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Abstract

In this study, a Monte Carlo simulation method is applied to study groundwater flow and solute transport in heterogeneous,

dual-porosity media. Both the hydraulic conductivity and the interregional mass diffusion rate are assumed to be spatial random

variables, and their random distributions are generated through a Fast Fourier Transform (FFT) technique. A block-centered

finite difference (FD) method is used to solve the flow equation. Based on the generated flow fields, a random walk particle-

tracking algorithm is invoked to study the solute transport. The mass diffusion between the mobile and immobile water regions

is simulated by a two-state, homogeneous, continuous-time Markov chain. The Monte Carlo simulation results are compared to

those obtained through the first-order, Eulerian perturbation method. It is shown from the comparison that the first-order

analytical method is robust for predicting mean concentration in mild heterogeneous dual-porosity media. However, large

deviations are observed between the analytical and Monte Carlo results for predicting transport in moderately-highly

heterogeneous media. The Monte Carlo method is also used to study the variance of the solute flux through a control plane.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The dual- or double-porosity model was initially

introduced to simulate groundwater flow (Barenblatt

et al., 1960; Warren and Root, 1963; Duguid and Lee,

1977; Moench, 1984) and solute transport (Coats and

Smith, 1964; van Genuchten and Wierenga, 1976;

Bibby, 1981; Gerke and van Genuchten, 1993a,b) in

fissured or fractured media. This model assumes that a

fractured medium can be described by two completely

overlapping continua, one representing the fracture

networks and the other representing the porous

matrix. The groundwater flow or/and solute transport

is described by two equations coupled together with a

term that characterizes the exchange of water or

solutes between the two continua. This model was

later used to describe the preferential movement of

water and solutes at the field scale, a phenomenon that

is widely believed to occur in most natural media in
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the subsurface (e.g. van Genuchten et al., 1990; Gish

and Shirmohammadi, 1991). The preferential flow

results in a rapid movement of solutes along those

preferential pathways and a heavy tail for the solute

mass flux breakthrough curve due to the kinetic mass

transfer between the mobile and immobile water

regions.

More recently, the dual-porosity concept has been

extended to the so-called multi-rate models that

involve a series of rate-limited mass transfer equations

to account for continuous pore size distribution of the

media (e.g. Villermaux, 1981; Pedit and Miller, 1994,

1995; Chen and Wagnet, 1995; Haggerty and

Gorelick, 1995) and distribution functions are typi-

cally used to describe the distribution of the

interregional mass diffusion coefficients. The conduc-

tivity heterogeneity, however, was usually not con-

sidered in these models.

It has been widely recognized that media hetero-

geneities, such as the spatial variation of hydraulic

conductivity, have significant influence on ground-

water flow and solute transport. Owing to the limited

available data to deterministically describe the

media’s heterogeneities, stochastic method has been

popularly used to address flow and transport in these

media, and significant progress has been made both

theoretically and experimentally over the last three

decades (e.g. Dagan, 1989; Gelhar, 1993; Cushman,

1997). However, most of these studies focused on the

flow and transport in the one-domain (unstructured)

porous medium. Recently, some stochastic studies

were conducted to study solute transport in dual-

porosity media by coupling the interregional mass

diffusion process with the dispersion process (Harvey

and Gorelick, 1995; Haggerty and Gorelick, 1995,

1998; Li and Brusseau, 2000). Huang and Hu (2000)

applied Eulerian perturbation method to set up the

theory for conservative transport in heterogeneous

dual-porosity media. Painter et al. (2001) used a

similar mobile/immobile model, coupled with equili-

brium sorption in both mobile and immobile regions,

to address the effect of spatial variability in a

stochastic Lagrangian framework. Huang and Hu

(2001) later extended their model of conservative

tracer transport in dual-porosity media to reactive

transport by incorporating the kinetic sorption into

both mobile and immobile regions. In their study, the

hydraulic conductivity, mass transfer rate coefficient

and the sorption distribution coefficients were

all assumed to be spatial random variables and

a first-order analytical solution for the mean concen-

tration was obtained in transform space. It is shown by

Huang and Hu (2000) that interregional mass diffu-

sion will significantly increase plume dispersion in

both longitudinal and transverse directions, and will

make the plume more negatively skewed and give the

breakthrough curve a long tail. Furthermore, random-

ness of the interregional mass diffusion coefficient

will increase the plume dispersion and make the

plume more skewed.

The analytical approach provides a simple and

clear mathematical expression for the role of the

heterogeneous mass transfer process on solute trans-

port. The application of this approach to real field

solute transport, however, is limited by some simpli-

fication assumptions used in the theory development,

such as constant mean velocity, small variances of the

log-conductivity and rate coefficient, weakly station-

ary conductivity field, and infinite domain without any

source/sink. Numerical Monte Carlo simulation is

another commonly applied stochastic approach to flow

and solute transport in heterogeneous media. This

approach is computationally demanding, but flexible

to complex boundary geometry and with no limitation

to the medium heterogeneity. The analytical and

Monte Carlo methods have been complementary to

each other in the stochastic theory development of

flow and transport in the one-domain field (e.g. Bellin

et al., 1992; Tompson 1993; Hassan et al., 1997,

1998). In this study, an efficient Monte Carlo

simulation algorithm is developed to simulate the

transport of conservative transport in a dual-porosity

medium. The purpose of this study is to evaluate the

accuracy and validity of the analytical solution

developed by Huang and Hu (2000) and to study the

variance about the mean prediction. The variance

calculation was beyond the scope of Huang and Hu

(2000) study. In Section 2, the analytical solution by

Huang and Hu (2000) is outlined. Section 3 presents a

Monte Carlo numerical simulation algorithm for

groundwater flow and conservative transport in a

heterogeneous dual-porosity medium. In Section 4,

analytical results are compared with those obtained

from Monte Carlo simulations to evaluate the

accuracy of the analytical solution. Monte Carlo

method is further applied to investigate the uncertainty
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about the mean prediction. The main conclusions of

this study are given in Section 5.

2. First-order analytical solution

For conservative solute transport in a dual-porosity

medium, the concentration in mobile water, Cm;

satisfies, on the local scale, the following equation

(Huang and Hu, 2000)

um

›Cm

›t
¼

›

›xi

umdij

›Cm

›xj

 !
2

›ðqp
i CmÞ

›xi

2 aðCm 2 CnÞ ð1Þ

where um is the fractional water content in the mobile

region, qp
i is the specific discharge, and dij is the local

dispersion coefficient tensor, a is the interregional

mass diffusion coefficient, and Cn is the solute

concentration in the immobile water region. The

repeated indices indicate Einstein summation. The

concentrations in the mobile and immobile water

regions are related by a first-order transfer equation to

account for the rate-limited, mass diffusion process

between the two regions,

un

›Cn

›t
¼ aðCm 2 CnÞ ð2Þ

where un is the fractional water content in immobile

water. In Huang and Hu (2000), the mean specific

discharge is assumed to be constant and in the x1

direction so that �qp
1 ¼ q; �qp

2 ¼ �qp
3 ¼ 0; where the

overbar represents the mean or ensemble, and the

local dispersion coefficient tensor is constant and

diagonal with dii ¼ di ði ¼ 1; 2; 3Þ:Note that Eq. (2) is

mathematically similar to a kinetic chemical sorption

model, but the cause of this nonequilibrium behavior

described by Eq. (2) is rate limitations in the diffusive

mass transfer between the mobile and immobile water.

The mass transfer rate a is defined as a ¼ ðb=x2ÞDa;

where b is a factor depending on the geometry of the

aggregates, x represents the characteristic distance (L)

from the center of a fictitious matrix block to the

fracture boundary, and Da is the effective ionic or

molecular diffusion coefficient (L2T21) of the matrix

block near the interface. In this study, we will not

study the parameters, b; x and Da; individually, but the

factor of their combination, a:

It was assumed that the log-conductivity in the

mobile region, ln K; and a are spatial random variables

(Huang and Hu, 2000), which account for the spatial

variations of conductivity and mass transfer process,

respectively.Therandomnessof theparameters, in turn,

results in the random velocity field in mobile water and

concentrations in both regions. In the usual fashion,

these random variables are decomposed into their

means and perturbation parts, and substituted into Eqs.

(1) and (2). Eqs. (1) and (2) become stochastic

governing equations, from which one can seek the

solutions for the means of the concentrations and

variances about the means. Huang and Hu (2000)

provided a first-order solution for mean solute concen-

tration in mobile water. Its expression in spatial-Fourier

and temporal-Laplace transforms is given as

~̂�Cmðk;vÞ ¼
~̂F21ðk;vÞ umĈ0

m

(

þ �a2
ikj

ð2pÞ3
~̂G pk âqjaqj 2

1

ð2pÞ3
~̂G pk âaaa

�

þ
~W �a

ð2pÞ3
~̂G pk âaaa2 ~Waað0Þ

#
~̂I21
1 unĈ0

n

)

ð3Þ

where ^ and , represent spatial-Fourier and temporal-

Laplace transforms, respectively, k and v are wave

number and Laplace transformed time; p represents

the convolution operator and the subscript, k, indicates

the variable on which the convolution operates.a is the

perturbation term of a: C0
m and C0

n are the initial

concentrations in the mobile and immobile water,

respectively, and

~̂Fðk;vÞ ¼ umvþumdik
2
i þ iqk1 þ �a2 �a~̂I21

1
~̂I2

2 ~Waað0Þþ ~Waað0Þ~̂I21
1
~̂I2 2

ikj

ð2pÞ3

�ðiki
~̂Bpk

^qiqjqiqj þ
~̂Gpk âqjaqj

2 ~̂I21
1
~̂I2
~̂Gpk âqjaqjÞ2

12 ~W�a

ð2pÞ3
ðiki

~̂Bpk âqjaqj

þ
~̂
Gpk âaaa2 ~̂I21

1
~̂I2
~̂
Gpk âaaaÞ ð4aÞ

~̂B21ðk;vÞ ¼ umvþumdik
2
i þ iqk1 þ �a2

�a2

unvþ �a
ð4bÞ
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~̂Gðk;vÞ ¼ ~̂Bðk;vÞ 12
�a

unvþ �a

� �
ð4cÞ

~WðvÞ ¼ 1=ðunvþ �aÞ ð4dÞ

~̂I1ðk;vÞ ¼ unvþ �a2 ~Waað0Þ2
12 ~W�a

ð2pÞ3
~̂Gpk âaaa ð4eÞ

~̂I2ðk;vÞ ¼ �a2 ~Waað0Þ2
12 ~W�a

ð2pÞ3
½iki

~̂Bpk âqiaqi

þ
~̂Gpk âaaa� ð4fÞ

Eq. (3) is the first-order solution of mean concentration

in transform space for a conservative solute in a

heterogeneous dual-porosity medium. It is shown

from Eq. (3) that �Cm is explicitly expressed by various

coefficients and correlation functions, and can be

calculated through the Fast Fourier Transform (FFT)

method (Deng et al., 1993).

It is shown from Eqs. (3) and (4a)–(4f) that various

factors, including the mean values of the various

parameters and their correlation functions, and initial

concentrations in the mobile and immobile water, will

affect the plume spreading. Huang and Hu (2000)

studied the effects of these factors on mean concen-

tration as well as the spatial moments. The various

spatial moments are related to the mean concentration

through the following equations,

M ¼
ð

R2
um

�Cmdx ð5aÞ

Xi
1 ¼ 1=M

ð
R2
umxi

�Cmdx ð5bÞ

Xi
2 ¼ 1=M

ð
R2
umx2

i
�Cmdx 2 ðXi

1Þ
2 ð5cÞ

where M is the 0th moment, Xi
1 and Xi

2 are the first and

second moments, respectively, in the xi direction.

Physically, the 0th moment is the solute total mass,

the first moment is the plume mean movement, and

the second moment represents the plume spreading.

Huang and Hu (2000) found that the spatial

variations of rate coefficient a significantly enhance

the longitudinal spreading of the plume and make the

plume distribution more skewed. Their findings reveal

the necessity to account for the spatial variability of the

mass transfer process to predict the transport in dual-

porosity media. However, their solution is offirst-order

accuracy in terms of the log-conductivity variance, s2
f :

So the solution is only applicable to mild hetero-

geneous media. In Section 3, a Monte Carlo simulation

algorithm, involving the random walk particle-track-

ing technique, will be developed to simulate the solute

transport and mass transfer process in dual-porosity

media.

3. Monte Carlo numerical simulation

In this section, a Monte Carlo numerical simulation

algorithm is developed to simulate the conservative

transport in dual-porosity media. The objectives of the

numerical study are to verify the analytical solution

for the mean concentration and to estimate the

uncertainties about the mean predictions, which are

beyond the scope of the analytical study because of

the mathematical complexity involved. The simu-

lation algorithm consists of the following five steps:

1. Generating realizations of the random hydraulic

conductivity fields and the mass transfer rate fields

with specified correlation functions,

2. Solving the flow equations to obtain the velocity

field for each realization of the hydraulic conduc-

tivity distribution,

3. Employing particle-tracking simulations within an

inner portion of the domain that is not affected by

the boundaries to solve the transport problem

coupled with rate-limited mass transfer process for

each realization,

4. Repeating steps 1–3, and

5. Ensemble averaging over all realizations to obtain

the mean and variance of the concentration

distribution. The averaged mean concentration

will be compared with the analytical solution.

3.1. Generating random hydraulic conductivity fields

The first step of the Monte Carlo numerical

simulation method is to generate independent and

equally probable realizations of the hydraulic conduc-

tivity and interregional mass diffusion coefficient

fields. Several methods are available for this purpose

(e.g. Clifton and Neuman, 1982; Smith and Freeze,

1979; Tompson et al., 1989; Gutjahr, 1989). Among

them, the method based on FFT is chosen in this study

owing to its computational efficiency when
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the correlation function is given. The basic concept of

this method is to generate a set of uniformly distributed

random numbers (white noise) by using a random

number generator. By taking the FFT of these numbers,

the resulting spectrum will have a uniform density of

unity. If we multiply the transformed numbers by the

square root of the spectral density function of the

conductivity field (the Fourier transform of ln K

covariance), the resulting numbers will have the

same spectrum as that of the hydraulic conductivity

field. Finally taking the inverse FFT of those numbers

gives a set of numbers in real space having the same

correlation structure as that of the conductivity field.

3.2. Solving flow problem for each hydraulic

conductivity realization

The realizations of the hydraulic conductivity field

coupled with appropriate boundary conditions are

used to solve the flow equation to obtain the potential

field and subsequently the velocity field. A five-point

block-centered finite difference (FD) scheme is

employed to discretize the steady-state flow equation.

The linear system resulting from the FD discretization

of the flow equation is solved via an iterative bi-

conjugate gradient method (e.g. Press et al., 1992).

Darcy’s law is then applied to obtain the velocity field

for the entire domain. The mean uniform velocity in

the x1 direction is obtained by specifying head values

along the left and right boundaries and by assuming

the other two boundaries to be impervious. Tests

on the accuracy of the flow solver and the stationarity

of the obtained velocity field are described in detail in

Hassan et al. (1998).

3.3. Particle tracking for solving the transport

equation coupled with rate-limited mass transfer

This part uses the particle-tracking technique to

solve the transport equation (e.g. Freeze, 1975; Smith

and Freeze, 1979; Smith and Schwartz, 1980, 1981;

Rubin, 1990; Bellin et al., 1992; Tompson 1993;

Hassan et al., 1997). The solution of the transport

equation is approximated by tracking the particles’

movements in time and space. The random walk

method is one of the most common particle-tracking

methods. The spatial locations of all particles are

updated according to the equation (Tompson and

Gelhar, 1990)

XtþDt ¼ Xt þ ½VðXt; tÞ þ 7·dðVðXt; tÞÞ�Dt

þ ½2dðVðXt; tÞDt�1=2·Z ð6Þ

where Z is a vector of random numbers drawn from a

normal distribution with zero mean and unit variance;

VðXt; tÞ is the velocity vector of the mobile water and d

is the local dispersion coefficient tensor. The second

term on the right-hand side moves the particles

advectively on the basis of the local velocity. The

third term is important when stagnation regions exist

within the flow field. The last term accounts for the

local-scale dispersion.

The above random walk method is applied to solve

the transport equation for the concentration over each

realized conductivity field. At any time, the concen-

tration distribution is obtained by superimposing a

fine grid on the computation domain. The concen-

tration within each cell is obtained by counting the

total number of particles within each cell. In addition,

the solute flux across a downstream control plane is

also calculated by counting the number of particles

crossing the plane within each time interval.

The key issue associated with the random walk

method here is how to properly simulate the mass

transfer process between the mobile and immobile

water within the frame of particle-tracking

methods. Valocchi and Quinodoz (1989) provided

a detailed discussion on the random walk method

for simulating the transport of kinetically sorbing

solutes. However, they assumed a one-dimensional

flow field and deterministic reaction rate coefficient.

Hassan et al. (1997) extended the reactive particle-

tracking simulation to a two-dimensional hetero-

geneous flow field with spatially variable reaction

rate coefficient. A two-state Markov chain model

governed by a transitional probability matrix, which

is related to the reaction rates, simulates the kinetic

sorption process in their study. In our study, we

extend Hassan et al’s. (1997) random walk method

to the case of nonreactive transport in hetero-

geneous medium with random mass transfer

between the mobile and immobile water.

Consider a sequence of phase changes experienced

by a single particle between two states (or phases): the

mobile water (state m) and immobile water (state n).

At any instant of time the particle can exist only in
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either one of these two states. For convenience, let’s

rewrite the governing Eqs. (1) and (2) in the following

equivalent forms

›Cm

›t
þ

›Cp
n

›t
¼

›

›xi

dij

›Cm

›xj

 !
2

›ðViCmÞ

›xi

ð7Þ

and

›Cp
n

›t
¼

a

um

Cm 2
a

un

Cp
n ð8Þ

where Cp
n ¼ ðun=umÞCn represents the solute mass

transferred into the immobile water per unit volume of

the mobile water.

Parzen (1962) showed that the stochastic analogue

of Eq. (8) is a homogeneous, continuous-time, two-

state Markov chain denoted as {YðtÞ; t . 0} with state

space {m; n};where m and n indicate that the particle is

in the mobile and immobile water, respectively. The

rates at which a particle leaves states m and n are a=um

and a=un; respectively. The Markov chain is completely

characterized if its transitional probabilities are known.

The transitional probabilities measure the probability

of transition between any combinations of the two

states ðm–m;m–n; n–m; n–nÞ; and are obtained by

solving a system of differential equations written as

dpm;mðtÞ

dt
¼ 2

a

um

pm;mðtÞ þ
a

un

pm;nðtÞ ð9aÞ

dpm;nðtÞ

dt
¼ 2

a

un

pm;nðtÞ þ
a

um

pm;mðtÞ ð9bÞ

dpn;nðtÞ

dt
¼ 2

a

un

pn;nðtÞ þ
a

um

pn;mðtÞ ð9cÞ

dpn;mðtÞ

dt
¼ 2

a

um

pn;mðtÞ þ
a

un

pn;nðtÞ ð9dÞ

where the subscripts of p represent the initial and final

states associated with the transition. The solution of the

above system of equations is given by

pm;m; pm;n

pn;m; pn;n

" #

¼

12
un

um þun

½12 e2ða=umþa=unÞDt�;
un

um þun

½12 e2ða=umþa=unÞDt�

um

um þun

½12 e2ða=umþa=unÞDt�; 12
um

um þun

½12 e2ða=umþa=unÞDt�

2
6664

3
7775

ð10Þ

In summary, particles in the mobile water are

transported in each time interval according to Eq. (6).

At the end of each time interval, a uniform [0, 1]

random number, X; is drawn for each particle in the

mobile water and is compared to pm;n: It should be

noted that pm;n is different for each particle because of

the spatial variability of the mass transfer coefficient, a:

The final state of the particles in the mobile water is

adjusted according to

Yðt þ DtÞ ¼
m if X . pm;n

n if X # pm;n

(
ð11aÞ

For the particles in the immobile water, the spatial

position will not change within that time interval. The

final state of each particle in the immobile water is

adjusted in a similar way as

Yðt þ DtÞ ¼
n if X . pn;m

m if X # pn;m

(
ð11bÞ

At the beginning of the next time step, only particles in

the mobile water are allowed to move with the

underlying velocity field. Particles in the immobile

zones are fixed in space for the entire time step and their

final status will be adjusted at the end of the time step

according to Eq. (11b).

This process is repeated at each time interval

during the entire simulation period. In the next

section, the numerical results will be compared with

the analytical solution (Eq. (3)).

4. Numerical results and discussion

4.1. Problem setup

The synthetic domain is set to be rectangular with a

size of 53 £ 25.6 (as shown in Fig. 1) (normalized by

the hydraulic conductivity correlation length l). The

left and right boundaries are set to be constant head

boundaries while the top and bottom boundaries are set

to be no flow boundaries. The mean hydraulic gradient

J is fixed at 0.05 and aligned with the horizontal

coordinate. The geometric means of hydraulic con-

ductivity ( �KgÞ and mass transfer rate coefficient ð�agÞ are

chosen to be 1.0 m/d and 0.002 d21, respectively.

Other parameters include um ¼ 0:25; un ¼ 0:1;

aL ¼ 0:5 m and aT ¼ 0:05 m. To avoid the boundary

effects (e.g. Bellin et al., 1992), the initial plume center

is located 10 correlation lengths away from the left
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boundary and the initial plume is chosen to be a

rectangle with a size of 3l £ 1l: The entire domain is

discretized with a 256 £ 128 grid, which yields five

cells per correlation length. A control plane located

five correlation lengths away downstream from the

initial plume center is set to sample the solute flux. The

time step for particle tracking is chosen to be 0.05 d. To

verify the accuracy and validity of the first-order

analytical solution, we choose two values of ln K

variance s2
f ; 0.4 and 1.2, to represent mild and

moderately heterogeneous media, respectively. In our

study, the covariance function of the hydraulic

conductivity field is chosen to be isotropic Gaussian as

ff ðzÞ ¼ s2
f exp½2ðz2

1=l
2 þ z2

2=l
2Þ� ð12Þ

where f is the log-conductivity perturbation and z is the

lag space vector. It is notable that both the analytical

solution and FFT-based random field generator do not

require the ln K covariance to be Gaussian. The

covariance function can take other forms as well.

Fig. 2 shows the comparison between the theoretical

covariance function and numerically generated covari-

ance function averaged over 2000 conductivity

realizations. The statistics of the generated conduc-

tivity fields match the theoretical curve very well.

Huang and Hu (2000) investigated the roles of the cross

correlation structure between ln K and a: In this study,

following their approach, we assume a and ln K are

perfectly negatively correlated, and a is obtained

through

aðxÞ ¼ �age2f ðXÞ ð13Þ

4.2. Monte Carlo simulation results and comparison

with analytical solution

A set of 2000 independent and equally probable

hydraulic conductivity fields is generated first. For

each realization of the conductivity field, we solve

the flow equation to obtain the velocity field, and

then apply the particle-tracking technique intro-

duced in Section 3 to solve the transport equation

and obtain the concentration distribution and solute

flux for each realization. The numerical mean

concentration and solute flux are obtained by

averaging over all 2000 realizations. Eqs. (5a)–

(5c) is then used to calculate the spatial moments

(the first and second moments) of the ensemble

averaged mean concentration. The numerical mean

and spatial moments are compared to Huang and

Hu’s (2000) analytical results.

Fig. 3 shows the comparison of spatial moments

obtained from Monte Carlo simulation and Huang and

Hu’s (2000) analytical results for two cases: s2
f ¼ 0:4

and s2
f ¼ 1:2: The first and second spatial moments

measure how fast the plume center moves and how

wide the mean plume spreads from its center along

both the longitudinal and transverse directions.

Fig. 3(a) shows the comparison of the first moment

X1: First of all, for the case of s2
f ¼ 0:4; representing

mild heterogeneous media, the Monte Carlo simu-

lation result matches the analytical result very well.

The difference on the first moment X1 is almost

undetectable all the way through the entire calculation

time. However, in the case of s2
f ¼ 1:2; representing

moderately heterogeneous media, though the two

approaches match very well at early travel time,

Fig. 1. Configuration of the computation domain.

Fig. 2. Comparison of the theoretical and the FFT-based numerical

covariance functions.
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the analytical approach predicts lower first moment at

large travel time than the Monte Carlo simulation

does. In both cases, the Monte Carlo approach

predicts almost the same first moment, which is

expected since the only difference between two cases

is the variance of ln K; all other parameters being the

same. The reason for this large time deviation is not

clear, but might be attributed to the accuracy of the

analytical solution (Bellin et al., 1992; Hu et al., 1999,

2002)). This issue will be addressed in more details

later in this section. Fig. 3(b) and (c) exhibit the

comparisons of the second moments, longitudinal X1
2

and transverse X2
2 ; between the two approaches. For

the case of s2
f ¼ 0:4; the two approaches match

very well and the differences on the second longi-

tudinal and transverse moments are negligible.

The agreement demonstrates the accuracy of the

analytical solution for estimating the plume spreading

in mild heterogeneous media. In addition, the

agreement also verifies the validity of the random

walk particle-tracking approach we developed in

Section 3. The Markov chain governed by Eq. (10)

is quite robust for simulating the mass transfer process

between the mobile and immobile water. However,

for the large ln K variance case, s2
f ¼ 1:2; the

analytical approach overestimates the second longi-

tudinal moment and underestimates the second

transverse moment. The deviations from the Monte

Carlo results become more pronounced at the large

travel time. The solution of Huang and Hu (2000) is of

first-order accuracy in terms of ln K variance s2
f due

to truncations of the higher-order terms. Hu et al.

Fig. 3. Comparison of spatial moments for the cases of s2
f ¼ 0:4 and s2

f ¼ 1:2 : (a) first moment; (b) second longitudinal moment; (c) second

transverse moment.
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(1999, 2002) analyzed the effect of second-order

correction of transport formulation to the spatial

moments. They found that for both conservative and

reactive transport, the second-order correction

decreases the second longitudinal moment and

increases the transverse moment, yielding closer

agreement with the Monte Carlo simulation results

than the first-order theory does for transport in

moderately and highly heterogeneous media. Thus,

the results shown in Fig. 3(b) and (c) are consistent

with Hu et al. (1999, 2002) results.

In summary, for transport in mild heterogenous

media, the analytical solution and Monte Carlo

simulation match very well on the first and second

spatial moments. Though the analytical solution

provides a slightly larger second longitudinal

moment and a slightly less transverse moment,

the difference between the two approaches is

practically negligible. Huang and Hu’s (2000)

analytical solution is quite accurate for predicting

plume spreading in mild heterogeneous dual-

porosity media. However, their solution overesti-

mates the longitudinal spreading and underestimates

the transverse spreading for transport in moderately

and highly heterogeneous dual-porosity media.

Caution is needed when applying the analytical

solution if s2
f is above 1.0.

Fig. 4(a)–(c) show the comparison of mean plumes

at early, intermediate and large travel times obtained

from the analytical and Monte Carlo approaches for

the case of s2
f ¼ 0:4: The numerical mean concen-

tration is obtained by averaging the concentrations of

all 2000 realizations. In this case, as shown in

Fig. 4(a)–(c), the mean concentrations predicted by

the two approaches match very well through the entire

simulation period. The differences on peak values of

the mean concentrations and the plume spreading

patterns are practically negligible. Such good agree-

ment on the mean concentrations is consistent with the

moment results shown in Fig. 3(a)–(c) and further

supports the accuracy of the analytical solution and

the validity of the random walk particle-tracking

algorithm developed in Section 3. However, such a

good match no longer holds for the case of s2
f ¼ 1:2:

Fig. 4(d)–(f) show the comparison of mean concen-

trations for the case of s2
f ¼ 1:2: Though the two

approaches match fairly well at the early travel time,

the analytical results deviate from that of the Monte

Carlo simulation with the increase of travel time. At

the large travel time, as shown in Fig. 4(f), the

analytical solution predicts a much heavier tail than

the Monte Carlo simulation does. Much more mass is

accumulated onto the tail of the mean plume,

retarding the bulk movement of the mean plume and

enhancing the longitudinal spreading. This effect may

explain the reasons why the analytical approach

predicts less first moment and larger second longi-

tudinal moment as shown in Fig. 3. In summary, the

comparison of the mean plumes shown in Fig. 4 also

supports the accuracy of the analytical solution for

modeling transport in mild heterogeneous dual-

porosity media and the validity of the particle-

tracking algorithm. However, the comparison also

indicates that the applicability of Huang and Hu’s

(2000) analytical solution for moderately and highly

heterogeneous dual-porosity media is suspicious since

it significantly overestimates the tailing behavior. So

it is worthwhile to compare the breakthrough curves

predicted by both approaches.

Fig. 5(a) and (b) depict the comparison of mean

solute fluxes across a control plane predicted by the

analytical and Monte Carlo approaches for two cases:

s2
f ¼ 0:4 and s2

f ¼ 1:2: The numerical mean solute

flux is obtained by averaging the solute fluxes of 2000

realizations. For the case of s2
f ¼ 0:4; as shown in Fig.

5(a), the two curves match very well, similar to the

results shown in the previous figures. It is notable that

the two tails match extremely well, as a major

evidence of the validity of the Markov chain model

developed in Section 3 to simulate the mass transfer

between the mobile and immobile water. In addition,

the peak flux values and arrival times are in good

agreement as well. Fig. 5(b) shows the comparison of

flux curves for the case of s2
f ¼ 1:2: The analytical

solution significantly overestimates the tailing beha-

vior of the flux curves and also underestimates the

peak flux value. The results shown here are consistent

with the results shown in Fig. 4(f), where the

analytical approach accumulates more mass onto the

tail of the mean plume than the Monte Carlo

simulation.

One advantage of the Monte Carlo simulation, as

we mentioned in Section 1, is that it also provides

uncertainty measurements associated with the pre-

dicted means. Huang and Hu (2000) gave a closed-

form solution for the mean concentration, but did not
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Fig. 4. Comparison of mean plume at early, intermediate and large travel times: (a)–(c) mean plume for s2
f ¼ 0:4; (d)–(f) mean plume for

s2
f ¼ 1:2:
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provide the variance of the concentration due to

complexity of the mathematics. Fig. 6 shows the

variance of the solute flux corresponding to the mean

flux curves shown in Fig. 5(a)–(b). According to Fig.

6, as s2
f increases, uncertainties on the arrival time,

peak flux and tail behavior all increase due to more

heterogeneity. The increase of uncertainty on peak

flux is most pronounced.

5. Conclusions

In this study, a Monte Carlo simulation algorithm

involving a random walk particle-tracking technique

was developed to simulate the transport of con-

servative tracers in heterogeneous dual-porosity

media, coupled with a heterogeneous mass transfer

process between the mobile and immobile water.

Fig. 5. Comparison of solute flux across a control plane located five correlation lengths downstream: (a) comparison for s2
f ¼ 0:4; (b)

comparison for s2
f ¼ 1:2:

Fig. 6. Comparison of the variance of solute flux for the cases of s2
f ¼ 0:4 and s2

f ¼ 1:2:
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The hydraulic conductivity and mass transfer rate

coefficient were treated as spatial random variables.

The Monte Carlo simulation was performed for two

representative cases, s2
f ¼ 0:4 and s2

f ¼ 1:2; repre-

senting mild and moderately heterogeneous media,

respectively. The simulated results were compared

to the stochastic analytical solution developed by

Huang and Hu (2000). Based on the comparison

results as discussed in Section 4, the following

conclusions are reached:

1. The random walk particle-tracking technique

developed in Section 3 is quite robust to simulate

the conservative transport in heterogeneous dual-

porosity media. The solute mass transfer process

is fairly well simulated by the Markov chain

model with the transitional probability matrix

developed in Section 3. The Monte Carlo

approach developed in this study provides a

powerful tool to predict the spreading of the

plume and long-term tailing behaviors of break-

through curves as well. In addition, the Monte

Carlo approach also provides uncertainty

measurements associated with its predictions.

2. In comparison with the Monte Carlo simulation,

the stochastic analytical solution developed by

Huang and Hu (2000) is quite accurate for

predicting transport in mild heterogeneous dual-

porosity media. It provides a tool to evaluate the

validity of the Monte Carlo simulation algorithm.

Furthermore, the analytical solution also provides

a powerful tool for sensitivity analysis required

by most risk assessment studies.

3. In comparison with the Monte Carlo simulation,

Huang and Hu’s (2000) analytical solution is not

applicable for predicting the transport in moderately

and highly heterogeneous dual-porosity media. It

overestimates the longitudinal spreading and under-

estimates the transverse spreading of the plume,

especially at large travel time. It also overestimates

the tailing behavior of breakthrough curves.
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