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Abstract

In this study, we make use of a nonstationary stochastic theory in studying solute flux through spatially nonstationary flows in

porous media. The nonstationarity of flow stems from various sources, such as multi-scale, nonstationary medium features and

complex hydraulic boundary conditions. These flow nonstationarities are beyond the applicable range of the ‘classical’

stochastic theory for stationary flow fields, but widely exist in natural media. In this study, the stochastic frames for flow and

transport are developed through an analytical analysis while the solutions are obtained with a numerical method. This approach

combines the stochastic concept with the flexibility of the numerical method in handling medium nonstationarity and

boundary/initial conditions. It provides a practical way for applying stochastic theory to solute transport in complex

groundwater environments. This approach is demonstrated through some synthetic cases of solute transport in multi-scale

media as well as some hypothetical scenarios of solute transport in the groundwater below the Yucca Mountain project area. It is

shown that the spatial variations of mean log-conductivity and correlation function significantly affect the mean and variance of

solute flux. Even for a stationary medium, complex hydraulic boundary conditions may result in a nonstationary flow field.

Flow nonstationarity and/or nonuniform distribution of initial plume (geometry and/or density) may lead to nonGaussian

behaviors (with multiple peaks) for mean and variance of the solute flux. The calculated standard deviation of solute flux is

generally larger than its mean value, which implies that real solute fluxes may significantly deviate from the mean predictions.

q 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Most stochastic theories (e.g. Dagan, 1989; Gelhar,

1993; Cushman, 1997) for groundwater flow and

solute transport in porous formations are developed

under the following assumptions: (1) a steady-state

flow with no boundaries (or infinite boundaries), (2) a

stationary hydraulic conductivity field, (3) a uniform

mean velocity in space; and (4) simple initial

conditions for solute plume, such as a point source

or rectangular box with instant or step release.

Violation of any of the first three assumptions will

render the groundwater flow field nonstationary in

space. Some cases of regional groundwater flows

under natural conditions may be treated as steady-

state flows with infinite boundaries. However,
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the assumption of constant mean velocity is generally

not valid, and is only suitable at some specific regions

(or zones). The assumption of conductivity stationar-

ity may be appropriate within a single geologic

formation. Simple plume initial condition may be

representative for some special cases, such as the

controlled field experiments at Borden, Canada and

Cape Cod, Massachusetts (Sudicky, 1986; Hess, 1989;

Graham and McLaughlin, 1989a,b]. Adoption of these

assumptions can significantly simplify mathematics

for flow and transport calculations. We call the

theories based on these assumptions, the classical

stochastic theories. However, many flow fields and

chemical transports do not satisfy the assumptions

listed above. The prediction by the classical theories

may significantly deviate from actual field findings.

Recently, some of these assumptions have been

relaxed and stochastic models are gradually extended

to more complicated cases.

Indelman and Yubin (1996) developed a Lagran-

gian resident concentration theory for solute transport

in nonstationary flow fields and applied it to the case

of transport in media displaying a linear trend in the

mean log hydraulic conductivity field. Flow non-

stationarity caused by this special case of medium

nonstationarity has been extensively studied in the

literature (e.g. Rubin and Seong, 1994; Indelman and

Rubin, 1995; Li and McLaughlin, 1995; Zhang,

1998). Recently, Zhang et al. (2000) developed a

general theoretical framework for solute flux through

spatially nonstationary flows in porous media. The

solute flux method is used to evaluate the solute travel

time and transverse displacement through a fixed

control plane downstream of the solute source. The

solute flux statistics (mean and variance) are derived

through a Lagrangian perturbation method and are

expressed in terms of the probability density functions

(PDFs) of particle travel time and transverse displace-

ment. These PDFs are evaluated with the first two

moments of travel time and transverse displacement

under the assumed solute distribution form.

In this study, Zhang et al.’s (2000) theory is applied

to groundwater flow and solute transport under

complex hydrogelogical conditions. We will first use

hypothetical cases to study the influences of flow

nonstationarity and initial plume distribution on solute

transport. The flow nonstationarity stems from the

existence of zones in the medium and/or nonuniform

mean flow caused by the limited boundaries. Owing to

the complex flow, and initial and boundary con-

ditions, a numerical method is used to solve the

governing equations derived from the analytical

analysis. This approach combines the stochastic

concept with the flexibility of numerical methods, so

that it can deal with much more complex flow and

transport problems than the classical theories, and at

the same time, it greatly decreases the computational

time in comparison with Monte Carlo numerical

simulation. The developed method is later applied to

solute transport in the groundwater below the Yucca

Mountain project area in Nevada. The study results

exhibit the significant influence of the flow nonsta-

tionarity on solute transport, and show the importance

of the nonstationary transport theory to real environ-

mental projects.

2. Stochastic formulation of solute mass flux

We consider incompressible groundwater flow in a

heterogeneous aquifer with spatially variable hydrau-

lic conductivity KðxÞ; where xðx; y; zÞ is a Cartesian

coordinate vector. Groundwater seepage velocity,

V(x), satisfies the continuity equation, 7·ðnVÞ ¼ 0;

and Darcy’s law, V ¼ 2ðK=nÞ7h; where n is the

effective porosity, and h is the hydraulic head. The

V(x) is considered to be nonstationary caused by the

medium nonstationarity and/or bounded domain. A

solute of total mass M is released into the flow field at

time t ¼ 0; over the injection area A0 located at x ¼ 0;

either instantaneously or with a known release rate

quantified by a rate function, fðtÞ½T21�: We denote

with r0ðaÞ½M=L2� an areal density of injected solute

mass at the location a [ A0: With Da denoting an

elementary area at a, the particle of mass r0Da is

advected by the random spatially nonstationary

groundwater velocity field V. The total advected

solute mass is M ¼
Ð

A0
r0da: If the solute mass is

uniformly distributed over A0; then r0 ¼ M=A0: For

t . 0; a solute plume is formed and advected

downstream by the flow field toward a ðy; zÞ-plane,

located at some distance from the source, through

which the solute mass flux is to be predicted or

measured. The plane is referred to as the control plane

(CP). For nonreactive solute, integrating the solute

flux for a single particle, Dq;r0ðaÞdafðt2tÞdðy2hÞ;
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over the injection area A0; averaging over the

sampling area AðyÞ centered at yðy; zÞ; yields the

solute mass flux component orthogonal to the CP at x

as

qðt;y;x;AÞ¼
1

A

ð
A0

ð
A
r0ðaÞfðt2tÞdðy02hÞdy0da ð1Þ

where t;tðx;aÞ is the travel time of the advective

particle from a to the control plane at x; and h; ðh;jÞ;

(h;hðx;aÞ and j;jðx;aÞ) are the transverse

locations of a particle passing through the CP.

The quantities t and h in Eq. (1) are random

variables and are functions of the underlying random

velocity field. The expected value of q in Eq. (1) in the

case of point sampling (i.e. A ! 0) can be expressed

as (Zhang et al., 2000),

kqðt; xÞl ¼
ð

A0

ð1

0
r0ðaÞfðt 2 tÞf1½tðx; aÞ ¼ thðx; aÞ

¼ y�dtda

ð2Þ

where x ¼ ðx; yÞ and f1½tðx; aÞ;hðx; aÞ� denotes the

joint probability density function (PDF) of travel time

t for a particle from a to reach x and the corresponding

transverse displacement h: The variance of the solute

flux for the point sampling is evaluated as

s2
qðt; xÞ ¼ kq2ðt; xÞl2 kqðt; xÞl2 ð3Þ

with

kq2ðt; xÞl ¼
ð

A0

ð
A0

ð1

0

ð1

0
r0ðaÞr0ðbÞ

� fðt 2 t1Þfðt 2 t2Þ·f2½t1ðx; aÞ

¼ t;h1ðx; aÞ ¼ y; t2ðx; bÞ ¼ t;h2ðx; bÞ

¼ y�dt1dt2dadb ð4Þ

where f2½t1ðx; aÞ;h1ðx; aÞ; t2ðx;bÞ;h2ðx;bÞ� is the two-

particle joint PDF of travel time and transverse

displacement. For the special case of stationary flow

the PDFs do not depend on the absolute locations of

the starting point aðax; ay; azÞ and CP location, but

depend on their relative distance. In stationary flows,

tðx; aÞ and hðx; aÞ are uncorrelated, at least up to the

first-order in the variance of log-conductivity (Dagan

et al., 1992), and thus f1½t;h� ¼ f1½t�f1½h�: This

assumption was later extended to the two-particle

joint PDF (Andricevic and Cvetkovic, 1998), that is,

f2½t1;h1; t2;h2� ¼ f2½t1;h1�f2½t2;h2�: However, this

assumption is not suitable to solute transport in a

nonstationary flow (Zhang et al., 2000).

The solute discharge is another quantity of interest

defined as the total solute mass flux over the entire CP

at x;

Qðt; xÞ ¼
ð

A0

ð
CP

r0ðaÞfðt 2 tÞdðy 2 hÞdady ð5Þ

where y is a point in the CP. Its mean and variance are

given as

kQðt; xÞl ¼
ð

A0

ð1

0
r0ðaÞfðt 2 tÞf1½tðx; aÞ�dtda ð6Þ

s2
Qðt; xÞ ¼ kQ2ðt; xÞl2 kQðt; xÞl2 ð7Þ

kQ2ðt; xÞl ¼
ð

A0

ð
A0

ð1

0

ð1

0
r0ðaÞr0ðbÞ

� fðt 2 t1Þfðt 2 t2Þf2½t1ðx; aÞ;

t2ðx;bÞ�dt1dt2dadb

ð8Þ

where f1½tðx; aÞ� is the marginal PDF of f1½tðx; aÞ;

hðx; aÞ�; and f2½t1ðx; aÞ; t2ðx;bÞ� is the marginal PDF

of f2½t1ðx; aÞ;h1ðx; aÞ; t2ðx;bÞ;h2ðx;bÞ�:

3. Joint probability density functions

To evaluate the statistical moments of solute flux,

one needs to know the one- and two-particle PDFs f1

and f2; or an infinite number of statistical moments.

The approach used in this study is to evaluate a finite

number of statistical moments and assume certain

functions for f1 and f2: It is reasonable to approxi-

mate travel time, t; with a lognormal distribution and

transverse displacement, h; as a normal distribution

(Bellin et al., 1994; Cvetkovic et al., 1996). Based on

this assumption, the PDFs can be evaluated from the

first two moments of tðx; aÞ and hðx; aÞ as well as

their joint moments. Although this method may be

valid for any dimensionality, for the purpose of

simplicity and illustration, we will focus on transport

in 2-D and show how to estimate the moments of

tðx; aÞ and hðx; aÞ:

In the Lagrangian frame, tðx; aÞ and hðx; aÞ can be

related to the velocity field through (Andricevic and
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Cvetkovic, 1998; Zhang et al., 2000)

dt

dx
¼

1

V1ðx;hÞ
;

dh

dx
¼

V2ðx;hÞ

V1ðx;hÞ
ð9Þ

or

tðx ¼ L; aÞ ¼
ðL

ax

dx

V1½x;hðx; aÞ�
;

hðx ¼ L; aÞ ¼
ðL

ax

V2½x;hðx; aÞ�

V1½x;hðx; aÞ�
dx

ð10Þ

where Viðx;hÞ ði ¼ 1; 2Þ is the Lagrangian velocity.

Since the Eulerian velocity Vðx; yÞ is a random

variable, so are the Lagrangian velocity Vðx;hÞ; the

travel time tðx; aÞ; and the transverse displacement

hðx; aÞ: We decompose the Eulerian velocity as

Vðx; yÞ ¼ Uðx; yÞ þ uðx; yÞ; where U is the ensemble

mean velocity, and u is a zero-mean velocity

fluctuation. For the Lagrangian velocity V½x;hðx;

aÞ�; both the particle transverse position h and the

velocity V at this location are random variables.

Zhang et al. (2000) expanded the Lagrangian velocity

around its mean path ½x; khðx; aÞl� in a Taylor series,

Viðx;hÞ ¼ Uiðx; khlÞ þ uiðx; khlÞ

þ h0 ›Uiðx;hÞ

›h

����
h¼khl

þ· · · ði ¼ 1; 2Þ ð11Þ

where h0 ¼ h2 khl with kh0l ; 0: It should be noted

that the mean velocity in the nonstationary field is

generally not constant. Substituting Eq. (11) in Eq.

(10), one has

tðL;aÞ ¼
ðL

ax

1

U1ðx; khlÞ
12

u1ðx; khlÞ
U1ðx;khlÞ

�

2
h0

U1ðx;khlÞ
›U1ðx;hÞ

›h
h¼khlþ · · ·

�����
#

dx ð12Þ

and

hðx¼L;aÞ¼
ðL

ax

1

U1ðx;khlÞ
½U2ðx;khlÞþu2ðx;khlÞ

2
U2ðx;khlÞ
U1ðx;khlÞ

u1ðx;khlÞþh0 ›U2ðx;hÞ

›h

����
h¼khl

2h0 U2ðx;khlÞ
U1ðx;khlÞ

›U1ðx;hÞ

›h

����
h¼khl

þ· · ·�dx

ð13Þ

With these expressions, Zhang et al. (2000) obtained,

to the first-order, the means as well as auto- and cross-

covariances of t and h as

ktðL;aÞþ l¼
ðL

ax

dx

U1ðx;khlÞ
ð14Þ

khðL;aÞl¼
ðL

ax

U2ðx;khlÞ
U1ðx;khlÞ

dx ð15Þ

st1t2
ðL;a;L;bÞ

¼
ðL

ax

ðL

bx

dx1dx2

U2
1ðx1;kh1lÞU2

1ðx2;kh2lÞ

�½ku1ðx1;kh1lÞu1ðx2;kh2lÞl

þb1ðx1;kh1lÞku1ðx2;kh2lÞh
0
1l

þb1ðx2;kh2lÞku1ðx1;kh1lÞh
0
2l

þb1ðx1;kh1lÞb1ðx2;kh2lÞkh
0
1h

0
2l� ð16Þ

sh1h2
ðL;a;L;bÞ

¼
1

U2
1 ðL;kh1lÞU2

1 ðL;kh2lÞ

ðL

ax

ðL

bx

dx1

dx2½ku2ðx1;khðx1ÞlÞu2ðx2;khðx2ÞlÞl

þa1ðx1;khðx1ÞlÞa1ðx2;khðx2ÞlÞku1ðx1;khðx1ÞlÞ

�u1ðx2;khðx2ÞlÞl

2a1ðx1;khðx1ÞlÞku1ðx1;khðx1ÞlÞu2ðx2;khðx2ÞlÞl

2a1ðx2;kh1ðx2ÞlÞku1ðx2;khðx2ÞlÞu2ðx1;khðx1ÞlÞl�
ð17Þ

kt01ðx1;aÞh
0
2ðx2;bÞl

¼2
ðx1

ax

1

U2
1ðx;khðx;aÞlÞ

½ku1ðx;khðx;aÞlÞh
0
2ðx2;bÞl

þb1ðx;khðx;aÞlÞkh
0
1ðx;aÞh

0
2ðx2;bÞl�dx

ð18Þ

where b1ðx; khlÞ ¼ {½›U1ðx; yÞ�=›y}
��
y¼khl and

a1ðx; khðxÞlÞ ¼ U2ðx; khðxÞlÞ=U1ðx; khðxÞlÞ: We can

obtain s2
tðL; aÞ and s2

hðL; aÞ by letting b ¼ a in Eqs.

(16) and (17). As pointed out by Zhang et al. (2000),

these expressions are derived under the condition that

the coefficient of variation of velocity is smaller than

one. This condition may be satisfied for many
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practical subsurface flows where the variance of log

hydraulic conductivity is moderately large.

If t and h obey lognormal and normal distri-

butions, respectively, their joint PDF for one particle

can be expressed as (Zhang et al., 2000)

f1½tðx; aÞ;hðx; aÞ�

¼
1

2ptshðx; aÞsln t x; að Þ
ffiffiffiffiffiffiffiffi
1 2 r2

p

exp 2
1

2ð1 2 r2Þ

ðh2 khðx; aÞlÞ2

s2
h

"(

2 2r
ðh2 khðx; aÞlÞðln t2 kln tðx; aÞlÞ

shðx; aÞsln tðx; aÞ

þ
ðln t2 kln tðx; aÞlÞ2

s2
ln tðx; aÞ

#)
ð19Þ

where s2
ln tðx; aÞ ¼ ln½s2

tðx; aÞ þ ktðx; aÞl2�2 2 �

lnktðx; aÞl; kln tðx; aÞl ¼ 2 ln ktðx; aÞl2 1
2

ln½s2
tðx;

aÞ þ ktðx; aÞl2�; and r ¼ kt0ðx; aÞh0ðx; aÞl=½shðx; aÞ

sln tðx; aÞktðx; aÞl�:Similarly, the joint two-particle

PDF of ðt1;h1Þ and ðt2;h2Þ can be expressed as

(Zhang et al., 2000)

f2½t1ðx; aÞ;h1ðx; aÞ; t2ðx;bÞ;h2ðx; bÞ�

¼
1

ð2pÞ2t1t2lSl
1=2

exp 2
1

2
XTS21X


 �
ð20Þ

where X ¼ ½ðln t1 2 kln t1lÞ; ðh1 2 kh1lÞ; ðln t2 2 k
ln t2lÞ; ðh2 2 kh2lÞ�T and S is the covariance matrix

given as

S ¼

s2
ln t1

sln t1h1
sln t1 ln t2

sln t1h2

sln t1h1
s2
h1

sln t2 h1
sh1h2

sln t1 ln t2
sln t2h1

s2
ln t2

sln t2h2

sln t1h2
sh1h2

sln t2h2
s2
h2

0
BBBBBBB@

1
CCCCCCCA
ð21Þ

where kln til ¼ 2 lnktil2 1
2

ln½s2
ti
þ ktil

2�; s2
ln ti

¼

ln½s2
ti
þ ktil

2�2 2 lnktil; sln tihj
¼ kt0ih0

jl=ktil; and

sln ti ln tj
¼ ln½ktilktjlþ kt0it0jl�2 ln½ktilktjl�:

As shown in the above, the various ln t and h

moments in Eqs. (19)–(21) can all be expressed with

the raw moments of t and h; which, in turn, are related

to the velocity field. In Section 4, we will utilize a

perturbation moment method to relate the flow with

the hydraulic conductivity and hydraulic boundary

conditions (Zhang, 1998; Zhang and Winter, 1999).

4. Spatial moments of velocity covariance

The steady-state flow in a saturated medium

satisfies the following continuity equation and

Darcy’s law

7·VðxÞ ¼ 0 ð22Þ

ViðxÞ ¼ 2
KðxÞ

n

›hðxÞ

›xi

ð23Þ

subject to boundary conditions

hðxÞ ¼ HðxÞ x [ GD ð24Þ

VðxÞ·gðxÞ ¼ VðxÞ x [ GN ð25Þ

where hðxÞ is hydraulic head, KðxÞ is hydraulic

conductivity (assumed to be isotropic locally), n is

the porosity which is assumed to be constant, HðxÞ is

prescribed head on Dirichlet boundary segments GN ;

VðxÞ is prescribed flux across Neumann boundary

segments GN ; and gðxÞ is an outward unit vector

normal to the boundary. In this study, HðxÞ is assumed

to be deterministic and VðxÞ are assumed to be zero

(no flow boundary).

Substituting Eq. (23) into Eq. (22) and utilizing

YðxÞ ¼ ln KðxÞ yields

›2hðxÞ

›x2
i

þ
›YðxÞ

›xi

›hðxÞ

›xi

¼ 0 ð26Þ

Summation for repeated indices is implied. In this

study, YðxÞ is assumed to be a random variable and is

thus decomposed as YðxÞ ¼ kYðxÞlþ Y 0ðxÞ; where kYð
xÞl is the mean log hydraulic conductivity and Y 0ðxÞ is

the zero-mean fluctuation. In turn, h and V are also

random. Since the randomness of h depends on that of

Y ; one may expand hðxÞ as

hðxÞ ¼ hð0ÞðxÞ þ hð1ÞðxÞ þ hð2ÞðxÞ þ · · · ð27Þ

where hðnÞðxÞ ¼ Oðsn
Y Þ and sY is the standard

deviation of Y : By substituting Eq. (27) into Eq.

(26) and collecting terms at separate order, one can

obtain the following equations governing the first two
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moments involving head (Zhang, 2001),

›2hð0ÞðxÞ

›x2
i

þ
›kYðxÞl
›xi

›hð0ÞðxÞ

›xi

¼ 0 ð28aÞ

hð0ÞðxÞ ¼ HðxÞ x [ GD ð28bÞ

giðxÞ
›hð0ÞðxÞ

›xi

¼ 0 x [ GN ð28cÞ

›2khð2ÞðxÞl
›x2

i

þ
›kYðxÞl
›xi

›khð2ÞðxÞl
›xi

¼ 2
›

›xi

›

›xi

½CYhðx;xÞ�jx¼x ð29aÞ

khð2ÞðxÞl ¼ 0 x [ GD ð29bÞ

giðxÞ
›khð2ÞðxÞl

›xi

¼ 0 x [ GN ð29cÞ

›2Chðx;xÞ

›x2
i

þ
›kYðxÞl
›xi

›Chðx;xÞ

›xi

¼ JiðxÞ
›CYhðx;xÞ

›xi

ð30aÞ

Chðx;xÞ ¼ 0 x [ GD ð30bÞ

giðxÞ
›Chðx;xÞ

›xi

¼ 0 x [ GN ð30cÞ

›2CYhðx;xÞ

›x2
i

þ
›kYðxÞl
›xi

›CYhðx; xÞ

›xi

¼ JiðxÞ
›CY ðx;xÞ

›xi

ð31aÞ

CYhðx;xÞ ¼ 0 x [ GD ð31bÞ

giðxÞ
›CYhðx;xÞ

›xi

¼ 0 x [ GN ð31cÞ

In the above, hð0Þ is the zeroth-order mean head, khð2Þl
is the second-order mean head correction term, Ji ¼

2›hð0Þ=›xi is the negative of the (zeroth-order) mean

hydraulic head gradient, CYh ¼ kY 0ðxÞhð1ÞðxÞl is the

cross-covariance between log hydraulic conductivity

and head, and Ch ¼ khð1ÞðxÞhð1ÞðxÞl is the head

covariance. Since khð1Þl (the mean of the first-order

correction term) is zero, khl ¼ hð0Þ to zeroth- or first-

order in sY ; and khl ¼ hð0Þ þ khð2Þl to second order. In

the above, the covariances are of second order in sY

(or first-order in s2
Y ).

All terms on the right-hand side of Eq. (31a)–(31c)

are known with the solution of hð0Þ from Eq. (28a)–

(28c), hence the equation governing CYh is determi-

nistic and fully solvable. With CYh; one can obtain Ch

from Eq. (30a)–(30c), and khð2Þl from Eq. (29a)–

(29c). However, due to the mathematical complexity,

it is essentially impossible to obtain analytical

solutions for the problem. Zhang (1998) and Zhang

and Winter (1999) developed a finite difference

scheme for solving the statistical moment equations.

We next show how to derive the statistical

moments of the velocity field. The velocity in Eq.

(23) can be rewritten as

VðxÞ ¼ 2
KGðxÞ

n
1 þ Y 0 þ

Y 02

2
þ · · ·

� �
7

� ½hð0Þ þ hð1Þ þ hð2Þ þ · · ·� ð32Þ

Collecting terms at separate order, we have up to the

second-order

Vð0ÞðxÞ ¼ 2
KGðxÞ

n
7hð0ÞðxÞ ð33Þ

Vð1ÞðxÞ ¼ 2
KGðxÞ

n
½Y 0ðxÞ7hð0ÞðxÞ þ 7hð1ÞðxÞ� ð34Þ

Vð2ÞðxÞ ¼ 2
KGðxÞ

n
½Y 0ðxÞ7hð1ÞðxÞ

þ
Y 02ðxÞ

2
7hð0ÞðxÞ þ 7hð2ÞðxÞ� ð35Þ

It can be shown that the mean velocity is kVl ¼ Vð0Þ to

zeroth- or first-order in sY ; kVl ¼ Vð0Þ þ kVð2Þl to

second order, and the velocity fluctuation is V0 ¼ Vð1Þ

to first-order. Therefore, the velocity covariance is

given as

Cvij
ðx;xÞ¼

KGðxÞKGðxÞ

n2
JiðxÞJjðxÞCY ðx;xÞ

"

2JiðxÞ
›CYhðx;xÞ

›xj

2JjðxÞ
›CYhðx;xÞ

›xi

þ
›2Chðx;xÞ

›xi›xj

#
ð36Þ

The second-order correction term to the velocity is

obtained from Eq. (35) as

kV ð2Þ
i ðxÞl ¼ 2

KGðxÞ

n

"
›CYhðx; xÞ

›xi
x¼x

���
2

JiðxÞ

2
s2

Y ðxÞ þ
›

›xi

khð2ÞðxÞl

#
ð37Þ

J. Wu et al. / Journal of Hydrology 275 (2003) 208–228 213



All the terms on the right-hand side of Eqs. (36) and

(37) are known, therefore Cvij
and kVð2Þ

i l can be

obtained with the availability of the moments of head.

5. Synthetic case study

In previous sections, the theoretical framework has

been developed for the estimation of solute flux. The

required data for the calculation are the statistical

moments of the conductivity field, solute initial dis-

tribution, and hydraulic boundary conditions. In this

section, we will use several case studies to show the

effects of these factors on solute transport processes.

5.1. Nonstationarity of conductivity field

The spatial nonstationarity of groundwater flow

may be generated from the presence of multi-scale and

nonstationary medium features (e.g. distinct geologic

layers, zones or faces), the presence of finite

boundaries, and/or the fluid pumping and injecting.

Here, we consider flow nonstationarity stemming from

the combined effects of the nonstationarity in the

hydraulic conductivity and the finite boundary. The

nonstationarity in the Y field may manifest in two

ways: the mean kYl may vary spatially, and the two-

point covariance CY ðx; xÞ may depend on the actual

locations of x and x rather than only their separation

distance. In this subsection, we consider the case that

the log hydraulic conductivity consists of a nonYucca

Mountain, Nevadaconstant mean and a stationary

fluctuation. That is to say, the mean varies spatially

and the two-point covariance only depends on the

relative distance. Later, we will study the more general

case that the two-point covariance depends on the

actual locations of the two points in Section 5.4. More

detailed discussion on multi-scale and nonstationary

random fields is recently given by Zhang et al. (2000).

Although the covariance of Y may take any

admissible form, here we consider, for simplicity,

only the exponential form

CY ðx 2 xÞ ¼ s2
Y exp{ 2 ½ðxi 2 xiÞ

2
=l2

i �
1=2} ð38Þ

where s2
Y is the variance and liði ¼ 1; 2Þ is the

correlation scale of Y along the xi axis. For the sake of

simplicity, here we use l1 ¼ l2 ¼ l:

Fig. 1 is the sketch of a synthetic two-dimensional

(2-D) domain of size 11l £ 11l (l is the log-

conductivity correlation length). Here, we consider a

high (or low) permeability layer in an otherwise

stationary permeability field. The layer may be

parallel to the x-coordinate (Layer A), perpendicular

to the x-coordinate (Layer B), or in a 458 angle to the

x-coordinate (Layer C). The mean log hydraulic

conductivity within the layer is chosen to be kYl ¼ 1

for a high-permeability case, or kYl ¼ 21 for a low-

permeability case. In both cases, the variance is s2
Y ¼

1; and the correlation length is 1 ½L�: For the rest of the

domain, the variance and correlation length are the

same as those for the layer, but the mean log hydraulic

conductivity is chosen to be kYl ¼ 0 (correspond-

ingly, the geometric mean KG ¼ 1½L=T�). According

to the layer’s orientation and mean conductivity

value, seven different combinations are listed in

Table 1. The boundary conditions are specified as

follows: constant hydraulic head ðh ¼ 11lÞ for the left

side ðx ¼ 0Þ; constant hydraulic head ðh ¼ 0Þ for the

right side ðx ¼ 11lÞ; and no flow for the lower ðy ¼ 0Þ

and upper ðy ¼ 11lÞ boundaries.

For Case 1, there is no multi-scale feature in the

simulation domain. The flow nonstationarity is

resulted only from the finite boundaries. The results

of this case are used as references for the other

Fig. 1. Sketch of the study domain as well as the locations of source,

control plane (CP), and high- (or low)-permeability layers.
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cases. In Cases 2–4, the domain involves a high-

permeability layer A, B and C, respectively; in

Cases 5–7, the domain involves a low-permeability

layer A, B and C, respectively. In all of these

cases, the line source with unit mass is of size

H ¼ 1l centered at the point ð0:5l; 5:5lÞ; and the

control plane (CP) is located at x ¼ 10l:

The groundwater flow distributions for the seven

cases have been calculated. For the purpose of

illustration and brevity, we use the results of Case

4, shown in Fig. 2, to exhibit the nonstationary

flow domain. It is seen from the figure that the

existence of high-permeability layer C results in a

significant change of mean flow in both direction

and magnitude, which leads to flow nonstationarity

in the domain. Though not shown, the (co)variance

of the velocity field is also strongly location

dependent and thus nonstationary.

Fig. 3 shows the transport results of Cases 1–4.

The figure reveals the effect of a high-permeability

layer with various orientations on solute flux. Fig. 3(a)

and (b) are the profiles of the mean total solute flux,

kQl; and the associated uncertainty, sQ; across the CP

as a function of time, respectively. In comparison of

the four mean breakthrough curves, it is apparent that

the inclusion of a high-permeability layer would

generally render an earlier solute arrival (i.e. faster

advection) and a higher peak for kQl (i.e. less

dispersion). More specifically, the mean solute

transport is the fastest in Case 2 since the solute

moves only in the high-permeability layer (fast

channel), which results in an early breakthrough

with the largest peak. The breakthrough curve reaches

its peak value and then drops quickly to zero. On the

other hand, for Case 1, the mean solute movement is

much slower in the domain without the high-

permeability layer. It results in a later breakthrough

curve with the smallest peak value. The curve spreads

widely and has a long tail. The results of Cases 3 and 4

are between those of Cases 1 and 2. It is also shown

that the mean solute transport is faster in Case 4 than

that in Case 3 since the high-permeability layer in

Case 4 is more inclined to the solute transport

direction. The profiles of the standard deviation sQ

in Fig. 3b are consistent with the results of kQl; where

larger kQl corresponds to the larger sQ: Further, sQ is

generally larger than kQl for the cases studied with the

specific sY value and source dimension.

Fig. 3(c) and (d) are the profiles of the mean solute

flux kql and the associated standard deviation sq for

the plume at the center point of CP (i.e. at the point

ð10l; 5:5lÞ) as a function of time, respectively. It is

apparent that a high-permeability layer has a similar

effect on kql and sq as on kQl and sQ: The difference

is that the solute plume in Case 4, instead of Case 1,

has the smallest peak. This phenomenon is due to the

change of mean solute transport direction resulting

from the orientation of the high-permeability layer.

One may imagine that the breakthrough curve of kql at

the center of the plume (instead at the center of CP)

will have the same characteristics as that of kQl for the

four cases. In Fig. 3(e) and (f), we present the kql and

sq profiles, respectively, as a function of transverse

Table 1

Seven cases of the hydraulic conductivity field

Case Layer kYl

1 None 0

2 Layer A (parallel to x direction) 1

3 Layer B (perpendicular to x direction) 1

4 Layer C (inclined to x direction) 1

5 Layer A (parallel to x direction) -1

6 Layer B (perpendicular to x direction) -1

7 Layer C (inclined to x direction) -1

Fig. 2. Illustration of the mean flow field with the inclined high-

permeability layer C.
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Fig. 3. (a) Expected value kQl and (b) standard deviation sQ of total solute flux, (c), (e) expected value kql; and (d), (f) standard deviation sq of

point solute flux across the control plane at x ¼ 10l (a, b, c and d) as a function of time and (e and f) as a function of transverse displacement

with various high-permeability layers.
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location on the CP at t ¼ 5: It is seen that both the kql
and sq have Gaussian-type (single-modal) profiles in

the transverse direction. For Case 4, the change of the

solute transport direction results in the nonsymmetric

distributions of the kql and sq in the transverse

direction on the CP.

Fig. 4 exhibits the solute flux results of Cases 1, 5,

6, and 7. This figure is the counterpart of Fig. 3, but

Fig. 3 (continued )
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Fig. 4. (a) Expected value kQl and (b) standard deviation sQ of total solute flux, (c), (e) expected value kql; and (d), (f) standard deviation sq of

point solute flux across the control plane at x ¼ 10l (a, b, c and d) as a function of time and (e and f) as a function of transverse displacement

with various low-permeability layers.
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Fig. 4 (continued )
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with a low-permeability layer. Contrary to the effect

of the high layer on solute transport, the existence of

the low conductivity layer retards the solute move-

ment, generate more dispersion and decrease the peak

values of kQl and kql breakthrough curves. The long

tailing is more obvious. The kql profile along the y-

direction in the CP is also nonsymmetric, but the

curve is skewed in the opposite side in comparison to

the case with the high conductivity zone. The

existence of low conductivity decreases the sQ and

sq in the longitudinal direction, but increases sq in the

transverse direction.

5.2. Hydraulic boundary conditions

In this subsection, we will study flow nonstatio-

narity caused by hydraulic boundary conditions, and

the influence of this flow nonstationarity on solute

flux. The stationary conductivity field shown in

Section 5.1 as Case 1 is chosen for this study, so we

can focus on the boundary influence. The boundary

hydraulic conditions at the top, bottom and right sides

are the same as those in Section 5.1, but different on

the left side. In Section 5.1, the hydraulic head on the

whole left side is fixed at H ¼ 11l: Here, we let

the hydraulic head decrease linearly from H ¼ 11l at

the top to H ¼ 7l at the bottom. The mean flow field

in this case is shown in Fig. 5. It is seen that the

variation of the hydraulic head on the left boundary

results in the change of the mean flow in both

magnitude and direction, especially in the vicinity of

the boundary. The computed results of solute flux in

this flow field are shown in Fig. 6. For the purpose of

comparison, the solute flux results of Section 4’s

Case 1 are also shown in the figure.

Fig. 6(a) presents the profiles of kQl and sQ across

the CP as a function of time. It is shown that the

changed hydraulic head boundary on the left side

renders a later solute arrival (i.e. slower advection)

and a lower peak for kQl (i.e. greater dispersion). This

phenomenon is due to the decrease of the flow

velocity and change of flow direction by the variation

of the left boundary condition. Fig. 6a also shows that

the profile of sQ is consistent with that of kQl; and the

value of sQ is generally larger than kQl: This result is

consistent with what we have found in Section 5.1.

Fig. 6b shows the profiles of the kql and the sq at the

center of the CP as a function of time. It is apparent

that the change of the boundary condition signifi-

cantly affects kql and sq: Comparing Fig. 6a and b,

one may note (not shown in the figure) that the

relative uncertainty of Q; sQ=kQl; is much less than

that of q; sq=kql: In Fig. 6c, we present the profiles of

kql and sq as a function of the transverse location on

the CP at t ¼ 10: It is shown that the change of

boundary leads to the skewed distribution of kql and

sq; and the decrease of kql and sq at the center of the

CP, and also the decrease of the relative uncertainty of

q:

In summary, the change of boundary conditions

leads to the flow nonstationarity in both magnitude

and direction, which in turn significantly affects the

solute transport processes for solute flux and total

solute flux. It is also shown that the method used in

this study can capture the hydraulic characteristics

caused by the complex boundary conditions and their

influence on solute transport.

5.3. Initial plume distribution

In Sections 5.1 and 5.2, the initial plume is chosen

to be a unit line with constant density and located at

the center of the left boundary. Here, we will study the

effects of geometry and density of the initial plume

distribution on solute flux. For the purpose of

Fig. 5. Illustration of the mean flow field with the linearly

decreasing hydraulic head boundary condition.
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Fig. 6. (a) Expected value kQl and standard deviation sQ of total solute flux, (b) expected value kql and standard deviation sq of point solute flux

across the control plane at x ¼ 10l as a function of time, and (c) as a function of transverse displacement with the linear decreased hydraulic

head boundary condition.
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comparison, the total mass of the initial plume is fixed

as 1 unit in this subsection. The simulation domain is

chosen to be the same as that for Case 2 of Section 5.1,

the high-permeability layer A in an otherwise

statistically homogeneous medium. The boundary

condition is the same as that in Section 5.1. In this

subsection, three source distributions are examined. In

the first two cases, the lengths of the line sources are

chosen to be H ¼ 5l: The source density is constant

for Scenario 1. For Scenario 2, we divide the length

into five equivalent pieces, each with 1l length. The

mass density in the three middle pieces are zero, and

the solute of unit mass is uniformly distributed at the

two end pieces. In Scenario 3, the length of the line

source is H ¼ 1l and the density is constant. The line

sources in all three cases are all centered at

ð0:5l; 5:5lÞ:

In Fig. 7a and b, we present the kql and sq

breakthrough curves, respectively, through the center

of the CP (i.e. at point ð10l; 5:5lÞ). As shown in the

figures, the solute breakthrough curve in Scenario 3

has the highest peak and the earliest arrival in the

three cases, because the whole source is within the

high-permeability layer. Correspondently, the case

also renders the largest sq: When the length of the

source is H ¼ 5l (Scenarios 1 and 2), in comparison

with the constant density source (Scenario 1), the

variable density source with mass concentrated at the

two ends (Scenario 2) results in the much slower

advection and much larger dispersion. It should be

noted that source distribution in Scenario 1 leads to

the smallest solute flux uncertainty in the three cases,

which can be explained as that the larger the source

size, the smaller the uncertainty. This result is

consistent with relative dispersion theory (Andricevic

and Cvetkovic, 1998].

Fig. 7c and d shows the kql and sq profiles,

respectively, as a function of transverse location on

the CP at t ¼ 5: It is shown that for Scenarios 1 and 3,

both kql and sq have Gaussian-type (single-model)

profiles in the transverse direction at this early travel

time. However, the two profiles for Scenario 2 at the

same time have bimodal distributions, which are

caused by the two separate sources at the two ends.

Fig. 8 shows the kql and sq profiles for Scenario 1

as a function of transverse location on the CP at

different times. In the early travel time, both kql and

sq have Gaussian-type (single-modal) profiles. At

Fig. 7. (a), (c) Expected value kql and (b), (d) standard deviation sq

of point solute flux across the control plane at x ¼ 10l (a and b) as a

function of time and (c and d) as a function of transverse

displacement with different source conditions.
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longer travel time, however, the two profiles become

bimodal.

5.4. Covariance of hydraulic conductivity

In all the case studies above, we assume the log

hydraulic conductivity field consists of a noncon-

stant mean, but a stationary fluctuation. In the

natural environment, two media, even next to each

other, may have quite different structures of CY :

Even if the two media have the same structures,

the parameter values, such as the variance and the

correlation length, can be quite different. There

may be no conductivity correlation between the

two media. Of all these issues, the conductivity

correlation across the boundary of the two regions

is probably the most important one for the

extension of the solute transport model from one

region to multiple regions.

In this subsection, we examine the effect of the

different forms of CY across the regional boundaries

on the solute transport. The simulation domain, mean

conductivity distribution and boundary conditions are

chosen to be the same as those in Case 4 of Section

5.1. However, in Section 5.1, the existence of layer C

does not influence CY ; which means that whether the

two points, x and x; are in the same region or not, the

correlation is CY ðx;xÞ ¼ CY ðx 2 xÞ: This case is

called universal correlation. In this subsection, we

consider another case, called regional correlation,

where CY ðx;xÞ ¼ CY ðx 2 xÞ if x and x are in the

same region (medium), otherwise CY ðx;xÞ ¼ 0:

We present the kql and sq breakthrough curves

through the center point at the CP in Fig. 9a, and their

profiles as a function of transverse location on the CP

for t ¼ 5 in Fig. 9b. It is shown that in comparison

with the universal correlation, the regional correlation

results in faster advection, less dispersion and larger

uncertainty. We can imagine that the influence of the

correlation between two media would be more

significant if the kYl; s2
Y and the structure of CY are

all different in the two media.

6. Application to Yucca Mountain environmental
project

Yucca Mountain is located in the Great Basin

about 150 km northwest of Las Vegas, Nevada. The

mountain consists of a series of fault-bounded blocks

of ash-flow and ash-fall tuffs and a smaller volume of

lava deposited between 14 and 11 Ma (million years

before present) from a series of calderas located at a

few to several tens of kilometers to the north. This

location was chosen by the US Department of Energy

as a candidate for storing radionuclide wastes. Many

numerical studies have been conducted to simulate the

potential solute transport process after the radio-

nuclide wastes migrate from the repository to the

saturated groundwater (e.g. Zyvoloski et al., 1997).

The saturated medium is composed of many layers of

different materials. These materials in different layers

have quite different physical properties (e.g. hydraulic

conductivity). Even within a single layer, significant

spatial heterogeneity of hydraulic conductivity has

Fig. 8. (a) Expected value kql and (b) standard deviation sq of point

solute flux due to a constant density source of length 5l across the

control plane at x ¼ 10l as a function of transverse displacement at

t ¼ 2; 5, 10, and 15 with the high-permeability layer A.
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been observed (Shirley et al., 1997). However, owing

to the tremendous computational demand of conduct-

ing Monte Carlo simulations to study the influence of

heterogeneity within each layer on groundwater flow

and solute transport, current numerical modeling

efforts are limited to the deterministic approach with

effective parameter values, such as the mean conduc-

tivity and macrodispersivity. This deterministic

approach may predict the mean or expected flow

and solute transport processes, but it cannot fully

address the uncertainties about the expected predic-

tions. Here, we use the moment method to study this

issue.

As shown in Fig. 10, the study domain, 5200 m

horizontally and 940 m vertically, is a vertical cross

section parallel to the mean flow. There are six layers

within this domain and the dash lines represent the

boundaries of the layers. The mean of the log-

conductivity within each layer is shown in the figure.

The geostatistical study of the conductivity

Fig. 9. Expected value kql and standard deviation sq of point solute flux across the control plane at x ¼ 10l (a) as a function of time and (b) as a

function of transverse displacement with different covariances of log hydraulic conductivity ðCY Þ of different permeability medium.
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distribution within each layer is in progress. For the

purpose of illustration, we assume the log-conduc-

tivity in every layer has an isotropic exponential

covariance, and no correlation exists between the

layers. The variances and correlation lengths are all

assumed to be 0.6 and 200 m, respectively. The top

and bottom boundaries are no-flow, and the right and

left sides are constant heads of 737 and 1000 m,

respectively. The source line of 50 m long aligns

vertically close to the left boundary. Six different

locations of the source line, shown in the figure, are

chosen for sensitivity studies. The CP is fixed near the

right boundary. The irregularity of flow lines is caused

by the rough layer boundaries and large difference of

mean permeability between the layers. The mean flow

lines also show that the groundwater mainly flows

through the high-conductivity layers.

Fig. 11a and b shows the mean solute breakthrough

curves and variances about the means with the source

line at different locations. Generally speaking, the

variance is proportional to the mean value. The solute

travels fastest when the source line is between 850 and

900 m, and slowest with the source line between 100

and 150 m. This is consistent with the flow-line

trajectory. When the solute goes to the fast channel,

the solute has a fast mean movement and small

dispersion, vice versa for the slow channel. Though

not shown in the figure, one could imagine that with

the increase of the size of the source line, the solute

dispersion significantly increases owing to the strong

heterogeneity in the vertical direction. The predicted

standard deviation values are significantly larger than

the mean values, indicating that the mean prediction

may significantly deviate from the real solute

transport. To decrease the variance, conditioning on

field measurements may be required.

The results in Figs. 10 and 11 exhibit the flexibility

of the moment method to solute transport in complex

flow conditions. Further, the moment method greatly

reduces the numerical calculation comparing with the

Monte Carlo simulation method, since only ‘one

realization’ calculation is required. Therefore, for the

case under study the moment method is much more

efficient than the Monte Carlo simulation method. It

can be used as a screening tool to study the influences

of the spatial variations of many parameters on solute

Fig. 10. Sketch of the study domain, the locations of source and CP, and the mean flow field.
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transport, and identify the most important factors for

further investigation by other approaches.

7. Summary and discussion

In this paper, the nonstationary transport theory of

Zhang et al. (2000) was made use of in studying solute

flux through spatially nonstationary flows in porous

media. The causes of flow nonstationarity include

multi-scale and nonstationary medium features as

well as complex hydraulic boundary conditions

(Zhang, 2001). These nonstationary cases are not

within the scope of the classical stochastic theory for

stationary flow fields (Gelhar and Axness, 1983;

Dagan, 1982, 1984; Dagan et al., 1992], but widely

exist in natural fields. The stochastic frames for flow

and transport are set up through analytical approaches,

and numerical methods are utilized to obtain the

solutions due to the complexity of the conductivity

field, and initial and boundary conditions. This

method, on one hand, greatly decreases the compu-

tational requirement in comparison with the Monte

Carlo numerical simulation method; on the other

hand, it can predict the flow and transport in much

more complex subsurface environments than

Fig. 11. Solute breakthrough curves with various source locations: (a) expected values and (b) standard deviations.
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the classical theory. The method used in this study

provides a practical tool for applying stochastic

approach to solute transport in complicated hydraulic

conditions.

In this study, the effects of conductivity nonstatio-

narity, hydraulic boundary and initial plume distri-

bution on solute flux were investigated. The

conductivity nonstationarity includes the spatial

variations of the mean and correlation structure.

Both of them have significant influence on the

prediction of the mean and variance of the solute

flux. For the cases studied, the predicted peak values

of sQ and sq are larger than these of kQl and kql;
respectively, which implies that the prediction based

on the mean value may significantly differ from the

real transport process. Further, for all the case studies,

if one compares the relative uncertainty, one may find

sQ=kQlksq=kql: As well known in the literature, kQl is

a more robust quantity than kql but the former reveals

less information than the latter.

Flow nonstationarity may significantly change the

characteristics of the solute breakthrough curves. As a

result, the mean and variance profiles may vary with

time from a one-peak to bi-peak distribution.

In this study, the variation of conductivity

correlation across the boundary between different

media was considered. It was shown based on the

examples chosen that the solute transport is very

sensitive to the conductivity correlation across

different media.

For the classical analytical stochastic methods

(Gelhar and Axness, 1983; Dagan, 1982, 1984; Deng

et al., 1993], the initial plume distribution is required

to be as simple as a point or uniform distributed

rectangle. The method used in this study can deal with

any geometry of source shape and with any spatial

density distribution. From Eqs. (2) and (4), one may

notice that the particle distribution density functions,

f1 and f2; are separated from the plume initial

distribution, and the evaluation of density functions

are the most time-consuming part of the calculation in

this method. Therefore, the effort for computing

solute flux moments will not significantly increase as

the initial plume distribution is becoming more

complex.

The moment method was applied to some

hypothetical scenarios of solute transport in the

groundwater below the Yucca Mountain project

area. It was shown on the basis of the cases

considered that the method is flexible in handling

complex flow and solute transport conditions and

has the computational efficiency in comparison with

the Monte Carlos simulation method. Therefore, the

method may provide a computational tool for many

environmental projects under realistic conditions.
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