoff-curve termination points is fundamental to the

automatic map reconstruction algorithm. Non-artificial

terminations of fault-cutoff curve segments occur in only

four kinematically distinct types (Fig. 3). The model-

building algorithm analyzes the linkages between cutoff

curves to classify each cutoff-curve termination point as one

of these four types. Intersections at the ends of the first and

last segments in fault-cutoff curves correspond to tip points,

if the intersecting curves meet at an acute angle about the

gap (Fig. 3a) and low-angle or synthetic branch points, if

they form an obtuse angle about the gap (Fig. 3b).

Intersections involving one internal curve segment end

and one first or last segment end correspond to high-angle or

antithetic branch points (Fig. 3c). Intersections between two

internal segment ends are faulted-fault points (Fig. 3d).

The different types of fault-gap termination points

behave differently during reconstruction. Tip points are

welded in the deformed configuration and remain welded in

the restored configuration. Synthetic branch points are free

to slide along a conjugate cutoff curve and may switch to

other conjugate curves during reconstruction. Antithetic

branch points and faulted-fault points each have a conjugate

point on an adjacent cutoff segment that must be restored to

Fig. 2. Finite element model of a faulted and folded horizon surface. (a)

Automatic tessellation of the map surface honors both the geometry and

topology of the fault gap network of the map shown in Fig. 1. (b) Corner

nodes are shared between adjacent triangles and curve segments along

horizon cutoff curves, insuring continuity in the restored map.

Fig. 1. Topology of faulted and folded horizon maps. (a) Example

subsurface horizon map constructed from well data and two-dimensional

seismic data. Horizon cutoff curves bounding fault gaps form closed loops,

except at artificial openings at map edges. Depth contours are in meters. (b)

Enlargement showing digitizing and naming conventions for cutoff curve

segments. Cutoff curves are digitized in a counter-clockwise direction and

divided into separate hanging wall and footwall cutoff curves. Fault

branches further subdivide cutoff curves into segments, which are also

ordered in a counter-clockwise direction around the gaps.
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the same location in the reconstruction. The relationship

between branch points constrains the relative positions of

fault blocks within the restored map. Ambiguity occurs only

in instances of through-going faults that artificially cut the

map into entirely separate fault blocks. In these instances,

at least one pair of conjugate points must be manually

identified between each fault block to resolve the ambiguity.

3. Minimum strain reconstruction

3.1. Heterogeneous strain

The goal of map reconstruction is to restore a horizon to

its depositional configuration by flattening the folding and

closing the fault gaps or removing fault overlaps (Fig. 4).

Ideally, individual elements within the surface model could

be flattened by one of a number of locally homogeneous

deformation mechanisms, including vertical-simple shear,

antithetic shear, synthetic shear or bed-parallel shear (Fig.

4b). However, it is generally not possible to define the

deformation accurately enough such that the triangles can

be restored, while also retaining continuity between

adjacent triangles and closing the fault gaps. Because the

true deformation kinematics are imperfectly known, it is

normally necessary to relax one of these mutually exclusive

kinematic requirements in order to produce a reconstruction.

We take an approach in which the most constrained

kinematic requirements are honored accurately and approxi-

mations are allowed to the least constrained requirement.

Hence, we choose to maintain continuity between neighbor-

ing triangles and to close fault gaps accurately. In the finite

element formulation, perfect continuity between elements is

guaranteed by the fact that corner nodes of adjacent

elements are shared. Accurate closure of fault gaps is forced

through the addition of kinematic constraints that require

nodes along footwall fault-cutoff curves to move to and

remain in contact with the conjugate hanging wall cutoff

curves. To do this it is necessary to allow a component of

additional heterogeneous strain of the element shapes

beyond that prescribed by the idealized strain mechanisms.

We call this component ‘residual strain’ and seek a

reconstruction that produces the smallest total and smooth-

est distribution of residual strain possible through the

methods of constrained non-linear optimize (Fletcher, 1987)

(Fig. 4c). This component of residual strain is not

interpreted as actual rock strain, but is used as a measure

of the extent to which the actual rock strain can be explained

by the deformation mechanisms prescribed by the user. In

this way, the minimum strain criterion is analogous to and

replaces the least-squares fit criterion between adjacent

triangles used in the reconstruction method of Gratier et al.

(1991), Gratier and Guiller (1993) and Rouby et al. (2000).

This approach makes it possible to flatten non-cylindrical

folds while maintaining perfect continuity between neigh-

boring triangles. It also makes it possible to explicitly treat

faults that terminate within the map area without resorting to

artificially breaking the map into separate fault blocks.

3.2. Hyperelastic membrane formulation

To produce reconstructions with the least total and

smoothest distribution of residual strain, we treat residual

strain using a hyperelastic membrane formulation. A

membrane is a thin sheet with no bending strength, but

with resistance to shape distortion (Gruttmann and Taylor,

1992). Elastic deformation has the desired property of

guaranteeing the least total and the smoothest possible

distribution of strain for a given set of kinematic boundary

conditions. Hyperelasticity allows this to occur at large

strains. This is analogous to the deformation of a thin rubber

sheet. We choose this formulation, not as an approximation

Fig. 3. Kinematic rules for horizon cutoff curve intersections. Four distinct types of intersections are possible between horizon cutoff curves, labeled (a), (b),

(c), and (d). Fault-salt and fault-unconformity intersections are kinematically equivalent to high-angle branch between faults (type c).
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to the actual physics of the rock deformation, but because it

has the desired kinematic properties for the residual

component of strain in the reconstruction problem.

The strain energy density at a point on the hyperelastic

membrane is given by (Fried and Johnson, 1988; Gruttmann

and Taylor, 1992):

W ¼
m

2
Bii 2 2 2 ln detBij

� �h i
þ

l

2
detFij 2 1
h i2

; ð1Þ

where

Fij ¼
›xi

›Xj

¼ the deformation gradient;

detFij 2 1 ¼ the normalized area change;

Bij ¼ FkiFkj ¼ Green0s strain;

m is the shear modulus, l is Lame’s constant, which is

proportional to the bulk modulus, Xi is the reference ith

coordinate of the point, xi is the deformed (restored) ith

coordinate of the point, i and j take on the horizontal

coordinate indices 1 and 2.

In conventional continuum mechanics problems, the

reference configuration of the body defined by Xi is the

undeformed state. In the map reconstruction problem, we

define the residual strain in terms of the distortion of the

surface beyond that incurred by flattening with the assumed

strain mechanism. Hence, the reference configuration of a

triangle is the ideal flattened shape, rather than the present-

day shape. The ideal shapes are calculated analytically by

independently flattening the triangles by rotation or

according to an assumed simple shear rule.

Changes to the map surface area beyond that associated

with the assumed strain mechanism are not desirable. In the

membrane formulation, this is equivalent to the deformation

of an incompressible material. To enforce incompressibility

in such materials the bulk strain term in Eq. (1) is commonly

replaced by an area penalty term (Simo and Taylor, 1982).

This term makes an arbitrarily large contribution or penalty

to the strain energy in response to bulk strain. The objective

function to be minimized is the resulting strain energy

density integrated over the area of an element V

Oe
V ¼

m

2

ð
V

Bii 2 2 2 ln detBij

� �h i
›V

þ PV

ð
V

detFij 2 1
h i2

›V; ð2Þ

where PV is a penalty coefficient for element V, chosen such

that the area is preserved to within a specified tolerance. For

the reconstruction problem the shear modulus m is also an

arbitrary constant. In practice the area integrals in Eq. (2)

are evaluated numerically for each element.

3.3. Kinematic constraints for unfolding and fault contact

The strain energy (Eq. (2)) occurs in response to

flattening folds and closing fault gaps during reconstruction.

These requirements are cast in the same form as kinematic

boundary conditions between bodies in contact in conven-

tional continuum mechanics problems. In the new recon-

struction method, contact constraints applied to nodes along

fault gaps replace restoration vectors assigned by the user in

previous map reconstruction methods. Contact constraints

differ in that they force contact, but do not restrict the point

of contact or the direction of relative motion. The points of

contact and directions of motion between fault blocks are

found as a part of the global residual strain minimization

process.

In general, map reconstructions require kinematic

Fig. 4. Kinematic rules governing map reconstruction. (a) Fault gaps are

closed by forcing contact between nodes on hanging-wall horizon cutoff

curves and conjugate footwall cutoff curves. Conjugate points at high-angle

fault branches are forced to coincide in the restored configuration. (b)

Objective restored shapes are computed independently for each triangular

element, consistent with a specified homogenous deformation mechanism.

(c) The restored map is the solution to a non-linear optimization that seeks

to close the fault gaps, while the elements take on their objective shapes. A

solution is sought that requires the least possible residual strain. Variations

in residual strain levels over the restored map are depicted in shades of gray

and used to judge how well maps reconstruct.
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constraints that force individual nodes to move to and

remain in contact with the depositional surface, another

node in the model, or with a specific line element within the

model (Fig. 4a). Such contact constraints are enforced

through the addition of penalty terms that each contributed

to the global objective function when the condition is not

met and vanish when the condition is met. These added

contact constraint terms Oc
F, for contact F, are of the

possible forms:

Oc
F ¼ PF

�
x

j
i 2 V

�2
, which forces the ith coordinate of

node j to restore to a specified value V,

Oc
F ¼ PF

�
x

j
i 2 xk

i

�2
, which forces the ith coordinate of

node j to restore to the same value as the ith coordinate of

node k,

Oc
F ¼ PF

�
Axn

1 þ Bxn
2 þ C

�2
, which forces node n to

restore to a position in contact with a fixed line segment

defined by constant coefficients A, B, and C,

Oc
F ¼ PF

�
Aðx

j
2; x

k
2Þx

n
1 þ Bðx

j
1; x

k
1Þx

n
2 þ Cðx

j
1; x

j
2; x

k
1; x

k
2Þ
	2

,

which forces node n to restore to a position in contact

with a line segment through nodes j and k, defined by

variables coefficients Aðx
j
2; x

k
2Þ, Bðx

j
1; x

k
1Þ, and

Cðx
j
1; x

j
2; x

k
1; x

k
2Þ.

The global objective function for the optimum recon-

structed configuration is found by summing the contri-

butions from each element objective function plus those

associated with each contact constraint:

Og ¼
XNe

V¼1

Oe
V þ

XNc

F¼1

Oc
F; ð3Þ

where N e is the number of elements in the map surface

and N c is the number of contact constraints required to

restore the map to the depositional surface and close the

fault gaps.

This casts map reconstruction as a nonlinear

optimization problem. The solution is the restored

configuration that minimizes the global objective func-

tion Eq. (3). To find the solution we use Galerkin’s

method to write Eq. (3) in terms of the positions of the

triangle corner nodes within the surface model (Becker

et al., 1981; Dhatt and Touzot, 1984). The optimum

nodal positions are found by Newton’s method. Corrections

that move the model nodes from the present-day to the

restored configuration are found by repeatedly solving a

large sparse system of linear equations.

4. Reconstruction algorithm

The reconstruction formulation described in the previous

section takes the form of a finite element solution to a

continuum mechanics problem. In principle, the problem

could be solved using a general-purpose finite element

software package. However, this would be prohibitively

labor intensive for routine use. Even if the finite element

model is generated automatically, thousands of contact

constraints must be assigned to reconstruct maps of

moderate complexity. Nodes constrained to lie along fault

cutoff curves are free to slide from line segment to line

segment along the curve. During reconstruction, these

contacts must be reassigned as the constrained nodes move

from one target line segment to the next. For a practical

implementation, we developed a special purpose finite

element program with an automatic algorithm that assigns

and updates these contact constraints in a geologically

reasonable manner during reconstruction.

Initial contact constraints between nodes on footwall

cutoff curves and line segments along conjugate hanging

wall cutoff curves are not assigned by the user, but by a

special initial conjugate assignment algorithm (Fig. 5). To

make this contact assignment, it is only necessary to identify

a valid conjugate cutoff curve to which the initial contact

can be made without crossing solid parts of the map surface.

This assignment can be made automatically by an algorithm

that analyzes the topology of the fault gap network. The key

to this algorithm is having a model data structure in which

each model component has geologic type information and a

record of all adjacent components. The initial assignment

algorithm works on the principle that, other than for small

differences in post-faulting deformation, conjugate footwall

and hanging wall gaps should be equal in length. The

algorithm locates an initial target line segment by summing

lengths along a path around the fault gap. Footwall segments

along the path are counted as positive contributions to the

sum, whereas hanging wall segments are counted as

negative contributions. Jumps between conjugate branch

points along the path do not contribute to the sum. Starting

at a contact node on the footwall cutoff, tracking proceeds

from curve segment to curve segment along the footwall,

until either a tip, conjugate branch or user supplied link to a

hanging wall cutoff is found. Tracking continues along an

arbitrary number of footwall and hanging wall curve

segments until the net path length becomes zero. This

establishes only the initial target assignments. During the

reconstruction, the contact point is free to move along

the target curve and its final position is found as part of the

minimum residual strain solution.

The reconstruction process begins with the independent

computation of the objective restored shape of each triangle

according to the specified strain mechanisms. Given these

objective shapes and initial contact constraints, a minimum

residual strain solution is found by a series of Newton

iterations. Once convergence is reached, a check is made to

determine if the contact conditions are satisfied to within a

specified tolerance. If the penalty constants for one or more

contact conditions require adjustment to reach the specified

tolerance, the solution is repeated. Contact conditions that

are satisfied to within tolerance are solved exactly and the

associated dependent degrees of freedom are algebraically

eliminated from future iterations. When convergence is
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reached and all constraints are satisfied, a contact tracking

algorithm checks the position of the contact nodes to

determine if they have moved past the end of their assigned

target line segment or past a sliding branch point of another

fault block (Fig. 6). New target line segments are assigned

accordingly and the solution is repeated. A final solution is

reached when a minimum energy configuration is found in

which all constraints are satisfied to within tolerance and all

contact nodes have remained on the same target from the

preceding iteration. The entire solution process proceeds

automatically, without user input.

5. Synthetic examples

5.1. Fault termination

To test the accuracy with which various kinematic

constraints can be enforced, we consider three synthetic

examples patterned after those given by Rouby et al. (2000)

(Figs. 7–9). The first example illustrates the difference

between a least square fit reconstruction (Fig. 7a–c) and a

continuum reconstruction that minimizes residual strain

Fig. 5. Initial assignment of fault contact constraints. Estimates of fault

contact positions are automatically determined for each hanging wall node

by tracking along the horizon cutoff network. Lengths along footwall

segments are counted as positive and lengths along hanging wall segments

are counted as negative. Jumps are made between conjugate points at high-

angle fault branches. Tracking continues through arbitrarily complex fault

gap networks until the sum reaches zero at the point where the length of

conjugate footwall and hanging wall segments match. This algorithm

identifies an initial conjugate cutoff curve to which hanging wall nodes can

make contact without crossing solid parts of the map surface. The position

of contact is updated automatically during the reconstruction process and

the target conjugate cutoff can change as hanging wall nodes slide past low-

angle branch points (Fig. 6). The final position is determined as part of the

global strain minimization process.

Fig. 6. Local contact node tracking. (a) During reconstruction contact nodes

slide along conjugate footwall cutoff curves to reach the minimum residual

strain configuration. (b) After convergence, the positions of the contact

nodes are checked to see if they have moved off the end of their assigned

target line segments or past a sliding branch point. (c) If they have,

adjacency information is used to track the node position to a new target. In

this illustration the fault gaps are exploded to show contact relationships

between blocks.
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(Fig. 7d–f). The initial map (Fig. 7a) represents an unfolded

map surface in which the fault gaps remain to be closed. In this

example, the strain involved in unfolding is ignored and only

the strain associated with closing fault gaps is considered. In

the least square fit strategy followed by Rouby et al. (2000), the

faults are each artificially extended to intersect another fault or

the map edge, producing separate fault blocks (Fig. 7b). The

separate fault blocks are then translated and rotated as rigid

bodies, one at a time, to a restored configuration that results

in the least square overlap and gap between adjacent fault

blocks (Fig. 7c). No additional strain is allowed within the

blocks. Reconstruction error appears as a combination of

fault slip beyond tips and overlap and gap between fault

blocks. In this synthetic example, the maximum slip beyond

fault tip reaches 10% of the fault length between blocks 1

and 2 and the maximum overlap between blocks reaches

10% of the block width between blocks 3 and 4.

In the minimum strain strategy for restoring the same map,

a continuum model of the map surface is first generated

(Fig. 7d). This model honors the fault gap geometry and

topology as it is mapped, such that terminating faults actually

terminate in the model. The algorithm then analyzes the fault

gap topology to make initial contact constraint assignments

(Fig. 7e). During reconstruction, the contact assignments are

updated between iterations. A restored configuration is found

that closes the fault gaps without overlaps or gaps, with a

minimum shear strain of the map surface (Fig. 7f). In this

reconstruction, there is no slip beyond the fault terminations

and there is no overlap or gap between fault blocks, to within

arithmetic precession. The shear strain within the map surface

needed to close the fault gaps averages 10% and reaches

50% in small regions near either end of the fault between

blocks 3 and 4. The corresponding bulk strain, or change in

surface area, averages 0.16% over the map surface.

5.2. Cylindrical fold

We test the extent to which the algorithm described in

Fig. 7. Synthetic example with terminating faults. (a), (b), and (c) show the true initial configuration, the initial configuration divided into separate fault blocks,

and the least square block reconstruction, respectively, after Rouby et al. (2000). (d), (e), and (f) are the continuum element model, the initial contact

assignment, and the minimum residual strain reconstruction, respectively, produced by the methods described in this paper.
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this paper can find a true minimum strain solution by using it

to flatten a cylindrical fold (Fig. 8). In principle, cylindrical

folds in surfaces can be flattened without strain. Hence, the

minimum strain reconstruction of a cylindrical fold should

result in no shear or bulk strain. For this test, we generated a

surface that varies as sine, from 0 to 1808 over the distance

of 1000 units in the x direction, is constant for 1000 units in

the y direction, and reaches a peak height of 200 units in the

z direction (Fig. 8a). We sampled this function to produce a

square grid of 11 £ 11 control points, which were imported

Fig. 8. Cylindrical fold synthetic example. (a) Cylindrical fold defined

by a sine function from 0 to 1808. (b) Dip of the surface of the initial

finite element model of the cylindrical fold. (c) Minimum residual

strain reconstruction of the cylindrical fold assuming a flexural slip

deformation mechanism. The residual shear strain averages 0.7% and

the bulk strain average 0.08%. (d) Minimum residual strain

reconstruction of the cylindrical fold assuming an antithetic shear

mechanism oriented 608 from the vertical in the direction parallel to

the local dip. The residual shear strain averages 1.8% and the bulk strain

averages 0.07%.

Fig. 9. Non-cylindrical fold synthetic example. (a) Non-cylindrical fold in

the form of a dimpled dome. (b) Dip of the surface of the initial finite

element model of the non-cylindrical fold. (c) Minimum residual strain

reconstruction of the non-cylindrical fold assuming a flexural slip

deformation mechanism. The residual shear strain averages 0.15% and

the bulk strain average 0.24%. (d) Minimum residual strain reconstruction

of the non-cylindrical fold assuming an antithetic shear mechanism oriented

608 from the vertical in the direction parallel to the local dip. The residual

shear strain averages 57% and the bulk strain averages 0.53%.
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into the map reconstruction program. Variation in the dip

along strike in the associated finite element model surface

shows a small level of deviation from a true cylindrical

surface (Fig. 8b). The restoration of the surface is done

assuming flexural slip (Fig. 8c) and antithetic shear oriented

at 608 in the direction of the local dip (Fig. 8d). Both

mechanisms should unfold the surface without additional

strain. Instead, the reconstruction by flexural slip requires an

average residual shear strain of 0.7% and an average bulk

strain of 0.08%. The antithetic shear mechanism results in

an average residual shear strain of 1.8% and an average bulk

strain of 0.07%. In both cases, part of this error is associated

with non-cylindrical imperfections in the initial model

surface and part is due to error in the finite arithmetic

precision with which the nonlinear system of equations is

solved. Both sources of error could be reduced to arbitrarily

small levels by decreasing the element size and increasing

the arithmetic precision of the solution, but at a cost of

increasing solution time. However, in practice, this level of

error is typically small relative to the uncertainty in the

mapping of real structures.

5.3. Non-cylindrical fold

The goal of the minimum strain reconstruction is to

flatten folds with the least additional shear strain, while

preserving the area prescribed by the assumed deformation

mechanism. The previous example shows that the bulk

strain can be limited to less than 0.1% on average for a

surface that requires no shear strain to reconstruct. In this

last synthetic example, we test the accuracy with which area

can be preserved for a case in which significant shear strain

is required to flatten the surface. Following Rouby et al.

(2000), we choose a dimpled dome as a test surface that

cannot be formed without strain (Fig. 9a). We first generate

a finite element model of this surface (Fig. 9b). Then, as in

the previous example, we flatten the model surface

assuming flexural slip (Fig. 9c) and 608 antithetic shear

(Fig. 9d). The flexural slip deformation mechanism implies

conservation of line length in cross-section and conserva-

tion of bed area in map view. The reconstruction of the test

surface assuming flexural slip requires an average shear

strain of 15% and an average bulk strain of 0.24%. The

comparable reconstruction assuming 608 antithetic shear

results in an average shear strain of 57% and an average

bulk strain of 0.53%. Hence, area can be constrained to that

prescribed by the assumed strain mechanism to well within

1%, for surfaces requiring high residual shear strain levels

for the reconstruction.

6. Field examples

6.1. Complex fault gap topology

We also apply the new map reconstruction method

described in the preceding sections to three subsurface

structure maps (Figs. 10–12). The first is a reconstruction of

the map used to illustrate the model building process

(Fig. 1). It provides examples of complexities that arise in

structure maps and their treatment in map reconstruction.

The map contains numerous faults that terminate within the

map and branch in complex ways as well as examples of

faulted faults. The restored elemental configuration gener-

ated using the vertical simple shear assumption closes the

fault gaps with a minimum distortion of the vertically

projected triangle shapes (Fig. 10a). Displacement vectors

between the present-day and restored nodal positions

indicate a largely radial opening about the central region

of the map (Fig. 10b). In the northeast quadrant of the map,

the radial opening was accomplished by faulting. Else-

where, the motion appears to have occurred through

continuum strain. A high average residual strain level of

23% and concentrations in excess of 50% near fault tips

indicate problems with the fault-gap geometry as it is

mapped.

6.2. Global versus sequential restoration

The second example illustrates solution order artifacts

that can occur in reconstructions in which fault blocks are

restored serially, rather than as part of a global optimization

(Fig. 11). Fig.11b shows a reconstruction in which four

separate fault blocks around a salt dome are restored

serially, as is the practice in previously described map

reconstruction methods. Initially, a minimum residual strain

solution is found for block 1 alone. Then another minimum

strain solution is found for block 2, in which block 2 is

required to fit against the restored block 1. This is repeated

for block 3 and then block 4 is required to fit into the

remaining space between blocks 1 and 3. Because error

accumulates with each block, there is insufficient space left

for block 4 and high residual strains result in that block. In

the corresponding reconstruction of the same map, in which

residual strain is minimized globally, no high residual strain

levels occur (Fig. 11c).

6.3. Different shear deformation mechanisms

In a third example, a rollover anticline within the hanging

wall of a major normal fault detachment in South Texas is

used to illustrate the effect of different assumed strain

mechanisms (Fig. 12). Reconstruction assuming vertical

simple shear preserves the vertical projection of the map

surface area (Fig. 12b). Bed-parallel shear (flexural slip)

preserves the three-dimensional map surface area (Fig. 12c).

Antithetic shear, inclined 678 from horizontal in the

direction counter to the local dip, decreases the map surface

area by a variable amount depending on the magnitude of

the local dip (Fig. 12d). Overall, the vertical simple shear

assumption results in the smallest average residual strain

(5%). However, the reconstruction assuming bed-parallel
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Fig. 10. Reconstruction of a faulted and folded horizon. (a) Restored element configuration of the map shown in Fig. 1, assuming a vertical simple shear

deformation mechanism. (b) Displacement vector pattern between the present-day nodal positions (vector tails) and the restored nodal positions (vector heads).

(c) Distribution of residual strain. This display shows the heterogeneous strain required to close the fault gaps, beyond that involved in the vertical simple shear

of the elements to the horizontal plane.
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shear produces lower levels of residual strain in the gently

dipping southeastern flank of the anticline. One possible

explanation is that much of the dip within the southeastern

flank formed by bed rotation, rather than by continuum

shear deformation. The antithetic shear assumption pro-

duces lower residual strain concentrations in the northwest

flank of the anticline. One possible explanation is that there

was a component of continuum strain or sub-seismic

antithetic faulting, down thrown to the northwest, within

the northwestern limb of the anticline. Hence, in this case

vertical simple shear results in the least overall strain.

However, different strain mechanisms may provide a closer

approximation to the true geologic strain in different parts of

the structure. This illustrates the potential pitfall of trying to

determine true geologic deformation through reconstruction

methods. The deformation mechanism that results in the

‘best’ reconstruction in a least strain sense need not be the

closest to the true geologic strain. In practice, it is better to

assign deformation mechanisms through direct examination

of the rocks where possible and from general knowledge

about how rocks deform in analogous tectonic setting where

direct observation is not possible. These different strain

mechanisms can then be assigned on an element, fault block

or map wide basis.

7. Discussion

All kinematic reconstruction methods, including the one

described in this paper, are merely tools by which geologists

can test to see if their ideas about the geometry of a structure

are consistent with their ideas about the kinematics of its

formation. The results are inherently non-unique and do not

prove that a particular structural interpretation is correct. It

is quite possible for interpretations to reconstruct well and

still contain significant geometric errors. For example, an

unfaulted, horizontal plane is not the correct geometry for

any of the field examples given in this paper and yet such a

map reconstructs perfectly, regardless of the deformation

mechanism assumed. Conversely, interpretations that

reconstruct poorly do not necessarily contain geometric

errors. All that can be stated with certainty about

interpretations that reconstruct poorly is that the interpreted

geometry is inconsistent with the assigned kinematics. The

Fig. 11. Solution order artifacts for the reconstruction of a faulted horizon

surrounding a salt dome. (a) Present-day configuration of the top of the

Grand Isle Ash, Grand Isle Block 16 Field, Offshore Louisiana, modified

from Tearpock and Bischke (1991, Fig. 8-71). Depth contours are in meters.

The map surface is artificially divided into four separate fault blocks by

faults that extend from the salt-sediment interface to the map edge. (b)

When reconstructed one block at a time, position error accumulates with

each block. The last block restored (fault block 4) requires high levels of

residual strain to fit into the remaining space between blocks 1 and 3. (c)

The map restores with little residual strain, if all blocks are restored

simultaneously and the residual strain is minimized globally.
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problem may lie in the geometry, it may lie in the assigned

deformation mechanisms, or the problem may be caused by

a combination of errors in both. The value of reconstructions

is that the process of doing the reconstruction can identify

such inconsistencies.

Different reconstruction strategies have different levels

of sensitivity to various kinds of map errors. We rigorously

constrain the local map area to that prescribed by the

selected deformation mechanism and prevent all overlap

and gap between fault blocks. Hence, our approach is more

sensitive than other methods to mapping errors that result in

either excess or missing map surface area. These types of

errors commonly occur in two ways in maps produced from

three-dimensional seismic interpretations. Because the

terminations of horizons at fault-horizon intersections are

difficult to image precisely, the exact position of horizon

cutoff curves is difficult to map directly. This can result in

mapping errors in which the fault gaps are either too large,

meaning that locally there is missing map area, or too small,

meaning that locally there is excess map area. Another

common problem in interpreting seismic data is correlating

across faults into isolated fault blocks with no well control.

It is easy to miscorrelate to a seismic loop above or below

the correct surface. These correlation errors result in

isolated fault blocks that are either too large or too small

to fit into the space left by the surrounding blocks. Both of

these types of errors have important practical implications.

In the first case, it is common to target production wells as

high up dip and as close to a production-limiting fault as

possible. Errors in the size of the fault gap jeopardize such

wells. In the second case, errors in fault block area translate

directly into errors in fluid volume calculations. In

reconstructions made by methods less sensitive to errors

in map area, such problems may go unnoticed.

The map reconstruction method described in this paper

offers at least five other advantages over previously

proposed methods:

(1) The new method more faithfully honors the user’s

interpretation and subjects it to a more rigorous test

Fig. 12. Map reconstructions with different homogenous strain mechanisms. (a) Structure map from a mature South Texas gas field based on closely spaced

well control and two-dimensional seismic profiles. Depth contours are in meters. (b) Map reconstruction assuming vertical simple shear. The residual strain

averages 5% over the map surface. Peak residual strains in excess of 50% occur near branches between antithetic faults and the main detachment fault. (c) Map

reconstruction assuming a bed-parallel slip deformation mechanism. The residual reconstruction strain averages 7% over the map surface. Residual strain

levels are lower than those for vertical simple shear in the gently dipping southeast limb and higher in the more steeply dipping northwest limb. (d) Map

reconstruction assuming simple shear inclined 678 antithetic to the local horizon dip. The average residual strain of 8% is slightly higher than for both vertical

simple shear and bed-parallel shear, but the areas of high peak strain in the northwest limb are eliminated.
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than previous methods. Previously proposed map

reconstruction methods do not explicitly treat complex

fault gap networks, with terminating faults and

different kinds of branch points. The occurrence of

fault tips and antithetic and synthetic fault branches

have important kinematic implications for the for-

mation and reconstruction of faulted surfaces. Instead

of treating these features explicitly, previous methods

artificially subdivide such networks into individual

fault blocks that can move independently (Barr, 1985;

Gratier et al., 1991; Gratier and Guiller, 1993; Rouby

et al., 1993, 2000). As a result, many of the kinematic

implications of a particular interpretation are lost and

go untested.

(2) In the new method all reconstruction error is, to

numerical precision, manifest in the amplitude of a

single parameter, the residual shear strain. We chose

this approach because it is known with certainty that

unfaulted regions of the map in the present should be

unfaulted in the initial state and that there should be no

overlaps or gaps between fault blocks. Similarly, large

changes in rock volume beyond that associated with

compaction are seldom expected. However, some

amount of shear strain beyond that imparted by simple

deformation mechanisms is geologically reasonable.

We do not propose the minimum strain criterion as a

rule by which the actual distribution of rock strain can

be determined. Instead, we use this criterion as a

measure of the extent to which the true rock strain can

be explained using the particular idealized deformation

mechanisms assigned by the user. This approach

makes it possible to quantitatively compare reconstruc-

tions of slightly different interpretations of the same

structure.

In previous reconstruction methods, all kinematic

constraints are enforced by least squares fit and none is

necessarily enforced to high precision, except by chance.

Hence, reconstruction error can be manifest as local area

change that differs from that implied by the chosen

deformation mechanism, as slip beyond fault tips, and as

overlap and gap between fault blocks. This leads to

problems such as having to compare a reconstruction that

results in a large change in area, but has little overlap and

gap between fault blocks, with another reconstruction

that produces less area change but more overlap and gap

between fault blocks. Under these conditions, the

question of which is the better reconstruction is

ambiguous.

(3) The new method finds a global solution to the

reconstruction problem in which unfolding and

unfaulting of all map regions occurs simultaneously

as one step. In this way, a solution is found that honors

all the kinematic conditions with equal weight.

Previous approaches have all resorted to treating

parts of the problem in sequence. The treatment order

imparts an unintended weighting of kinematic con-

straints. As a result, there is greater freedom to fit parts

of the model treated earlier in the sequence than those

treated later in the sequence. A disproportionate

amount of reconstruction error tends to be concentrated

in the parts of the model treated last, regardless of

where the problem lies. In many cases, such solution

order artifacts are insignificant, particularly in cases in

which there is a dominant direction of motion.

However, maps of truly three-dimensional structures

can seldom be restored without exhibiting solution

order problems to some extent. This is particularly true

in cases in which the geometry forces the last piece

treated to be restored against the first piece treated,

such as in example 6.2.

(4) In the new method the reconstruction process is fully

automated. This is possible because the underlying

geometric models faithfully reproduce the topology of

the horizon map. Special attention is paid to the

topology of the cutoff curve network. Cutoff curves

associated with through-going surfaces that are inter-

sected by other terminating surfaces are represented as

curves with multiple disconnected segments. The

kinematic significance of the end points of these

segments, whether fixed branch, sliding branch or tip,

is determined automatically from the characteristics of

connecting curve segments. All that is required is that

the horizon-cutoff curve network be digitized and

labeled in a manner consistent with the true topology of

the intersecting surfaces. The reconstruction can then

be performed without further manual manipulation.

This greatly reduces the labor involved in reconstruct-

ing complexly faulted horizons. However, the most

important advantage is that the reconstructions are

reproducible. Once the initial model is constructed, it

can be restored any number of times with the same

result. This makes it possible to perform reconstruc-

tions with different assigned strain mechanisms or

modified geometry with the assurance that the only

differences in the restorations are associated with the

changes in the initial model and constraints (Fig. 12).

In methods in which fault blocks are fitted by manual

manipulation, differences in the placement of fault

blocks on repeated reconstruction produce different

results from the same starting configuration.

(5) The finite element formation used in the described map

reconstruction method is general in nature and extends

to other dimensions in a straight forward way. The

method we describe in this paper is the middle of three

reconstruction applications developed using the same

approach. The first was a cross-section reconstruction

application that has been used on a proprietary basis for

over a decade. A full three-dimensional algorithm has

also been developed, in which many of the same

topological and kinematic rules described for map
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reconstruction apply. However, rock masses are

represented by volume elements rather than the surface

elements used in map reconstruction and fault contact

is maintained between fault surfaces rather than

between cutoff curves. Experience using the three

applications has shown that the four previously

described advantages of the minimum strain formu-

lation are of some importance in cross-section

reconstruction, but are of greater importance in map

reconstruction. However, in the three-dimensional

reconstruction application these advantages became

critical. In practice, having the three-dimensional

reconstruction capability is seldom useful unless the

true topology of the fault network is treated explicitly,

a global solution is found, error is restricted to one

parameter, and the reconstruction process is auto-

mated. We reserve a description of three-dimensional

minimum residual strain reconstruction for a future

paper.

8. Conclusion

In this paper, we describe a finite element method for

palinspastic reconstruction of faulted and folded horizon

maps. Map surfaces are represented by finite element

models with the same geometry and topology as the faulted

horizons. During model construction, geometric and

topological rules are used to automatically identify initial

conjugate points and conjugate cutoff curves between fault

blocks. This allows the reconstruction to proceed without

manual manipulation. To the extent possible, horizon

deformation is removed assuming deformation mechanisms

and kinematic constraints used in conventional structural

reconstructions. The component of residual strain required

to flatten folds and close fault gaps is found by solving the

global optimization problem in which map surface is treated

as a hyperelastic membrane. The use of a hyperelastic

membrane constitutive model guarantees the minimum total

residual strain with the smoothest possible distribution

required to satisfy the kinematic constraints. The main

advantages of this approach over those previously described

are that faults that terminate within the mapped regions and

non-cylindrical folding can be explicitly treated, and

artifacts associated with sequential restoration of fault

blocks are avoided.
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