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Abstract

The use of particle tracking methods to predict transport in single continuum and dual continua (mobile–immobile systems

and fractured media) is studied. The accuracy of the particle tracking methods with different interpolation and tracking

techniques is evaluated, and its transport predictions are compared to analytical solutions, finite element solutions (e.g.

SUTRA) and finite difference solution (e.g. MT3D). For a two-dimensional problem with homogeneous conductivity and pulse

injection of contaminant, the particle tracking solution matches the analytical solution better than those using standard finite

difference and finite element techniques, which suffer from numerical dispersion. Furthermore, the particle tracking method

accurately predicts the mean and variance of the stochastic concentration distribution and compares favorably with MT3DMS

that employs a total variance diminishing technique for discretizing the advection term. For modeling matrix diffusion in

fractured media and mass transfer in dual porosity (mobile–immobile) systems, two approaches are studied and compared. A

semi-analytical approach is compared to a particle tracking technique that accounts for matrix diffusion using particle transfer

probabilities. An empirical relationship that can be used to map the governing parameter of the semi-analytical approach to the

corresponding particle transfer probability is derived. The similarities and differences between these two techniques and their

suitability for practical applications are also discussed.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Numerical simulations are being used extensively

for analyzing transport in complex geologic media.

The characteristics of these geologic media cannot be

determined with certainty, which requires the

implementation of the numerical simulations within

a Monte Carlo framework. Ideally, by processing a

large number of fine-scale realizations through

groundwater modeling programs, an assessment of

aquifer response uncertainty is provided. The issue of

the number of realizations needed to achieve conver-

gence for the statistics of concern becomes crucial

when the medium heterogeneity increases. This

requirement in addition to numerical constraints,
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such as domain size, grid resolution, time step, and

convergence issues increase the computational effort

involved in these simulations to the extent that they

become prohibitive from both time and cost perspec-

tives, even with today’s advanced computing

resources. Computationally efficient numerical

methods are, therefore, needed to simulate transport

processes in highly heterogeneous geologic media,

while providing accurate estimates for the expected

values and uncertainties of the resulting contaminant

distributions.

Standard numerical techniques such as the finite

difference and finite element methods, when applied

to solve contaminant transport problems, impose

some restrictive spatial discretization requirements

to avoid numerical dispersion. The random walk

particle tracking (RWPT) method provides a robust

alternative if the discretization requirements cannot

be met. Since the RWPT method is not a direct

numerical solution to the governing differential

equation, it does not suffer from numerical dispersion

(Uffink, 1987). A random walk is generally defined as

the movement of a particle (walker) that will undergo

a displacement with a magnitude that depends on

chance. The irregularity and randomness of the grain

skeleton of a porous medium make it impossible to

fully describe the solute displacement in a determi-

nistic fashion. As long as the movement of solute

particles is unpredictable, it is useful to consider all

possible displacements and the probabilities they are

realized (Uffink, 1987).

The random walk method is suitable for appli-

cations where other methods are, at comparable

computational effort, plagued by numerical dis-

persion. Since particles in the random walk method

are not lost nor destroyed, the method conserves mass

exactly. Strictly speaking, no grid is needed for the

RWPT method. However, in many applications a grid

may be employed for the definition of the velocity and

dispersion characteristics in the modelled domain. In

addition, interpretation of the particle distribution as a

concentration field may require a grid or some other

means for converting the spatial distribution of

particles to concentration values. A further advantage

of the RWPT method is the ease with which it can be

implanted over any flow model. By switching local

dispersion off, the pathlines for the average flow field

may be obtained (Kinzelbach, 1988). It is thus easy to

model purely advective transport with infinite Peclet

number.

The main problem with the RWPT method is the

random fluctuations of computed concentrations. The

relative size of these fluctuations can be diminished by

increasing the number of particles used. As, however,

the statistical fluctuations are proportional to the

square root of the number of particles in a cell, the

increase in the total number of particles does not show

equivalent reduction in the random fluctuations of

computed concentrations (Kinzelbach, 1988). How-

ever, when the random walk method is used in the

context of Monte Carlo simulation to get ensemble

properties, the effects of these random fluctuations

may diminish as the number of realizations increases.

In other words, a transport simulation on a single

heterogeneous velocity realization may show signifi-

cant random fluctuations in the computed concen-

trations, but when the results over many Monte Carlo

realizations are averaged, these fluctuations are

minimized.

Significant effort has been devoted to developing

different RWPT-based approaches to model non-

reactive (e.g. Uffink, 1987, 1990; Tompson and

Gelhar, 1990; Kinzelbach and Uffink, 1991;

LaBolle et al., 1996; Hassan et al., 1998) as well

as reactive (e.g. Kinzelbach, 1988; Valocchi and

Quinodoz, 1989; Andricevic and Foufoula-Geor-

giou, 1991) contaminant transport in single-con-

tinuum porous media, and little attention has been

paid to extending the RWPT method to dual-

continuum models (e.g. dual-porosity models, dual-

permeability models, and fractured systems).

Recently, Liu et al. (2000) developed a particle

transfer probability expressions for RWPT methods

to account for mass transfer processes associated

with fractured porous media.

The objectives of this study are to evaluate the

robustness of the RWPT method in predicting

transport statistics in single-continuum hetero-

geneous porous media, and to evaluate two

different approaches (relying on RWPT) for

predicting transport in fractured systems. Following

this introduction we present an overview of the

RWPT method in single-continuum and compare

the performance of RWPT to other numerical as

well as analytical solutions for both homogeneous

and heterogeneous media. We also present in
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Section 2 a sensitivity analysis showing the effect

of different factors on the performance of the

RWPT method. Section 3 focuses on the

approaches that are used to predict transport

statistics in fractured porous media using RWPT.

We compare two approaches and develop an

empirical relationship between the governing par-

ameters of these approaches. The results of the

numerical simulations are discussed in Section 4

and their implications for large-scale numerical

studies are highlighted. Section 5 summarizes the

work and presents the main conclusions that can be

drawn from this study.

2. Particle tracking method in single-continuum

porous media

The RWPT method is a method from statistical

physics, which has been used in the analysis of

diffusion and dispersion processes in porous media for

a long time (e.g. Scheidegger, 1954; De Josselin de

Jong, 1958). The idea of applying the RWPT method

to solute transport problems is based on an analogy

between the random walk equation and the Fokker–

Planck equation for diffusion. An extensive quantity

(such as the mass of some solute tracer) is represented

by a large number of particles to which the properties

of that quantity are assigned. The particles are

displaced in space over discrete time steps by the

action of some driving mechanism such as a chemical

potential field or a velocity field. The solution of the

differential equation governing the movement of the

extensive quantity can be approximated by tracking

the particles movement in time and space. This

tracking in two dimensions is based on the equation

(Kinzelbach, 1988; Tompson and Gelhar, 1990;

LaBolle et al., 1996)

xtþDt ¼ xt þ Vxðxt; yt; tÞ þ
›Dxx

›x
þ

›Dxy

›y

� �� �
Dt

þ
ffiffiffiffiffiffiffiffiffi
2DxxDt

p
Z1 þ

ffiffiffiffiffiffiffiffiffi
2DxyDt

q
Z2;

ytþDt ¼ yt þ Vyðxt; yt; tÞ þ
›Dyx

›x
þ

›Dyy

›y

� �� �
Dt

þ
ffiffiffiffiffiffiffiffiffi
2DyxDt

q
Z1 þ

ffiffiffiffiffiffiffiffiffi
2DyyDt

q
Z2

ð1Þ

where x and y are the coordinates of the particle

location, V is the velocity, Dij is the ij component of

the dispersion tensor, Dt is the time step, and Z is a

normally distributed random number with zero mean

and unit variance. The second term that is multiplied

by Dt on the right hand side of Eq. (1) is an effective

velocity that combines the local velocity at location

ðxt; ytÞ and time t plus the gradient of the dispersion

tensor at location ðxt; ytÞ; and the last two terms

account for the local-scale dispersion and Brownian

diffusion. Implementation details of this method

can be found in Tompson and Gelhar (1990), LaBolle

et al. (1996) and Hassan et al. (1997, 1998), just to

name a few.

A number of factors affect the accuracy and

robustness of the RWPT method. The number of

particles used to represent the solute mass, the size

of the time step, the velocity interpolation scheme,

and the projection function that converts particle

distribution to concentration values over a domain

grid are usually the key issues when using RWPT

methods for heterogeneous media. Same factors

affect the solution for homogeneous cases except

the velocity interpolation scheme, which is not

needed in this case. In the following analysis, we

start with a homogeneous two-dimensional trans-

port problem, for which an analytical solution

exists. We compare the prediction of a number of

numerical codes and that of the RWPT to the

analytical solution. The objective is to first evaluate

the performance of RWPT method compared to

other approaches and to select another numerical

code to be used for evaluating the RWPT method

in predicting stochastic concentration mean and

variance in the heterogeneous case.

2.1. Homogeneous case

A two-dimensional x–y homogeneous aquifer is

assumed with dimensions 48 m £ 16 m (Fig. 1) and a

constant velocity in x-direction ðVxÞ of 0.5 m/d. The

longitudinal and transverse dispersivities are chosen

to be the same with a value of 0.1 m. A total mass of

4 kg is released as a small areal source of contami-

nation with dimensions 0.2 m £ 0.2 m. The analytical

solution for such case is given as (e.g. Ogata and
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Banks, 1961)

Cðx; y; tÞ ¼
C0A

4pt
ffiffiffiffiffiffiffiffiffi
DxxDyy

p
£ exp 2

ðx 2 x0Þ
2

4Dxxt
2

ðy 2 y0Þ
2

4Dyyt

" #
ð2Þ

where C0 is the initial concentration, A is the source

area, and ðx0; y0Þ is the center of the source area. The

two-dimensional concentration distribution is

obtained at two times, t ¼ 20 days and 60 days after

release. The analytical solution given in Eq. (2) is

valid for a point source instantaneous release. The

analytical solution for an instantaneous release of a

rectangular source, with length L in the direction of

flow and width W transverse to this direction, can be

approximated by Eq. (2) if L2=48Dxxt and W2=48Dyyt

are both small (Charbeneau, 2000). For the problem

studied here, the two values are equal and after 20 and

60 days they are 0.000833 and 0.000278, respectively.

These values are small enough to allow the use of Eq.

(2) for this problem.

Several software packages are used to solve this

transport problem and to compare to the RWPT

method as well as to the analytical solutions. Two

finite element codes: SUTRA (Voss, 1984), and

FEFLOW (Diersch, 1998) and a finite difference

code: MT3D (Zheng, 1990) and MT3DMS (Zheng

and Wang, 1999) are used for this purpose. The latter

code has new features and solvers that are of

particular importance for the comparisons presented

in the following sections.

SUTRA is a well-known finite element model that

simulates flow and solute transport in the subsurface.

The simulation domain shown in Fig. 1 is discretized

into grid cells of size 0.2m £ 0.2 m. Comparisons

between SUTRA solution and the analytical solution

are given in Fig. 2A. It can be seen from the figure that

SUTRA solution has a significant longitudinal

‘numerical’ dispersion and does not match the

analytical solution. A finer mesh and/or higher

dispersivity values are usually used to avoid such

inaccuracy of the finite element solution. We,

however, used a grid of size 0.1 m £ 0.1 m and

increased the longitudinal and transverse dispersiv-

ities to 0.2 m, but with no improvement in the

performance of SUTRA relative to the corresponding

analytical solution. Similarly, FEFLOW solution

entails some inaccuracy due to numerical dispersion

(Fig. 2B). In fact, FEFLOW and SUTRA solutions are

in very close agreement.

MT3D is another well-known model that uses the

finite difference method. We used MT3D/MT3DMS

and selected two solvers that differ in the finite

difference discretization of the advection term. The

first solver (denoted in Fig. 2 as MT3D) relies on a

standard central differencing discretization for the

concentration gradient governing the advection term.

The second solver (denoted as MT3D-TVD) relies on

a third-order total variance diminishing approach with

Fig. 1. Schematic diagram of the two-dimensional simulation domain and boundary conditions.
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a universal flux limiter (Zheng and Wang, 1999) for

discretizing the advection term.

Fig. 2C shows that MT3D with the standard central

differencing induces more numerical dispersion than

SUTRA and FEFLOW. The results of MT3D-TVD,

shown in Fig. 2D, show an excellent agreement with

the analytical solution and completely eliminated

numerical dispersion. The third-order TVD solver

with the universal flux limiter significantly minimizes

numerical dispersion leading to much better results

Fig. 2. Comparison between analytical solution (Ogata and Banks, 1961) and different numerical codes for transport in a two-dimensional

heterogeneous domain.
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compared to the standard central differencing. How-

ever, the computational burden associated with the

TVD solver is much larger than the standard solver

(Zheng and Wang, 1999).

Finally, the performance of the RWPT method

for this homogeneous case is displayed in Fig. 2E.

Similar to the MT3D-TVD solution, the RWPT

solution is in excellent agreement with the

analytical solution. However, a very large number

of particles (,2.5 millions) was necessary to

achieve the smoothness of the solution, otherwise

oscillations exist around the circular contours.

These oscillations are the result of the discrete

nature of the particles and the random component

of their movement. It will be seen later that in the

heterogeneous case, such large number of particles

is not necessary when implementing the Monte

Carlo simulations as the ensemble statistics auto-

matically average out these oscillations.

In the homogeneous case, RWPT is not very

sensitive to time step size as long as overshoot

problems are avoided, which is achieved by

keeping Vx Dt , Dx: The oscillations in the

obtained concentration distribution can be reduced

by increasing the number of particles and/or

increasing the size of the projection area used to

project particles distribution to concentration

values. Nine simulation cases are considered

where the time step size, Dt; the number of

particles, NP, and the projection area, V; are

varied to study the sensitivity of the resulting

concentration to these variations. Using the same

problem configuration and parameters as in Fig. 2,

these three parameters are varied around their base-

case values: Dt ¼ 0:1 days; NP ¼ 102,400, and

V ¼ 2Dx £ 2Dy: Fig. 3 shows the sensitivity of

the RWPT solution to these factors. The figure

displays the concentration values along the longi-

tudinal centerline of the simulation domain. As

mentioned earlier, velocity interpolation effect

comes into play only in the heterogeneous case.

It can be seen from the figure that only V (the

projection area) has some noticeable effect on the

obtained concentration. The time step and the

number of particles, as long as properly selected,

do not have any effect when they are further

refined (time step is decreased and number of

particles is increased).

2.2. Heterogeneous case

Since the MT3D-TVD solution is shown to match

the analytical solution of the homogeneous case, we

use it here to evaluate the performance of the RWPT

method in predicting transport in heterogeneous

domains. In this case, we deal with the concentration

distribution in a statistical sense. That is, we evaluate,

using Monte Carlo procedure, the ensemble mean and

variance of the stochastic concentration distribution in

two dimensions. An isotropic, heterogeneous,

spatially correlated conductivity field, Kðx; yÞ; with a

lognormal distribution, a unit variance, and an

exponential covariance structure is used to represent

medium heterogeneity. A rectangular domain of size

52I £ 26I is used for the heterogeneous case, where I

is the correlation length of the log K field. The

discretization grid for this domain is assumed to

consist of uniform squares of size 0:2I £ 0:2I with five

grid cells per conductivity correlation length. The

boundary conditions and the macroscopic mean

velocity in the x-direction are the same as used for

the homogeneous case, Fig. 1.

The comparison between MT3D-TVD and the

RWPT method is shown in Fig. 4, where

the normalized mean concentration, kCl=C0; and the

concentration variance, s2
C=C

2
0 ; are plotted. These

moments are obtained by averaging over 1000

realizations of the transport solution through the

expressions kCl ¼ ð1=1000Þ
P1000

i¼1 Ci and s2
C ¼

ð1=1000Þ
P1000

i¼1 C2
i 2 kCl2; where Ci is the two-dimen-

sional spatial distribution of the concentration in

realization i: Fig. 4 shows that the results for the mean

concentration are very close in terms of both the

plume shape and the concentration values. The

variance of the stochastic concentration, usually

used to express the prediction uncertainty, is also

matching closely between the two approaches. It is

apparent that the MT3D-TVD results for the variance

are not as smooth as the RWPT results, which is

attributed to the smaller number of realizations

employed in the former model due to the long

computational times involved. In terms of CPU

time, the RWPT method was at least three times

faster than the MT3D-TVD method.

These results indicate that in addition to being

computationally efficient, the RWPT method is also

robust and accurate in predicting concentration
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moments under heterogeneous conditions, which is

usually the case for field problems. The oscillations

resulting from the discrete nature of the particles do

not persist in a Monte Carlo simulation as these

oscillations are random and they cancel each other

when the ensemble statistics are computed. The

factors affecting the results of the RWPT method

are similar to the homogeneous case, but with the

addition of the velocity interpolation scheme and the

method of incorporating the effects of sharp contrasts

in medium properties (e.g. dispersion gradient term).

We discuss in Section 2.3 the results of a number of

simulations assessing the sensitivity of the RWPT

results to these parameters.

2.3. Sensitivity analysis in the heterogeneous case

Fig. 5 shows the sensitivity of the RWPT solution

of the mean concentration to the size of the time step,

the number of particles, and the size of the projection

Fig. 3. Sensitivity of the RWPT solution for the concentration in the homogeneous case to the time step, the number of particles and the

projection area.
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area, V: As can be seen, the largest effect on the mean

concentration is obtained when increasing the number

of particles, NP, from 51,200 to 102,400. Any further

increase in the number of particles does not affect the

mean concentration. Fig. 6 is similar to Fig. 5, but for

the concentration standard deviation. Here both the

number of particles and the size of the projection area

have some effects on sC; although not significant.

The heterogeneous conductivity distribution leads

to spatially varying velocity field that is only known at

grid block interfaces. Particle velocity needs to be

interpolated from the surrounding known velocity

values. A number of studies dealt with the velocity

interpolation and presented different alternatives for

computing particle velocity. These include, but are

not limited to, Pollock (1988), Goode (1990),

Schafer-Perini and Wilson (1991) and LaBolle et al.

(1996). The common result of these approaches is that

for heterogeneity such as the one considered here,

the linear and bilinear interpolation yield similar

results (e.g. Goode, 1990, (Fig. 17) and LaBolle et al.,

1996, (Figs. 12–14)). To check the sensitivity of the

results of the RWPT method to the velocity

interpolation scheme, we employed a bilinear and an

inverse distance interpolation scheme.

Discontinuities in effective subsurface transport

properties that may arise in discrete velocity fields

of numerical groundwater flow models violate the

smoothness assumption upon which the standard

RWPT techniques are based (LaBolle et al., 2000).

These authors developed generalized stochastic

differential equations applicable to the case of

discontinuous coefficients (e.g. dispersion coeffi-

cients) and developed a new random walk method

that numerically integrates these equations. That

method is applicable for cases of abrupt changes in

transport parameters and velocity values. The

new random-walk equations proposed by LaBolle

Fig. 4. Comparison between the RWPT and the MT3D-TVD solutions for the concentration mean and variance in the heterogeneous case.
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et al. (2000) can be written as

xtþDt ¼ xt þ Vxðxt; yt; tÞDt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dxxðxt þ dx; yt þ dy; tÞDt

p
Z1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dxyðxt þ dx; yt þ dy; tÞDt

q
Z2;

ytþDt ¼ yt þ Vyðxt; yt; tÞDt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dyxðxt þ dx; yt þ dy; tÞDt

q
Z1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dyyðxt þ dx; yt þ dy; tÞDt

q
Z2

ð3Þ

where dx and dy are defined as

dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dxxðxt; yt; tÞDt

p
Z1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dxyðxt; yt; tÞDt

q
Z2;

dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dyxðxt; yt; tÞDt

q
Z1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dyyðxt; yt; tÞ Dt

q
Z2

ð4Þ

The idea in this approach is to evaluate the

advective step of the particle using the velocity at

the current position of the particle, ðxt; ytÞ; and at

time t: The dispersive step is performed using

dispersion coefficients evaluated at an intermediate

location, ðxt þ dx; yt þ dyÞ; where the increments dx

and dy represent dispersive steps from the current

Fig. 5. Sensitivity of the RWPT solution for the mean concentration to the time step, the number of particles and the projection area.
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location, ðxt; ytÞ; to the intermediate location, ðxt þ

dx; yt þ dyÞ: Comparing Eqs. (3) and (4) to Eq. (1),

one can see that the dispersion gradients (which are

not defined at interfaces between domain blocks)

are not needed in LaBolle et al.’s (2000) approach.

It is of interest to compare the performance of this

modified approach with the traditional RWPT

method. We plot in Fig. 7 the mean and standard

deviation of the stochastic concentration along the

longitudinal centerline of the simulation domain. The

figure compares the traditional RWPT method using

bilinear and inverse square-distance interpolation

schemes to the modified RWPT approach of LaBolle

et al. (2000) with bilinear interpolation for the

velocity. It is apparent that the modified approach is

not producing any different results than the traditional

one for the type of heterogeneity used here. Also, the

change of velocity interpolation scheme has a minor

effect on the concentration statistics.

3. Particle tracking methods in dual continua

As mentioned earlier, no progress has been made in

developing the RWPT method for dual continua

porous media (dual porosity, dual permeability and

Fig. 6. Sensitivity of the RWPT solution for the concentration standard deviation to the time step, the number of particles and the projection area.
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fractured media). We adapt and compare two

approaches to account for matrix diffusion in fractured

systems, where mass diffusion occurs from the high-

velocity fracture flowpaths into the surrounding porous

blocks. The purpose is to compare the two approaches,

study and evaluate their underlying assumptions,

identify the sets of parameters needed for each

approach, and explore the possibility of relating the

two sets of parameters. By doing so one can have the

option to select any of the two approaches for modeling

purposes once a single set of parameters is obtained.

3.1. Retention function approach

For the analysis of transport in a fractured

system, matrix diffusion can be accounted for using

the retention function semi-analytical solution

presented by Cvetkovic et al. (1999). The mass

flux or the concentration breakthrough curves can

be first obtained using a RWPT method (or any

other transport solution) without accounting for

matrix diffusion. That is, these breakthrough curves

are obtained as if transport occurs in the fractures

with no fracture-matrix interaction. The matrix

diffusion effect can be accounted for using a

retention function that depends on the matrix

properties. The mass flux or concentration break-

through with matrix diffusion effect can thus be

evaluated from the expression

QmdðtÞ ¼
ð1

0
gðt; tÞQðtÞdt ð5Þ

Fig. 7. Sensitivity of the RWPT solution for the concentration mean and variance to different velocity interpolation and implementation

schemes.
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where QðtÞ is the mass flux breakthrough at time t

with no fracture-matrix interaction, QmdðtÞ is the

mass flux after accounting for matrix diffusion, and

gðt; tÞ is the retention function that incorporates the

effect of mass transfer between the fracture and the

rock matrix. This retention function is given as

(Cvetkovic and Dagan, 1994; Cvetkovic et al.,

1999)

gðt;tÞ ¼Hðt2 tÞ
kt

2
ffiffi
p

p
ðt2 tÞ3=2

exp 2
ðktÞ2

4ðt2 tÞ

 !
ð6Þ

where H is the dimensionless Heaviside function

ðHðt2 tÞ ¼ 1 for ðt2 tÞ. 0 and 0 for ðt2 tÞ# 0Þ; t

is the particle travel time (days), t is the time at

which the flux is obtained, and k is the matrix

diffusion parameter ðd21=2Þ defined as

k¼
um

ffiffiffiffiffiffiffiffi
Dp

mRm

p
b

ð7Þ

where um is the matrix porosity, b is the effective

fracture half-aperture (m), Dp
m is the effective

diffusion coefficient in the rock matrix (m2/d) and

Rm is the dimensionless retardation coefficient in

the rock matrix. The main assumptions underlying

the derivation of the above analytical retention

function are a constant aperture along the stream-

tube, diffusion only perpendicular to the fracture

plane, well-mixed conditions over the cross-sec-

tional area of the fracture, and homogeneous rock

matrix with no advection and with infinite capacity

such that diffusion fronts do not intersect. These

assumptions may not be satisfied in the field unless

matrix blocks are sufficiently large for the diffusion

fronts not to intersect. It should be mentioned here

that Eq. (5) conserves mass as the original QðtÞ is

mass conservative and the retention function, g; has

the effect of just delaying the arrival of the mass to

the control plane location.

We apply this approach to the same two-

dimensional heterogeneous domain used in the

single-continuum case, but assuming that particles

travel in connected fractures from the source to a

compliance boundary or a control plane placed

normal to the mean flow direction. The series of

connected fractures and the surrounding matrix

blocks are assumed to have the same characteristics

everywhere in the domain such that the strength of

matrix diffusion is spatially invariant. An initial

contaminant source is then released and assumed to

exist only in fractures. Particles representing this

source are tracked in the simulation domain over

discrete time steps until they reach and cross the

control plane. Once they cross, the mass flux

breakthrough is obtained as a function of time,

QðtÞ; and is then convoluted with the retention

function g to obtain the breakthrough with fracture-

matrix interaction, QmdðtÞ:

3.2. Particle transfer probability (Liu et al., 2000)

Liu et al. (2000) introduced the first RWPT

approach applicable to fractured porous media,

where they developed the particle transfer probability

expressions necessary for diffusing the particles into

the matrix and back to the fractures. The basic idea is

then to track the particles in space over discrete time

steps and use the transfer probabilities to move the

particles back and forth between the two continua.

The approach assumes that each grid block in the

simulation domain contains two overlapping con-

tinua; one represents the fractures containing the rapid

migration of water and solutes, and the other

represents the surrounding matrix blocks that have a

larger quantity of water, which is immobile under the

assumption of no advection in the matrix. Assuming

no water flux between fractures and matrix blocks, the

particle transfer probabilities of Liu et al. (2000) can

be written as forward transfer probability, Pfm ¼ Ffm

Dt=ðVfCfÞ; and a backward transfer probability, Pmf ¼

FmfDt=ðVm
�CmÞ: In these expressions, the net solute

transport rate between the fractures and the matrix

within a grid cell is expressed as a transport rate from

fractures to the matrix ðFfmÞ minus another transport

rate from the matrix to fractures ðFmfÞ: The particle

transfer probabilities are expressed in terms of these

transport rates, the concentration, Cf ; and water

volume, Vf ; in the fractures, and the ‘block-averaged’

concentration, �Cm; and water volume, Vm; in the

matrix. Liu et al. (2000) then derived expressions for

flux rates in terms of measurable quantities and

arrived finally at the expressions

Pfm ¼
2Dp

mA

Vfð1 2 lÞðB 2 bÞ
Dt ð8Þ
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Pmf ¼
2Dp

mA

Vmð1 2 lÞðB 2 bÞ
Dt ð9Þ

where Pfm is the probability that a particle in the

fracture will diffuse into the matrix, Pmf is the

probability that a particle in the matrix will diffuse

back to the fracture,Dp
m is the diffusion coefficient in

the matrix, A is the fracture surface area, B is half the

spacing between the fractures, b is the fracture half-

aperture, l is a shape factor expressing how the matrix

volume increases as one approaches the center of the

matrix block (e.g. l ¼ 1=3 for parallel fractures), Vm

is the volume of water in the matrix block, Vf is the

volume of water in the fractures, and Dt is the time

step. According to Pfm; particles can diffuse into the

matrix and are thus subject to the matrix advection (if

any) and dispersion/diffusion. On the other hand,

when particles are found to diffuse back from the

matrix to the fractures according to Pmf ; they start

moving with the underlying velocity of the fractures.

This approach is implemented using the two-

dimensional heterogeneous settings as in the retention

function approach described above. Once the particles

that are in the fractures reach the control plane of

interest, the mass flux breakthrough, QmdðtÞ; can be

obtained and compared to that of the retention

function approach. It can be seen from Eqs. (7)–(9)

that the common governing parameters between the

two approaches are Dp
m; b; and um (since Vm in Eq. (8)

is a function of um). The main difference between the

two approaches is that the first approach assumes

infinite matrix extent and thus infinite capacity for

mass diffusion, whereas the second approach accounts

for the finite extent of matrix blocks through the

parameter B in Eqs. (8) and (9).

3.3. Modified particle transfer probability

In the derivation of the transfer probabilities, Liu

et al. (2000) relate the spatially varying contaminant

concentration in the matrix, Cm; to the average

concentration over the matrix volume, �Cm: This

results in expressing the backward probability, Pmf ;

in terms of the averaged concentration leading to a

very slow release of particles even if they are

associated with high concentration gradient between

the matrix and the fractures. This implies that

complete mixing of contaminant mass associated

with each particle occurs immediately once the

particle is in the matrix or in the fracture, which if

realistic for fractures, is not so for the matrix. We

propose a simple modification to computing the

backward probability and implementing the fracture-

matrix interaction into the RWPT method. Consistent

with the distribution of contaminant concentration in

the matrix as hypothesized by Liu et al. (2000), the

modified probability can be written as

Pp
mf ¼ Pmf þ 1 2

s

S

� �2

ðPfm 2 PmfÞ ð10Þ

where s is a coordinate axis normal to the fracture-

matrix interface, S ¼ B 2 b is the distance from that

interface to the center of the matrix block, and Pfm and

Pmf are as expressed by Eqs. (8) and (9). Eq. (10)

yields a backward probability that is different for

different particles according to their locations within

the matrix. However, since the implementation of the

approach does not account for spatial locations of

particles within the matrix block, s=S can be

hypothetically computed according to the number of

particles that exist in the matrix for each grid cell.

That is, in each grid cell, the number of particles that

exist in the matrix can be computed and the particles

can be hypothetically distributed such that they span a

certain range of residence times from zero to the value

that is associated with complete mixing within the

block. This mean that the mass associated with one

particle is assumed to have experienced complete

mixing conditions (thus Pp
mf ¼ Pmf), and that another

particle has just diffused into the matrix (thus

Pp
mf ¼ Pfm). The remaining particles are assumed to

have backward transfer probabilities between these

two extremes as expressed by Eq. (10).

3.4. Results and comparisons

The retention function approach is compared to the

particle transfer approach using both Liu et al.’s

(2000) probabilities and the modified backward

probability in Eq 10. Four test cases are presented

where the governing parameter of the retention

function approach, k; is assigned the values 0.01,

0.03, 0.1, and 0.3, respectively. For the RWPT

approach with the particle transfer probability, it is

assumed that the average length of fractures within
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each grid cell, L; is 0.5 m, and as such, one can

express the fracture surface area and water volume in

fractures and in the matrix as

A ¼ 2L Vf ¼ 2bL

Vm ¼ ðDx £ Dy 2 2bLÞum

ð11Þ

Table 1 shows the rest of the parameters used for these

test cases, where all parameters are fixed, except for

Dp
m and ð1 2 lÞ; which are varied according to the

variation of k to yield the corresponding values of Pfm

and Pmf : Since the objective was to obtain the values

of Pfm and Pmf that provide the closest match with the

retention function results, we considered the par-

ameter l to be a flexible one that can be changed to

yield the identified values of Pfm and Pmf for each

value of k:

Fig. 8 shows the results for the first two test cases.

In each case, we show the total mass flux break-

through without matrix diffusion effect, Q (thick solid

line), and the breakthrough with matrix diffusion

effect, Qmd; obtained using the retention function of

Eq. (5) (thick dashed line), the RWPT employing

Eqs. (8) and (9) (dotted line), and the RWPT

employing Eq. (10) for the backward transfer

probability (thin solid line). In addition, the break-

through curves are obtained at two sections located at

distances x=I ¼ 10 and 20 from the initial source

location. When the retention function parameter

k ¼ 0.01 d21/2, there is very minimal diffusion in

the matrix and as such Q and Qmd are very close.

The retention function and the RWPT results are

essentially indistinguishable. Increasing k to

0.03 d21/2 increases the matrix diffusion effect and

leads to a long tailing behavior for Qmd: The results of

the retention function approach show a slight delay in

the arrival of the mass (especially the peak mass flux)

to the breakthrough planes as compared to the particle

transfer approach. However, the magnitude of the

peak is close between the two approaches. It should be

mentioned that for each case, we obtain Qmd using the

retention function first and then use trial-and-error

experiments to obtain the closest match with the

particle transfer probability. The two cases shown in

Fig. 8 show good agreement between the two

approaches, which is essentially due to the fact that

the matrix diffusion is not significant, and thus the

different assumptions underlying both approaches do

not have a strong influence yet. In addition, the

original transfer probabilities of Liu et al. (2000) and

the modified probability of Eq. (10) yield the same

result.

Fig. 9 shows the remaining two cases where k

values are increased an order of magnitude

compared to the first two cases. The original Q

with no matrix diffusion is not shown in this figure,

but it is similar to Fig. 8. As can be seen in the

figure, when k ¼ 0:1 d21=2; the difference in the

peak arrival time between the particle transfer

approaches and the retention function approach

increases, but the values of the peak flux are still

comparable. On the other hand, Liu et al.’s (2000)

probabilities yield a quick drop after the peak with

no significant tailing behavior. The modified

probabilities perform better in terms of producing

Table 1

Input values of the parameters used in the two-dimensional heterogeneous cases

Flow and transport parameters Parameters for the retention function approach and the particle transfer

probabilities

Parameter Value Parameter Value

Log-K covariance s2
f e2r=I B 0.1 m

Log-K variance, s2
f 1.0 and 4.0 b 10 mm

Log-K correlation length, I 1.0 m ð1 2 lÞ 0.001, 0.0023, 0.0083, 0.0214

Domain size 51:2 I £ 25:6 I um 0.1

Grid size 0:2 I £ 0:2 I Dp
m 1 £ 10212, 9 £ 10212, 1 £ 10210, 9 £ 10210 m2/d

Mean velocity in x;V 0.5 m/d Dt 0.05 d

Source size 4:0 I £ 2:0 I Pfm 0.0001, 0004, 0012, 0042

aL 0.1 m Pfm=Pmf 400

aT 0.1 m k 0.01, 0.03, 0.1, 0.3 d21/2
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a long tailing behavior close to the one predicted

by the semi-analytical (retention function)

approach. This fact is even more apparent for k ¼

0:3 d21=2; where the modified probability of Eq.

(10) leads to the typical matrix diffusion features of

a delayed peak and a long tailing behavior. These

results compare to the semi-analytical solution

better than do those based on Liu et al.’s (2000)

original probability as can be seen in Fig. 9. The

original particle transfer probability leads to a

reduction of the mass flux values but no delay in

the peak arrival and no tailing behavior. This is

due to the fact that Pmf is very small and once

the particles diffuse into the matrix, they are

released to the fracture very slowly over time and

with small quantities that do not constitute a

significant tailing. Using Pp
mf as given in Eq. (10)

leads to a faster release of large numbers of

particles from the matrix to the fractures, which

facilitates their arrival to the breakthrough bound-

ary and produces the tailing behavior. Fig. (9)

clearly shows that the effects of the assumption of

infinite matrix availability underlying the derivation

of the retention function appear for k ¼ 0:3 d21=2;

where a larger portion of the contaminant mass has

diffused into the matrix and will require more time

Fig. 8. Solute mass flux in a fractured system obtained using the retention function approach (with k ¼ 0:01 and 0.03 d21/2) and the RWPT

method with particle transfer probability.
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to reach the breakthrough planes as compared to

the RWPT transfer probability.

In addition to the four test cases discussed above,

we also compared the results using other values for

k in an attempt to find a relationship between k and

the particle transfer probability, Pmf : Such a relation

would be very helpful if only one parameter can be

estimated from the available data of a certain field

application. For each value of k; Qmd is obtained

and a trial-and-error experiment is performed until

the value of Pmf that provides the closest result to

Qmd is identified. The pairs of k and Pmf are then

analyzed for the existence of a relationship. Fig. 10

displays the data points and the relationship

between k and Pmf =Dt; where a best fit line with

a correlation coefficient R of about 0.98 is obtained.

This relation enables estimating the two parameters

from limited field data and thus provides flexibility

in using one or both approaches to model transport

in fractures and matrix diffusion.

Fig. 9. Solute mass flux in a fractured system obtained using the retention function approach (with k ¼ 0:1 and 0.3 d21/2) and the RWPT method

with particle transfer probability.
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4. Discussion

The application of the particle tracking technique

to transport in porous media is very broad in today’s

practice. The approach has some advantages as well

as some disadvantages as discussed in Section 1.

There are other approaches for simulating transport in

heterogeneous media that may be more common and

well established as compared to the RWPT method.

However, the computational burden encountered

when applying these approaches to large numbers of

realizations prohibits its use in stochastic modeling of

field scale problems. This warrants devoting some

efforts to studying and enhancing the capabilities of

the RWPT methods and extending them to dual

domain models that have gained popularity in recent

years and fractured systems that are very common in

the real world. This is particularly important con-

sidering the fact that these random walk methods have

been and will remain widely used for modeling

transport in large-scale numerical models.

As an example of this aspect, we show in Section 2

the large numerical dispersion associated with the

standard finite difference technique as implemented in

MT3D. This numerical dispersion is minimized by

using the total variance diminishing technique (Zheng

and Wang, 1999), but this dramatically increases the

computational time making this solution algorithm

impractical for large-scale Monte Carlo simulations.

The computational efficiency of the RWPT technique

makes it advantageous in these types of simulation.

Furthermore, the oscillation problem associated with

the RWPT method is usually overcome when analyzing

the ensemble of a large number of transport

simulations.

The computational burden associated with stan-

dard finite difference and finite element techniques

becomes even worse when it comes to modeling

transport in fractured and dual domain systems. Since

many of the real world aquifers are fractured and

highly heterogeneous, a large number of realizations

is usually required to obtain accurate results, and time

considerations may hinder the investigation of an

adequate number of scenarios, which may be essential

for a given problem. These reasons make a compu-

tationally efficient approach such as the random walk

approach the preferred tool for performing these

modeling tasks under the imposed restrictions of

limited budgets and time frames. Developing and

studying RWPT methods for simulating transport in

Fig. 10. Empirical relation between the retention function parameter, k; and the forward transfer probability divided by the time step, Pmf =Dt:
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dual domain and fractured systems is thus important

from both scientific and practical perspectives. The

results presented in this study shed some lights on

different RWPT-based techniques for handling matrix

diffusion in fractured systems.

The retention function approach is limited to cases

where transport of contaminants occurs in a single

fractured unit. In this case one relies on the

assumption that particles migrate in a series of

connected fractures with the same characteristics

such that the retention function approximation is

valid. In addition, the realism of the approach with its

underlying assumptions depends on the fracture

intensity and the average spacing between them. For

widely spaced fractures, the approach may be realistic

since the matrix availability can be considered

unlimited. On the other hand, the RWPT approach

with the particle transfer probability may be more

advantageous in composite aquifers where transport

occurs in multiple units with different fracture

characteristics that may be combined with non-

fractured units. In this case, it is relatively easy to

switch the particle transfer between fractures and

matrix blocks on and off depending on the character-

istics of the geologic unit in which particles migrate.

5. Summary and conclusions

The RWPT technique for simulating transport in

single continuum and dual continua porous media is

studied and evaluated using different test cases and

implementation approaches. For single continuum

cases, both homogeneous and heterogeneous domains

are used and results of the RWPT method are

compared to analytical and numerical methods for

two dimensions. For a simple homogeneous case,

RWPT performs better than traditional finite differ-

ence (e.g. MT3D) and finite element (e.g. SUTRA and

FEFLOW) methods, which introduce numerical

dispersion. MT3D with total variance diminishing

(TVD) solver significantly reduces numerical dis-

persion. For heterogeneous media, the RWPT method

compares favorably with MT3D-TVD in terms of

mean concentrations and uncertainty.

The RWPT method in homogeneous domains

shows some sensitivity to the size of the support

volume or projection area that is used to convert

particle distribution to concentration values, but it

shows a lesser sensitivity to time step and number

of particles. For heterogeneous simulations, the

concentration mean of the RWPT method is

slightly sensitive to the number of particles used,

whereas the variance shows minor sensitivity to the

number of particles and the projection area.

However, all these sensitivity results are minimal

and of no significant effect on the resulting

solution. Furthermore, velocity interpolation tech-

niques do not have any noticeable effect on the

concentration statistics for the test cases considered

here where medium heterogeneity is assumed.

Two approaches for simulating matrix diffusion

in fractured systems using RWPT methods are

evaluated. A semi-analytical approach is compared

to a RWPT technique, which accounts for matrix

diffusion using particle transfer probabilities (Liu

et al., 2000). We derived an empirical relationship

that can be used to map the governing parameter of

the semi-analytical approach to the corresponding

particle transfer probability. The performance of the

RWPT method with Liu et al.’s (2000) particle

transfer probability is found to be inferior to that

relying on a modified transfer probability proposed

in Eq.(10). The latter leads to a delayed and

reduced peak of mass flux and a long tailing

behavior of the breakthrough curves, which are

typical features of matrix diffusion effect. The

original transfer probability of Liu et al. (2000)

only reduces the peak of the mass flux and does

not cause a delay in the arrival of the peak nor

does it produce a noticeable tailing behavior.
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