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Abstract

The two-dimensional analysis of rotation of rigid ellipsoidal inclusions is not applicable to situations in which either the bulk deformation

deviates from plane-strain or one of the principal axes of the inclusion is at an angle to the vorticity vector. Both these situations may occur in

certain types of transpressional ductile shear zones. The model presented here shows how long cylindrical or ellipsoidal tectonic clasts (with

the longest axis parallel to the walls of the shear zone but at an angle to the vorticity vector) rotate in transpressional shear zones. Long clasts,

initially at a low angle to the vorticity vector and at a large angle to the stretching lineation, will rotate and tend to become subparallel to the

stretching lineation. The rotation of the principal axes of the elliptical cross-section around the cylinder axis cannot be unlimited for any

inclusion, including the inclusion with circular cross-section (R ¼ 1); if the deformation is sufficiently large there is always a stable position

of orientation. The model explains simultaneous occurrence of monoclinic rolling structures in sections parallel and perpendicular to the

vorticity vector. Depending upon the initial orientation, the long axes of different clasts in the foliation plane may rotate clockwise and

counterclockwise. Consequently, opposite senses of asymmetry of rolling structures may appear in sections parallel to the vorticity vector.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Ghosh and Ramberg (1976) had considered rotation of

elongate inclusions in combined pure shear and simple

shear. This model has been applied to many geological

situations to interpret structures resulting from rotation of

porphyroclasts, porphyroblasts and boudins (e.g. Ghosh,

1977; Passchier and Simpson, 1986; Passchier, 1987;

Simpson and De Paor, 1997). The application of this

model is justified when one of the principal axes of the

inclusion is parallel to the vorticity vector.

As pointed out by Passchier and Trouw (1996, p. 106),

many mylonites show a clear difference in structures in

sections normal and parallel to the stretching lineation, with

monoclinic rolling structures (Van Den Driessche and Brun,

1987) appearing in sections parallel to the stretching

lineation and normal to the vorticity vector, and with

orthorhombic structures appearing in sections normal to the

lineation and parallel to the vorticity vector. On the other

hand, stretching lineations parallel to the vorticity vector

have also been reported from some transpressional shear

zones (e.g. Hudleston et al., 1988; Tikoff and Greene, 1997).

For such shear zones the monoclinic structures are seen in

sections normal to the stretching lineation. The problem

considered in this paper arose from our studies in the Phulad

shear zone (Ghosh et al., 1999) of Rajasthan, India, where

the steep stretching lineation is perpendicular to the

subhorizontal vorticity vector, and yet, monoclinic struc-

tures around long tectonic clasts are often seen in

subhorizontal sections normal to the stretching lineation

and subparallel to the vorticity vector. In the following

sections we present a model that explains simultaneous

occurrence of monoclinic structures in sections both parallel

and perpendicular to the vorticity vector.

We consider below the rotational behaviour of rigid long

cylindrical bodies (e.g. long cylindroidal clasts, rodding,

boudins with length much greater along the boudin axes

than along cross-sections), embedded in a viscous matrix,

with their long axis in a plane parallel to the walls of a shear

zone undergoing three-dimensional noncoaxial defor-

mation. It is assumed that the cylindrical body has an

elliptical cross-section and the cylinder axis is at an angle to

the vorticity vector. The model is also applicable to
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ellipsoidal inclusions in which one of the principal axes is

much longer than the other two. In such a situation, rotation

of the major axis of the elliptical cross-section about the

cylinder axis will be associated with rotation of the cylinder

axis itself within a plane parallel to the shear zone walls.

This is not a general model for rotation of inclusions in

ductile shear zones because the deformation in the shear

zone, unlike the model considered by Robin and Cruden

(1994), has been taken to be homogeneous. Moreover, we

are also considering a special case in which the long axes

of the cylindrical clasts are assumed to be parallel to the

mylonitic foliation. As was evident from our field studies

in the Phulad shear zone, this latter assumption is justified

for certain types of long clasts such as boudins, detached

fold hinges and rodding structures or long cylindroidal

bodies of pegmatite that remain parallel to the mylonitic

foliation.

2. Nature of bulk deformation

We are considering a three-dimensional noncoaxial

deformation in a tabular zone (Fig. 1a). Let the y co-

ordinate axis be perpendicular to the shear zone walls, and

let the x and z axes be parallel to the walls, with the x axis

parallel to the direction of simple shearing and the z axis

parallel to the vorticity vector. The deformation is obtained

by simultaneous superposition of simple shearing with

strain rate gzð¼ gzxy) and three-dimensional noncoaxial

deformation with strain rates e zx, e zy and e zz (Fig. 1a). For

such a deformation, if e zx – e zy, a point (xo, yo, zo) changes to

a point (x, y, z ) according to the equations:

x ¼ eagxo þ ebg 2 eag
� �

yo=ðb 2 aÞ;

y ¼ ebgyo;

z ¼ ecgzo ¼ ðe2ðaþbÞgÞzo; ð1Þ

where

a ¼ e zx=g
z
; b ¼ e zy=g

z
; c ¼ e zz=g

z
; ð2Þ

and where, for constant-volume deformation:

e zx þ e zy þ e zz ¼ 0 or a þ b þ c ¼ 0;

(Ghosh, 2001). Depending on whether b in Eq. (1) is

negative or positive, the deformation in the tabular zone will

be transpressional or transtensional. In the following

analysis, we shall be concerned with transpressional

deformation. Hence, unless specified otherwise, e zy or b

will be negative or contractional.

3. Rotation of a cylindrical inclusion with elliptical cross-

section, the cylinder axis lying in the shear plane but

making an angle with the vorticity vector

We are considering the rotation of an embedded

object or inclusion that is either a cylinder with elliptical

cross-section or is an ellipsoid in which one of the

principal axes is much larger than the other two. The

cylinder axis or the longest axis of the ellipsoid will be

called E1, whereas the major and the minor axes of the

cross-sectional ellipse will be called E2 and E3 (Fig. 1b),

with E2 . E3 and with the cross-sectional aspect ratio

R ¼ E2/E3. It is assumed that the cylinder axis E1 lies in

the xz co-ordinate plane, i.e. the plane containing the

direction of simple shear (x-axis) and the vorticity vector

(z-axis). The E1 axis makes an angle a with the z co-

ordinate axis (Fig.1b and c). In Fig.1c, ABCD is a plane

perpendicular to the vorticity vector (i.e. parallel to the

xy plane). BCEF is a plane perpendicular to E1. The

trace of the xz plane on the BCEF plane is the x0 axis.

The angle between the x and x0 axes is a (Fig. 1c and d).

The major axis of the elliptical cross-section of the

cylinder makes an angle u with the x0 axis (Fig. 1d). On

Fig. 1. (a) Nature of bulk deformation in a transpressional ductile shear

zone. The shear zone walls are parallel to the xz co-ordinate plane. The bulk

instantaneous deformation is by a combination of simple shear (with strain

rate gz) and three-dimensional coaxial deformation (with strain rates e zx, e zy
and e zz). (b) Long cylindrical clast with axis at an angle with the vorticity

vector. The vorticity vector is parallel to the z co-ordinate axis. The axis of

the cylinder E1 lies on the xz plane but makes an angle a with the vorticity

vector (parallel to the z co-ordinate axis). The elliptical cross-section has

principal axes E2 and E3 with E2 . E3. E2 makes an angle of u with the x0

co-ordinate axis. (c) BFEC is a plane parallel to the cross-section of an

elliptical cylinder, the axis of which is normal to this plane. The x0 axis is

parallel to the trace of the xz co-ordinate plane on the cross-sectional plane

BFEC. The angle between the x0 and x axes is a. The component of simple

shear strain rate along x0 is gzcosa. (d) For the case of a – 0, the angle

between the x0 axis and the major axis of the elliptical cross-section is u.

The component of e zx along x0 is e zx0 . (e) The plane ABFGH of (c). Along the

x0 direction the component of e zz is e zzsina.
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the cross-sectional plane, the y0 axis is perpendicular to

the x0 axis, and thus y0 remains parallel to y. Since the x0

axis is at an angle to the x and z axes (Fig. 1e), the strain

rate parallel to the x0 axis is:

e zx0 ¼ e zxcosaþ e zzsina: ð3Þ

The component of simple shear strain rate on the x0y0

plane is:

gzðaÞ ¼ gzcosa: ð4Þ

Because of the component of simple shear gzðaÞ, the rate

of rotation of the elliptical cross-section around the

cylinder axis will be, from Ghosh and Ramberg (1976):

2uzg ¼ gzcosa R2sin2uþ cos2u
� � 1

R2 þ 1

� �
: ð5Þ

Because of the strain-rate e zx0 the rate of rotation will be

(Ghosh and Sengupta, 1973; Ghosh and Ramberg, 1976,

p. 4):

2uze ð1Þ ¼
1

2
e zx0

R2 2 1

R2 þ 1

 !
sin2u: ð6Þ

From Eqs. (3) and (6), we have:

2uze ð1Þ ¼
1

2
e zxcosaþ e zzsina
� � R2 2 1

R2 þ 1

 !
sin2u: ð7Þ

This is the rotation rate of the inclusion for e zx0 alone.

The rotation rate resulting from e zy is:

2uze ð2Þ ¼ 2
1

2
e zy

R2 2 1

R2 þ 1

 !
sin2u: ð8Þ

The total rotation rate is the sum of all these:

uz ¼ uzy þ uze ð1Þ þ uze ð2Þ; ð9Þ

2uz

gz
¼

R2

R2 þ 1

 !
cosasin2uþ

1

R2 þ 1

� �
cosacos2u

þ
1

2

e zx

gz

� �
cosa2

e zy

gz

� �
þ

e zz

gz

� �
sina

	 


�
R2 2 1

R2 þ 1

 !
sin2u: ð10Þ

With a, b and c as given by Eq. (2), Eq. (10) can be written

as:

2uz

gz
¼ Asin2uþ Bsin2uþ Ccos2u; ð11Þ

where

A ¼
R2

R2 þ 1

 !
cosa;

B ¼
1

2
acosa2 b þ csinað Þ

R2 2 1

R2 þ 1

 !
;

C ¼
1

R2 þ 1

� �
cosa: ð12Þ

The rate of rotation of a passive marker is obtained when

R ¼ 1. In practice, the rate of rotation of a passive marker

can be obtained by taking a sufficiently large value of R.

Thus, for example, if the aspect ratio is 10, the maximum

difference in its rate of rotation from that of a passive marker

is ,18. If the aspect ratio is six, this difference is ,28.

In the course of deformation, the angle a that the E1 axis

makes with the z axis will also change. Since E1 is assumed

to be sufficiently long (with E1/E2 . 6) it has been assumed

that it will rotate essentially as a marker line. For finite

deformation, a material particle with initial position (xo, yo,

zo), will change to the position (x, y, z ):

x ¼ eagxo þ
ðebg 2 eagÞ

ðb 2 aÞ

" #
yo;

y ¼ ebgyo;

z ¼ e2ðaþbÞgzo

(Ghosh, 2001, eqs. 22–24). On the xz plane, y ¼ 0:

tana ¼ x=z ¼ eða2cÞgtanao: ð13Þ

Eq. (13) shows that, for a given initial angle ao, the angle

a will increase with progressive deformation. An increase in

a means that the cylinder axis rotates away from the z-axis

and towards the x-axis. As the deformation becomes very

large, a tends to 908 and the rotation around the cylinder

axis becomes increasingly small. Eq. (13) also shows that

the sense of rotation of the E1 axis is reversed if the sign of

ao is reversed. Eqs. (11)–(13) show that when a – 0, the

rate of rotation of the inclusion around the cylinder axis is a

function of both u and a. For given initial values of uo and

ao, both u and a will change with progressive deformation.

At each stage, the rotation around the cylinder axis is

v ¼ u 2 uo.

A, B and C, as given by Eq. (12), do not remain constant

but are functions of a, and change with progressive

deformation as a increases. If Dg is taken in small

increments, the incremental form of Eq. (11) can be written

as:

Du ¼ Dg Asin2uþ Bsin2uþ Ccos2u
� �

: ð14Þ

For given uo and ao, Du is calculated from Eq. (14) for a

small increment Dg. After each increment the new value of

u is obtained by adding Du to the earlier value of u. The new

value of a is obtained from Eq. (13). The new values of A, B

and C are determined from Eq. (12) and the process is

repeated. In the numerical calculations g was increased by

0.01, and u of successive stages was determined up to

g ¼ 100.
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4. Examples of rates of rotation and of finite rotation of

inclusions for a � 0

We have chosen four cases of bulk deformation with four

sets of strain-rate ratios:

case 1: a ¼ 0.2, b ¼ 20.25, c ¼ 0.05;

case 2: a ¼ 0.5, b ¼ 20.6, c ¼ 0.1;

case 3: a ¼ 0.8, b ¼ 21.0, c ¼ 0.2;

case 4: a ¼ 1.5, b ¼ 22.0, c ¼ 0.5.

ao ¼ 58 for all the cases.

All of these are examples of transpressional defor-

mation with stretching along the direction of simple

shearing as well as along the direction of the vorticity

vector. The stretching rate along the direction of simple

shearing (x co-ordinate axis) is greater than along the

vorticity vector (z co-ordinate axis). From example 1 to

example 4, the value of a ( ¼ e zx=g
z) increases or, in

other words, the relative contribution of simple shearing

with respect to coaxial straining decreases. We shall

consider the rotation of inclusions with different aspect

ratios (R ¼ E2/E3) in each of these four types of

deformation.

If a ¼ 0, an inclusion can either rotate forward or it

can rotate backward, but the sense of rotation is never

reversed during progressive deformation. Moreover, in

this case, inclusions with relatively small values of R

(R , Rc) may undergo unlimited forward rotation with

progressive deformation (Ghosh and Ramberg, 1976). In

contrast, for the case of a – 0, the rotation cannot be

unlimited for any inclusion, including the inclusion with

circular cross-section (R ¼ 1); if the deformation is

sufficiently large there is always a stable position of

orientation.

In general, we may have three types of curves for

finite rotation (Figs. 2–5): (i) curves that show at first a

relatively small (an acute angle) forward rotation and

then the same amount of backward rotation so that the

inclusion may be finally stabilised at u ¼ 0 (e.g. curves

for R ¼ 1.62 and R ¼ 2 in Fig. 4a); (ii) curves that

show a forward rotation through more that 1808 (or a

multiple of 1808) and then backward rotation through an

Fig. 2. Finite rotation of long clasts with ao ¼ 58, for case 1 (a ¼ 0.2,

b ¼ 20.25, c ¼ 0.05) with (a) uo ¼ 0, (b) uo ¼ 908 and (c) uo ¼ 1358.

Fig. 3. Finite rotation of long clasts with ao ¼ 58, for case 2 (a ¼ 0.5,

b ¼ 2 0.6, c ¼ 0.1) for (a) uo ¼ 0 and (b) uo ¼ 908.
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acute angle, to be stabilised at 1808 (or a multiple of

1808) (e.g. the curve for R ¼ 1.2 in Fig. 4a); and (iii)

curves that show only a forward rotation and a stable

position at 1808 or a multiple of 1808 (e.g. the curve for

R ¼ 1.1 in Fig. 3b). An inclusion with a circular cross-

section can only rotate forward. Although the concept

of a stable orientation is inapplicable for circular

sections, the curves for finite deformation (u versus g

curves) become parallel to the g axis. Thus, the forward

rotation of an inclusion with R ¼ 1 approaches a

limiting value similar to inclusions with R . 1.

However, for inclusions with R ¼ 1, this limiting

value is not necessarily a multiple of 1808.

5. Stable orientation, critical value of R, forward and

backward rotation when a � 0

5.1. Critical value of R

Unlike the special case of a ¼ 0 (Ghosh and Ramberg,

1976), there is, for the case of a – 0, no fixed critical value

of R that separates inclusions that may undergo only

forward rotation from those that may rotate backward at

certain orientations. For a – 0, the critical value R (Rc) is:

Rc ¼ ð1=2FÞ½1 þ ð1 þ 4F2Þ1=2�; ð15Þ

where F ¼ ð1=2cosaÞðacosa2 b þ csinaÞ.

Among the critical orientations considered by Ghosh and

Ramberg (1976), the orientation that is relevant for us is u5.

Fig. 4. Finite rotation of long clasts with ao ¼ 58 for case 3 (a ¼ 0.8,

b ¼ 21.0, c ¼ 0.2) for (a) uo ¼ 0, (b) uo ¼ 908 and (c) uo ¼ 1358.

Fig. 5. Finite rotation of long clasts with ao ¼ 58 for case 4 (a ¼ 1.5,

b ¼ 22.0, c ¼ 0.5) for (a) uo ¼ 0, (b) uo ¼ 908 and (c) uo ¼ 1358.
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This orientation is obtained by putting uz=gz ¼ 0 in Eq. (11):

tanu5 ¼ ½2B þ ðB2 2 ACÞ1=2�=A ð16Þ

where A, B and C are given by Eq. (12).

The critical value of R is a function of a and the strain-

rate ratios of bulk deformation a, b and c (Fig. 6b). It is

independent of uo and R. The rotation of the inclusion will

be in the forward sense when R , Rc. Backward rotation

may occur if R . Rc. Moreover, as shown by Eq. (12), the

parameters A, B and C, being functions of a and R, change

with progressive deformation. Hence, the orientations at

which the rate of rotation becomes zero will also depend on

these parameters.

Eq. (15) shows that Rc is independent of R and uo. For

any set of a, b, c and initial a, Rc decreases with progressive

deformation. At the beginning of deformation, for an

inclusion with aspect ratio R and initial orientation uo, the

initial Rc (i.e. the value of Rc at the beginning of

deformation) may be greater or less than R. We have two

situations to consider: R . initial Rc and R , initial Rc.

Now, the rate of rotation can be zero only if

(B 2 2 AC ) $ 0. If (B 2 2 AC ) , 0, the rate of rotation

cannot be zero. If R . initial Rc, initial (B 2 2 AC ) . 0. If

R , initial Rc, initial (B 2 2 AC ) , 0. The different ways in

which the rotation, either forward or backward, depends on

Fig. 6. (a) Change in a with progressive deformation in case 1, with

ao ¼ 58. With increasing deformation a tends to be 908 as the E1 axis tends

to become parallel to the x-axis. (b) Change in the critical value Rc with

progressive deformation. At a large value of deformation Rc tends to

become one.

Fig. 7. Representation of change in u and Rc with progressive deformation for case 1, with ao ¼ 58. The orientation (u ) of the E2 axis with reference to the x0

axis is obtained by joining the origin with a point lying on the spiral curve. (a) For uo ¼ 0, R ¼ 2.5. The dotted angular domain is the range of orientation within

which backward rotation is possible. At the start of deformation Rc ¼ 4.61. With progressive deformation Rc decreases. Rc ¼ 2.5 when the inclusion has rotated

forward through an angle of 22378. Since the inclusion at this orientation lies outside the range of backward rotation, it rotates forward and is stabilised at

u ¼ 23608. (b) If R ¼ 2.5 and uo ¼ 908, the value of Rc equals 2.5 when u ¼ 21978. The E2 axis of the inclusion at this stage lies within the range of backward

rotation. It rotates backward to be stabilised at u ¼ 21808. (c) Rotation of inclusion with R ¼ 1.2 and uo ¼ 0. (d) Rotation of inclusion with R ¼ 1.2 and

uo ¼ 908. The total rotation is 6308.
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Fig. 8. Rotation of inclusions in case 2. In this case the initial Rc ¼ 2.25. (a) Rotation for R ¼ 2.5, uo ¼ 0. Since R . initial Rc, Rc cannot be equal to R at any

stage of progressive deformation. The inclusion rotates forward through an angle of 210.68, and then rotates backward to be stabilised at u ¼ 0. See also Fig.

9a. (b) Rotation for R ¼ 2.5, uo ¼ 908. The inclusion rotates forward through an angle of 298.98 and then rotates backward through 8.98, to be stabilised at

u ¼ 0. See also Fig. 9a. (c) Rotation for R ¼ 1.2, uo ¼ 0. In this case, R , Rc. With progressive deformation Rc decreases. Rc ¼ R ¼ 1.2 at u ¼ 21978. Since

this orientation is within the range of backward rotation, the inclusion rotates backward through an angle of 178 to be stabilised at u ¼ 21808. See also Fig. 9b.

(d) Rotation for R ¼ 1.2, uo ¼ 908. Rc ¼ R when the inclusion has rotated to an orientation of u ¼ 21238. Since this orientation is outside the range of

backward rotation (dotted area) the inclusion rotates forward till it is stabilised at u ¼ 21808.

Fig. 9. (a) Change in u5 and u with progressive deformation for case 2, with R ¼ 2.5, uo ¼ 0 and uo ¼ 908. Reversal in the sense of rotation occurs at a stage of

deformation when the u5-curve intersects the u-curve. At this stage, the rate of rotation is zero, i.e. each of the u-curves shows a minimum, with du/dg ¼ 0. (b)

Change in the value of (B 2 2 AC ) with progressive deformation for case 2, with R ¼ 1.2, uo ¼ 0. Since initial Rc is ¼ 2.25 and is greater than R, the initial

value of (B 2 2 AC ) , 0. Hence, u5 given by Eq. (10) does not have a real value. With progressive deformation the algebraic value of (B 2 2 AC ) increases.

Reversal in the sense of rotation occurs when (B 2 2 AC ) ¼ 0. At this stage of deformation Rc ¼ R ¼ 1.2. The figures in parentheses are values of Rc.
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Rc and on (B 2 2 AC ) are shown for the four cases in Figs.

7–11.

5.2. R . initial Rc

Let us first consider the situation in which R . initial Rc

and the initial value of (B 2 2 AC ) . 0. In this situation, the

inclusion will rotate forward in the initial stages. With

progressive deformation a, given by Eq. (13), will change

(Fig. 6a), and hence, A, B and C, given by Eq. (12), will

change. Consequently, u5 given by Eq. (16) and Rc given by

Eq. (15) continuously change. Since Rc decreases with

progressive deformation, R will always be greater than Rc,

and (B 2 2 AC ) will always remain positive. The rate of

rotation will be zero when u ¼ u5. If we plot the graphs of u

and u5 against g, the rate of rotation du/dg will be zero for

that value of g at which the u5-curve crosses the u-curve

(Figs. 9a and 10c). Beyond this stage of deformation the rate

of rotation will change sign, i.e. rotation of the inclusion will

be in the backward sense. The inclusion will tend to be

stabilised as u approaches 0 or 1808. It should be noted that

uz=gz ¼ 0 at u ¼ u5, but unlike the special case of a ¼ 0, u5

does not give the stable orientation of the inclusion.

As an example, let us consider a specific case (case 2)

with a ¼ 0.5, b ¼ 20.6, c ¼ 0.1. Let R ¼ 2.5. Since the

initial value of Rc ¼ 2.25, R . initial Rc. If the initial

orientation uo ¼ 0, the u5-curve will intersect the u-curve

(Fig. 9a) at g ¼ 4.5 and u ¼ u5 ¼ 210.68. The inclusion

will rotate forward through an angle of 210.68 and will then

rotate backward. If the deformation continues, the inclusion

will tend to be stabilised at u ¼ 08 (Fig. 8a). If the initial

orientation of the inclusion was uo ¼ 908 (Figs. 8b and 9a),

the inclusion would rotate forward through an angle of

298.98, and would then rotate backward with continued

deformation through an angle of 8.98, to be stabilised at

u ¼ 08.

As a second example (Fig. 10a and c), consider the case

(case 3) with a ¼ 0.8, b ¼ 21.0, c ¼ 0.2. In this case

Fig. 10. Rotation of inclusions in case 3. In this case Rc ¼ 1.69. (a) R ¼ 2.5, uo ¼ 0. The inclusion rotates forward through an angle of 5.98 and then rotates

backward through the same angle, to be stabilised at u ¼ 0. (b) R ¼ 2.5, uo ¼ 908. The inclusion rotates forward through an angle of 294.78 and then rotates

backward through 4.78, to be stabilised at u ¼ 0. (c) For R ¼ 2.5, R . Rc ¼ 1.69. The figure shows the change in u and u5 with progressive deformation. (d)

R ¼ 1.2, uo ¼ 0. In this case, R , initial Rc. The range of backward rotation is 2358 (dotted angular domain). (e) R ¼ 1.2, uo ¼ 908. The inclusion rotates

forward at first. Rc becomes equal to R when u ¼ 2338. Since this orientation is within the range of backward rotation, the inclusion rotates backward through

an angle of 338 and is stabilised at u ¼ 0. (f) Since R ¼ 1.2 , Rc, (B 2 2 AC ) is negative at the initial stages. (B2 2 AC ) ¼ 0 and Rc ¼ R ¼ 1.2 at g ¼ 6.3. This

is the stage of reversal of the sense of rotation.

S.K. Ghosh et al. / Journal of Structural Geology 25 (2003) 1083–10961090



Rc ¼ 1.69. Let R ¼ 2.5, so that R . Rc. If uo ¼ 0, the

inclusion will rotate forward till u ¼ u5 ¼ 25.98. At this

stage (g ¼ 2.6) the rate of rotation of the inclusion will be

momentarily zero. If the deformation continues, the

inclusion will rotate backward through an angle of 5.98

and will be stabilised at u ¼ 0.

5.3. R , initial Rc; the angular range of backward rotation

If R , initial Rc, (B 2 2 AC ) , 0. Consequently, there is

no real value of u5 (Eq. (16)), and the inclusion rotates

forward. However, with progressive deformation, the

algebraic value of (B 2 2 AC ) increases and the value of

Rc decreases. At a certain stage of deformation (B 2 2 AC )

becomes zero (Figs. 9b and 10f). At this stage, Rc ¼ R.

Backward rotation may take place if deformation continues

beyond this stage. But backward rotation can occur only if,

at this stage of deformation, when Rc ¼ R, the orientation

(u ) of the inclusion lies within a certain range, namely, the

angular range of backward rotation. This range is given by

the angle between the x0 axis (u ¼ 0 or 1808) and a line

making an angle ur with it, where ur is always negative. ur is

determined in the following way. The value of a at which

Rc ¼ R is first determined. A, B, C, as given by Eq. (12) are

determined with this value of a. Then:

ur ¼ 2B=A ð17Þ

At this stage of deformation, (B 2 2 AC ) ¼ 0.

Thus, for example, let us consider case 2, with a ¼ 0.5,

b ¼ 2 .6, c ¼ 0.1, and with uo ¼ 0 and R ¼ 1.2 (Figs. 8c

and 9b). At the beginning of deformation, Rc ¼ 2.25. Since

R , initial Rc, and (B 2 2 AC ) , 0, the rate of rotation

cannot be zero at any value of u. With progressive

deformation the algebraic value of (B 2 2 AC ) increases

and Rc decreases. At that stage of deformation when g ¼ 11,

(B 2 2 AC ) ¼ 0. a can then be determined for this stage of

deformation, and from Eqs. (12) and (17) it is found that

ur ¼ 2408.

We may have two situations depending on the initial

orientation uo. Thus, for the same example, if uo ¼ 0,

R ¼ 1.2, the inclusion rotates forward. Rc becomes

equal to R (1.2) when the inclusion has rotated forward

(i.e. in the clockwise sense) through an angle of 21978,

i.e. at an acute angle of 2178 with the x0 axis. Since

this orientation is within the range of backward rotation

(dotted area of Fig. 8c), the inclusion rotates backward

from this stage. If progressive deformation continues,

the inclusion will be stabilised at u ¼ 21808. Again, if

uo ¼ 908 (Fig. 8d), Rc becomes equal to R and

(B 2 2 AC ) becomes zero (Fig. 9b) at a stage of

deformation when the inclusion has rotated clockwise

through an angle of 22138, i.e. at an orientation of

u ¼ 21238. Since this orientation is outside the range

of backward rotation (dotted angular domain in Fig. 8d),

the inclusion will continue to rotate forward till it

attains its stable orientation at u ¼ 21808.

The maximum possible rotation of a long clast with fixed

initial values of ao and uo depends on the nature of bulk

deformation, i.e. on the strain-rate ratios a, b and c. Among

the four cases considered by us for numerical examples, the

Fig. 11. Rotation of inclusions in case 4. In this case the initial Rc ¼ 1.32. (a) R ¼ 2.5, uo ¼ 0. Rc – R at any stage of deformation. The inclusion rotates

forward through an angle of 22.98 and then rotates backward through the same angle and is stabilised at u ¼ 0. (b) R ¼ 2.5, uo ¼ 908. The inclusion rotates

through an angle of 292.38 and then rotates backward by 2.38 and attains the stable orientation at u ¼ 0. (c) R ¼ 1.2, uo ¼ 0. In this case R , Rc. With

progressive deformation Rc ¼ R ¼ 1.2 when u ¼ 230.28. Since this orientation is within the range of backward rotation (dotted) the inclusion rotates

backward and is stabilised at u ¼ 0. (d) R ¼ 1.2, uo ¼ 908. The inclusion rotates forward till Rc ¼ R when u ¼ 294.68. From this stage onward the inclusion

rotates backward to be stabilised at u ¼ 0.
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relative contribution of simple shearing decreases from case

1 to case 4. Table 1 shows that for any value of R, the

maximum forward rotation decreases from case 1 to case 4.

It also shows that, for any one of these cases, the maximum

forward rotation decreases as R increases.

6. Discussion

Rotated rigid objects may give us valuable information

on different aspects of the bulk deformation. Thus, for

example, patterns of distorted foliation around rotated rigid

objects (e.g. Ghosh and Ramberg, 1976; Ghosh, 1977;

Simpson and Schmid, 1983; Passchier and Simpson, 1986;

Van Den Driessche and Brun, 1987; Passchier and Trouw,

1996) have often been used to determine the sense of shear

in ductile shear zones. An analysis of the stable positions of

elongate rigid objects of different aspect ratios may also

give us some information about the nature of bulk

deformation (e.g. Simpson and De Paor, 1993, 1997). For

an ellipsoidal or cylindroidal object, such analyses of the

rotational history of rigid objects commonly involve the

assumption that the cylinder axis or one of the principal axes

of the ellipsoidal object remains parallel to the vorticity

vector (a ¼ 0). The rotation history of rigid objects in

transpressional shear zones will be quite different when

a ¼ 0 and a – 0. The major points of difference are

summarised in Table 2. In numerical calculations for the

case of a – 0, we have taken the value of ao as 58. There is

no significant difference in our conclusions if a somewhat

smaller or larger value of a is taken. It should be noted that

if a ¼ 0, the equations for rates of rotation and of finite

Table 1

Maximum rotation and stable position of inclusions for four cases with uo ¼ 08, ao ¼ 58

R Cases Maximum forward rotation (8) Maximum backward rotation (8) Orientation stabilised at:

1.0 Case 1: a ¼ 0.2 596

Case 2: a ¼ 0.5 225

Case 3: a ¼ 0.8 146

Case 4: a ¼ 1.5 86

1.2 Case 1: a ¼ 0.2 563 23 5408 ¼ 1808 £ 3

Case 2: a ¼ 0.5 197 17 1808

Case 3: a ¼ 0.8 180 0 1808

Case 4: a ¼ 1.5 30.2 30.2 08

1.5 Case 1: a ¼ 0.2 540 0 5408 ¼ 1808 £ 3

Case 2: a ¼ 0.5 182.6 2.6 1808

Case 3: a ¼ 0.8 29 29 08

Case 4: a ¼ 1.5 11.5 11.5 08

2.0 Case 1: a ¼ 0.2 375 15 3608

Case 2: a ¼ 0.5 20 20 08

Case 3: a ¼ 0.8 10 10 08

Case 4: a ¼ 1.5 4.6 4.6 08

2.5 Case 1: a ¼ 0.2 360 0 3608

Case 2: a ¼ 0.5 10.6 10.6 08

Case 3: a ¼ 0.8 5.9 5.9 08

Case 4: a ¼ 1.5 2.9 2.9 08

Table 2

Comparison of rotation of long clasts for a ¼ 0 and a – 0

a ¼ 0 a – 0

E1 axis does not rotate. E1 axis rotates towards direction of maximum stretching.

Rate of rotation and finite rotation of E2 around E1 depends upon a single

parameter (a 2 b ) of bulk deformation.

Rate of rotation and finite rotation depends on three strain-rate ratios a, b, c

of which two are independent.

For known (a 2 b ) and R, uz=gz ¼ 0 at fixed orientations. uz=gz is

independent of rotation history.

No fixed orientation at which uz=gz ¼ 0. It changes with progressive

deformation.

For R ¼ 1, uz=gz is a constant i.e. uz=gz ¼ 0:5. For R ¼ 1, uz=gz continuously decreases.

There is either forward or backward rotation. Rate of rotation does not

change sign with progressive deformation.

The rotation history may involve both forward and backward rotation.

If deformation continues the total rotation is unlimited for relatively small

value of R.

Total rotation is limited for all inclusions.

Stable orientation is at an angle to shear zone walls. Stable orientation (for R – 1) is parallel to shear zone walls.

Nature of bulk deformation, (a 2 b ), may be determined from stable

orientation and R.

Nature of bulk deformation cannot be determined from stable orientation.
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rotation of elongate inclusions, for the type of deformation

considered here, are obtained by replacing the parameter sr

in the equations of Ghosh and Ramberg (1976) by the entity
1
2
ða 2 bÞ.

Sheath folds and segments of isoclinal folds often

occur parallel to the stretching lineation in ductile shear

zones. Many of these contemporary folds initiated

broadly orthogonal to the shear direction and to the

stretching lineation, and were rotated towards the

stretching direction during ductile shearing (e.g. Bryant

and Reed, 1969; Sanderson, 1973; Escher and Watterson,

1974; Rhodes and Gayer, 1977; Bell, 1978; Minnigh,

1979; Ghosh and Sengupta, 1987, 1990; Mies, 1991;

Alsop and Holdsworth, 1999; Ghosh et al., 1999).

Rotation of contemporary folds through a large angle is

also indicated by occurrence of U-shaped lineation

patterns (Ghosh and Sengupta, 1987; Ghosh et al.,

1999) over hinges of transport-parallel folds. Depending

upon the initial orientation (i.e. the sign of ao), the hinge

lines may rotate in both clockwise and counterclockwise

sense (viewed from above in the XY plane); conse-

quently, folds with a single sense of asymmetry, when

they were more or less orthogonal to the lineation, may

show S or Z asymmetry after they are rotated parallel to

the lineation (Hazra, 1997; Alsop and Holdsworth,

1999). Such a rotation history of folds implies that the

stretching lineation is orthogonal, or at a large angle to

the vorticity vector. On the other hand, stretching

lineations subparallel to the vorticity vector have been

reported from a number of transpressional shear zones

(e.g. Robin and Cruden, 1994; Hudleston et al., 1988;

Fossen and Tikoff, 1993). Strongly rotated folds and

sheath folds produced by large rotation of fold hinges are

unlikely to occur in such shear zones. Sheath folds may

also develop by deflection of foliation around rigid

objects (Cobbold and Quinquis, 1980). However, as

Fig. 12. (a) Shear zone with down-dip stretching lineations (dashed lines) and a dip-slip sense of shear. AB, CD and EF are long cylindrical clasts, and in lower

right is a syn-thrusting fold in the initial stage of deformation. The horizontal vorticity vector V shows a sinistral sense of rotation when viewed from the left

side. (b) Same type of shear zone as in (a) but after a very large deformation. (c) and (d) Initial and final stages of rotation of long clasts in a shear zone with

down-dip stretching lineation (dashed lines) and dextral strike-slip shear. (e) and (f) Transpressional shear zone with subhorizontal stretching lineation and

dextral strike-slip sense of shear; (e) initial and (f) final stages of deformation. (g) and (h) Initial and final stages of rotation of axes of long clasts in shear zones

with subhorizontal stretching lineations and dip-slip sense of shear. At an advanced stage of deformation the cross-sectional faces of the long clasts on dip-

sections show the same sense of rotation. Sheath folds are not expected in this case.
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pointed out by Platt (1983) and Mies (1991), most

contemporary shear zone sheath folds are not associated

with ‘islands’ of undeformed rocks.

If we consider the deformation within the shear zone to

be a result of a combination of wall-parallel simple shearing

and coaxial deformation as in Fig. 1a, we may have two

situations depending on whether the direction of maximum

stretching is parallel or perpendicular to the vorticity vector.

Fig. 12 shows these two situations in terms of four types of

transpressional ductile shear zones: (1) with a dip-slip sense

of wall-parallel shear and with the direction of maximum

wall-parallel stretching perpendicular to the vorticity vector

(i.e. with a down-dip stretching lineation) (Fig. 12a and b);

(2) with a strike-slip sense of wall-parallel shear and with

the direction of maximum wall-parallel stretching parallel to

the vorticity vector (i.e. with down-dip stretching lineation)

(Fig. 12c and d); (3) with a strike-slip sense of wall-parallel

shear and with subhorizontal stretching lineation (Fig. 12e

and f); and (4) with a dip-slip sense of wall-parallel shear

and with the direction of maximum wall-parallel stretching

parallel to the vorticity vector (i.e. with a subhorizontal

stretching lineation) (Fig. 12g and h). These four cases

belong to two above-mentioned categories, with the

stretching lineation perpendicular and parallel to the

vorticity vector. Shear zones represented in Fig. 12 (a and

b and e and f) belong to the first of these categories, whereas

shear zones as in Fig. 12 (c and d and g and h) belong to the

second category. Representation of the shear zones with

dip-slip and strike-slip senses as in Fig. 12 is merely for the

sake of convenience of description. The analysis is also

valid for oblique-slip shear zones obtained by a rigid body

rotation of the co-ordinate axes.

When the stretching lineation is parallel to the vorticity

vector as in Fig. 12 (c and d and g and h), the folds initiate

subparallel to the stretching lineation, and undergo little or

no rotation. The long tectonic clasts that were initially

parallel to the fold hinge lines will remain parallel to the

vorticity vector. Rotation of the E2 axis of these long clasts

may then take place around the E1 axis that maintains a

more or less constant orientation during the major part of

deformation. When the stretching lineation is at a right

angle the vorticity vector as in Fig. 12 (a and b or e and f),

fold hinge lines and the E1 axes of long clasts, such as

boudin axes and rodding, will initially make a large angle

with the stretching lineation. Since this orientation is

unstable they will rotate towards the direction of stretching

and will become subparallel to it at an advanced stage of

deformation. Sheath folds are likely to be associated with

such strongly rotated long clasts.

One of the most important geological consequences of

rotation of clasts in transpressional ductile shear zones,

where a – 0, is that, depending upon its initial orientation

ao, the longest axis (E1) of the clast may rotate either in

clockwise or counterclockwise sense, in a plane parallel to

the shear zone wall. The rotation of the E2 axis around the

E1 axis will, however, be always compatible with the sense

of vorticity. To describe the sense of rotation around the E1

axis in terms of clockwise and counterclockwise sense (or

dextral and sinistral), we need to specify the face on which

the observation is made. The sense of rotation around the

subhorizontal E1 axis of a cylindrical clast in the initial

stages of deformation in, for example, a dip-slip shear zone

with down-dip stretching lineation, will be clockwise when

a cross-sectional face is seen from the right hand side (Figs.

12a and 13a). Let the normal of this face be considered as

positive (with inward pointing arrow in Fig. 13a). The

opposite face will be considered as negative (with outward

pointing arrow for the normal). If after a large deformation

the cylinder axis rotates counterclockwise, and becomes

subparallel to the down-dip stretching lineation, the positive

cross-sectional face of the cylindrical object will appear on

the horizontal outcrop face (Fig. 13c). Since this face is

parallel to the vorticity vector (Fig. 12b), the component of

shear on this outcrop face is zero. Yet, the distorted foliation

pattern around the cross-section of the clast will show an

inherited dextral asymmetry and an apparent dextral sense

of shear. If, however, the sign of ao was such that the E1 axis

rotated in a clockwise sense and became subparallel to the

down-dip direction of the shear zone, the negative cross-

sectional face would appear on the horizontal upper surface

(Figs. 12b and 13b). The asymmetry of the distorted

foliation around the cross-section of the reoriented clast will

then show an inherited sinistral shear. In a shear zone in

which the initial ao of the different clasts were both positive

Fig. 13. Different senses of inherited rotation on the upper cross-sectional

face of a cylindrical object, the axis of which has rotated clockwise or

counterclockwise. The vorticity vector is horizontal. (a) In a subhorizontal

position, the cylinder has the same sense of rotation as the vorticity vector,

i.e. a right-handed screw motion. Let the right hand face be considered as

positive (with arrow pointing along inward normal). On the positive face on

the right hand side the rotation is dextral and on the left-hand side the

rotation is sinistral. (b) If the cylinder axis is rotated clockwise from a

subhorizontal to a subvertical position, the negative cross-sectional face

with an inherited sinistral sense of rotation appears on the top horizontal

surface. (c) If the cylinder axis is rotated counterclockwise, the positive

cross-sectional face with dextral sense of rotation comes to the top surface.
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and negative, the distorted patterns of foliation around the

rotated clasts may show both dextral and sinistral senses of

shear on an outcrop face that is parallel to the vorticity

vector, although on this face the component of simple

shearing is zero. A similar situation may also arise in strike-

slip shear zones in which the stretching lineation is

subhorizontal. Thus, among the four types of shear zones

shown in Fig. 12, those that have the stretching lineation at a

right angle to the vorticity vector (Fig. 12b and f) will show

opposite senses of inherited rotation of the E2 axis around

the E1 axis of long clasts on an outcrop face at a right angle

to stretching lineation. In contrast, shear zones in which the

stretching lineation is parallel to the vorticity vector will

always show the same sense of rotation around the E1 axis

on a surface at a right angle to the stretching lineation (Fig.

12c and h).

The sense of shear, implied by the sense of

asymmetry of deformed foliations around rotated clasts,

is generally determined from two-dimensional obser-

vations, either in oriented thin sections or in sections of

clasts in outcrop faces. Unless the shear sense is

independently known from other shear criteria, we cannot

be sure whether the asymmetry in a lineation-parallel

(foliation-normal) or a lineation-normal section would

give us the true sense of shear. If the stretching lineation

is parallel to the vorticity vector, the shear direction can

be determined from monoclinic fabrics on lineation-

normal sections; the lineation parallel section would

show an orthorhombic fabric. If the stretching lineation is

orthogonal to the vorticity vector, monoclinic and

orthorhombic fabrics will appear in lineation-parallel

and lineation-normal sections, respectively, provided a

principal axis of non-spherical clasts is subparallel to the

vorticity vector. This can no doubt be checked by

determining the three-dimensional forms of the clasts or

simply from their shapes in foliation-parallel sections. If,

as in the model given above, the long axes of the clasts

have undergone large rotation within the foliation plane,

monoclinic rolling fabrics may appear in both lineation-

parallel and lineation-normal sections. The lineation-

normal sections may show opposite senses of asymmetry

of the rolling structures if the initial angle ao was both

positive and negative for different clasts. The true shear

sense can then be determined from lineation-parallel

sections.

Examples of such opposite senses of rotation around

the long axis of cylindrical clasts are frequently found on

horizontal outcrop-faces in the Phulad shear zone of

Rajasthan, India. This shear zone (Ghosh et al., 1999)

has a thrusting sense of movement, a subhorizontal

vorticity vector and a down-dip stretching lineation, with

profuse development of sheath folds with their long arms

subparallel to the lineation. Opposite senses of rotation of

hinge lines of asymmetric folds in the shear zone has

given rise to opposite senses of asymmetry on the

horizontal profile planes of steeply plunging hinge lines

of arms of sheath folds (Hazra, 1997). A detailed

analysis of the rotation history of long clasts of the

Phulad shear zone will be presented in a later

publication.

We may also consider the possibility that the angles (ao)

for all long clasts in a shear zone domain had the same sign,

and consequently the E1 axis of all clasts rotated in the same

sense within the foliation. Each of the lineation-parallel and

lineation-normal sections would then show a single sense of

asymmetry of the structures. The rolling structures associ-

ated with only the spherical clasts will give the true sense of

shear. A similar case of single sense of rotation of fold

hinges towards the stretching direction was reported by

Alsop (1992) from the Ballybofey Nappe of northwest

Ireland.

The model presented here is applicable to transpressional

shear zones, which contain long tectonic clasts, and in

which the stretching lineation is either parallel or perpen-

dicular to the transport direction. It is not a general model; it

does not consider the rotation of an ellipsoidal inclusion

with axes initially oblique to all the co-ordinate axes (e.g.

Freeman, 1985; Arbaret et al., 2001). Neither is it applicable

to all types of transpressional shear zones (e.g. Tikoff and

Fossen, 1993; Robin and Cruden, 1994; Tikoff and Greene,

1997; Jones and Holdsworth, 1998), with more complex

relations between the stretching lineation and the vorticity

vector.
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