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Abstract

Major fault zones are surrounded by damage zones composed of minor faults that, in siliclastic rocks, often form significant barriers to

fluid flow. Information on fault damage zone architecture is usually available only as 2D maps, or as 1D line samples or well logs. However,

the accurate determination of the 3D fault population characteristics is crucial for flow prediction. In this paper, stochastic models of fault

damage zones are generated by incorporating the statistical properties of fault populations (power law length and throw distributions,

orientation distribution) and different spatial distributions, including randomly located, simple and hierarchical clustering of faults. These

damage zone models are used to investigate the characteristics of 2D and 1D samples, which were found to depend on the 3D power law

length exponent, D3, and the spatial distribution of the parent 3D population. Observed 1D samples may fail to show power law

characteristics and, therefore, a lack of power law behaviour need not imply a non-power law parent population. The simple rules in which

observed 2D and 1D samples follow power laws with exponents D2 ¼ D3 2 1 and D1 ¼ D3 2 2, respectively, are not always obeyed.

Clustering tends to reduce the difference between these exponents to less than their simple integer values, most markedly for the simple

clustering model. The hierarchical clustering model, in which small faults are clustered around larger faults throughout the fault damage zone

and which most closely resembles nature, suggests that the simple rule D2 ¼ D3 2 1 is obeyed with only small deviations but that 1D

samples may depart from the simple rule, D1 ¼ D3 2 2, by as much as 0.25.

q 2003 Published by Elsevier Science Ltd.
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1. Introduction

Field studies of major fault zones and observations from

bore-hole logs and core have shown that major fault zones

are surrounded by a ‘damage zone’ of smaller faults. Faults

and their damage zones may act as flow conduits or as

barriers to flow and frequently determine the distribution of

hydrocarbons within a field. The hydraulic properties of

faults and their damage zones are therefore of major concern

in the hydrocarbon industry. The impact of a fault damage

zone on fluid flow depends on the spatial variation in fault

rock petrophysical properties, the geometry of the fault

network, and particularly on its connectivity, which is

controlled by characteristics of the fault size distribution,

the fault density and the nature of the fault spatial

distribution (Knipe et al., 1997, 1998; Jones et al., 1998).

To fully understand connectivity within a fault damage

zone, knowledge of the 3D network is required. In recent

years the rapid advance in the quality and quantity of

seismic data has provided increasingly detailed information

on 3D fault networks, but the imaging limitations mean that

many minor faults in fault damage zones are still not

resolved (below the limit of resolution). Thus, information

from fault damage zones is available at best in 2D, in the

form of maps derived from outcrops or, more commonly, as

1D line samples provided by well logs and cores. The

question of how to predict 3D fault and fracture network

characteristics, and particularly hydraulic properties, from

2D and 1D information is therefore an important one

(Childs et al., 1990; Heffer and Bevan, 1990).

A number of recent studies (Cowie and Scholz, 1992b;

Bour and Davy, 1999; Borgos et al., 2000) have shown that

the extrapolation from 1D and 2D information on natural

fault populations towards the 3D population is non-trivial.

For synthetic populations of faults randomly located in

space, simple rules can be used to predict the 3D power law

length or throw distribution exponent, by simply adding 2 or
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1 to the 1D or 2D exponents, respectively (Marrett and

Allmendinger, 1991). However, in natural cases, spatial

distributions are often correlated (e.g. clustered) such that

these simple rules can no longer be assumed, and their

unguarded use can lead to incorrect predictions of the 3D

exponent and, therefore, the fluid flow behaviour (Borgos

et al., 2000).

In this paper, we develop a stochastic model of a 3D fault

damage zone. This model incorporates statistical properties

of fault damage zones observed in outcrop, and includes

power law size distributions and a range of spatial

distributions from random and uncorrelated to non-random,

correlated. This model is then used to examine the effect of

the nature of the spatial distribution on the prediction of 3D

fault population characteristics from 1D and 2D samples.

The results show the importance of the spatial clustering of

structures for flow properties and the extent to which the

simple rules for extrapolating from 1D and 2D to 3D power

law exponents can be in error.

2. Fault damage zone characteristics

Several studies in the last 10 years have focused on the

architecture of fault damage zones in both crystalline and

siliclastic sedimentary rocks and their potential influence on

fluid flow (Sibson, 1992; Antonellini and Aydin, 1994,

1995; McGrath and Davidson, 1995; Caine et al., 1996).

These studies have been largely field-based and have given

insights into the fault network geometry of major faults and

their damage zones. In siliclastic sedimentary rocks, faults

take the form of deformation bands, along which grain size

and porosity are reduced, under sufficient effective stress, to

form a partial barrier to fluid flow (Gabrielsen, 1990;

Antonellini and Aydin, 1994; Fisher and Knipe, 1998;

Aydin, 2000; Shipton et al., 2002). As displacement

increases, a group of closely-spaced deformation bands

develops until finally a slip surface is formed, along which

fault gouge develops and a minor fault zone is formed

(Antonellini and Aydin, 1995; Caine et al., 1996; Fossen

and Hesthammer, 1997). In such rocks, fault zones are

composed of a major slip zone, along which the majority of

the displacement occurs, surrounded by a damage zone

comprising a complex network of low-throw faults

(Antonellini and Aydin, 1995; Shipton and Cowie, 2001).

In this paper, two specific examples of major faults in

sandstones from England and Utah have been used as the

basis for creating a stochastic model of fault damage zone

geometry, and their characteristics are summarised below.

2.1. Examples of fault damage zones in clastic sediments:

the Moab fault, Utah, USA, and the Ninety Fathom fault,

England

The Moab fault in Utah, USA (Foxford et al., 1998) and

the Ninety Fathom fault in NE England (Knott et al., 1996)

provide well-exposed examples of normal faults and their

damage zones in sandstones. The Moab fault is a Tertiary

normal fault with a trace length of 45 km and a maximum

throw of 960 m, which cuts Jurassic to Cretaceous

sandstones and shales of the Paradox Basin, Utah, USA

(Foxford et al., 1998). The damage zone of the Moab fault is

composed of an anastomosing network of deformation

bands, which, in the well-exposed canyon of Bartlett Wash,

has an inner zone of well-connected, high density

deformation bands 5–12 m thick and an outer damage

zone of lower density faults extending up to 60 m into the

fault footwall. The damage zone width is defined by the

point at which the fault density falls below the background

level of one fault per 10 m. Most displacement occurred on

a slip zone of anastomosing major slip planes within the

inner damage zone. Cumulative fault rock thickness, as

measured along 1D traverses in the damage zone, can

contribute up to 70% of the total fault rock thickness of the

fault zone.

The Ninety Fathom fault in NE England is a dominantly

normal fault, which developed in the Devonian (Skamvet-

saki, 1994) as the northern boundary of the Northumberland

Basin, with a throw of 4–5 km in the basement. It was later

reactivated (normal and minor reverse reactivation) in the

Mezozoic, with a maximum throw of 260 m (Collier, 1989;

Knott et al., 1996). At Cullercoats on the east coast, Permian

yellow sands are juxtaposed against Carboniferous shales,

and here the fault has a displacement of around 140 m and a

damage zone width of around 280 m (Knott et al., 1996). As

for the Moab fault, the background fault density defining the

boundaries of the fault damage zone is one fault per 10 m

(Knott et al., 1996). Like the Moab fault, the Ninety Fathom

fault has a complex damage zone of deformation band

networks.

2.1.1. Orientation

In both the Moab and the Ninety Fathom fault damage

zones, deformation bands are oriented sub-parallel to the

major fault. On linear sections through the Moab fault

damage zone, the strike of deformation bands show a

Gaussian distribution, with a mean parallel to the major

fault and a standard deviation of 108 or less over most of the

damage zone. In both the Ninety Fathom (Knott et al., 1996)

and Moab faults, the dip distribution is bimodal (conjugate

faults), with bands parallel and antithetic to the main fault,

having angles of 20–308 between them.

2.1.2. Fault length and throw populations

In both the Moab and the Ninety Fathom faults, the

nature of the outcrop does not allow the determination of the

fault length distribution. However, much data on the throw

of minor faults and deformation bands has been collected

along line sections. For the Moab fault, the frequency–

throw graph shows a variable slope but with an overall trend

of 21 (Fig. 1a). Here, field observations show that the

sedimentary layering (beds 0.5–2 m thick) has influenced
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the density and throw distributions of deformation bands,

which are often confined to single lithological units. At the

Ninety Fathom fault, the rocks of the hanging wall show

some subtle sedimentary layering on the scale of centi-

metres but are otherwise massive sandstones. Deformation

band development is therefore less influenced by the

sedimentary structure. Here, the cumulative frequency

distribution of throws shows an acceptable fit to a power

law over about one order of magnitude, with an exponent of

around 1.6 (Fig. 1a).

The relationship between fault throw and fault length has

been investigated for the Moab Fault. Measurement on

outcrop surfaces reveal a wide range in throw to length

ratios from 1:100 to 1:1000. Exposed sections through faults

that do not pass through fault mid-points are likely to show

lower ratios, so that the higher end of the range (1:100) is

most likely to represent true fault throw to length ratios.

2.1.3. Fault spatial distribution

In both the Moab and the Ninety Fathoms faults,

deformation band density generally increases towards the

major slip zone, ranging from 1 to over 100 faults per metre.

Fault frequency profiles across the damage zone of both

faults show a general increase towards the major slip plane.

However, there is significant variation in frequency on the

scale of tens of metres and the profiles, although

concentrated generally around the major slip zone, are

multi-modal (Fig. 1b). The deformation band cumulative

frequency distribution of spacing within the damage zone of

the Ninety Fathom fault is power law over more than an

order of magnitude, with an exponent of around 0.7 (Knott

et al., 1996).

3. Generation of a fault damage zone stochastic model

3.1. Quantification of fault and fault system parameters

In order to make realistic models of fault damage zones,

the characteristics of the fault system, including fault size,

throw, orientation distributions and the spatial distribution,

must be quantified. In addition, correlations between

characteristics, such as fault size and throw, and fault size

and orientation, must be parameterized. In the following

sections, methods for quantitatively describing these

characteristics, and how they are incorporated into a

model of the fault network within a fault damage zone,

are described.

3.1.1. Fault shape and orientation

Observations from seismic surveys indicate that isolated

normal faults are planar, with an approximately elliptical

shape and a sub-horizontal long axis (Rippon, 1985; Nicol

et al., 1996). Nicol et al. (1996) show, from seismic and

earthquake data, that fault aspect ratios cover a wide range

from 3.5 down to 0.5, and that isolated normal faults show

an average aspect ratio of around 2. Greater mechanical

anisotropy within the lithological layering restricts fault

growth perpendicular to layering, and thus tends to

encourage faults with larger aspect ratios. Restricted faults

(faults that terminate against other faults) show aspect ratios

of around 1.3, or less, for laterally-restricted faults and

around 2.5, or more, for vertically-restricted faults. In fault

damage zones, faults are intersected by other faults both

laterally and vertically, forming a well-connected network,

and thus their aspect ratios can be expected to cover a range

centred around a ratio of 2. In the model presented in this

paper each fault is modelled as a simple elliptical surface

with a horizontal long axis of length l and fault ellipse aspect

ratios, r, that follow a Gaussian frequency distribution, f(r ),

Fig. 1. (a) Fault throw populations and (b) fault frequencies, as a function of

distance from the major fault, from the Moab and Ninety Fathom fault

zones. Data for the Ninety Fathom fault in (b) is from Knott et al. (1996).
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with a mean, m, of 2 and standard deviation, s, of 0.05:

f ðrÞ ¼
1ffiffiffiffiffiffiffi

2ps2
p exp

2ðr 2 mÞ2

2s2

" #
: ð1Þ

Here, all minor faults are modelled as ellipses, which is a

simplification, but the range of aspect ratios used represents

some of the variability found in nature. A more complex

model, simulating the physical processes during faulting,

would be required to include the effects of restriction by

intersecting faults, and thus this approach is viewed as a

necessary simplification in the stochastic model.

3.1.2. Fault throw:length relationship

Observations of displacement contours on fault planes

from seismic and mine data (Rippon, 1985; Nicol et al.,

1996) and fault profile data (Dawers et al., 1993) show that

the displacement on isolated faults increases from the tip

line, which defines the outer edge of the fault, towards its

centre. Restricted and complex faults display a basically

similar pattern, made more complicated by the presence of

other faults (Childs et al., 1995). Displacement profiles of

faults show a range from simple pyramid shapes to

trapezoidal shapes (pyramid shapes but with a flat top).

Fault length and throw distributions have been widely

studied in the literature and widely found to be power law

(Childs et al., 1990; Jackson and Sanderson, 1992; Pickering

et al., 1996; Steen and Andresen, 1999). For a linear elastic

medium, the relationship between fault length and displace-

ment is linear (Pollard and Segall, 1987; Cowie and Scholz,

1992a). In nature, however, power law relationships

between fault displacement and length have been found

with exponents in the range 0.5–2 (Watterson, 1986; Walsh

and Watterson, 1988; Cowie and Scholz, 1992b; Gillespie

et al., 1992; Fossen and Hesthammer, 1997). These

deviations from a linear relationship are generally thought

to be caused by varying mechanical properties of litho-

logical layers together with the linkage and interactions of

faults.

In the fault damage zone model presented, a linear

relationship between fault length and displacement, as the

basic case, is assumed. A simple approach for each model

fault, in which displacement increases from zero at the fault

tip line to a maximum value at the centre of the fault, is

used. The ratio of maximum throw to length can be varied

but is set at 1:100 in this paper, which is considered to be the

best estimate of average true fault throw to length ratios for

siliclastic rocks (Cowie and Scholz, 1992a,b; Dawers et al.,

1993; Dawers and Anders, 1995).

3.1.3. Fault size–frequency distribution

There is increasing evidence in the literature which

shows that fault length distributions determined from map

information are frequently power law. A recent review of

scaling in fault systems (Bonnet et al., 2001) shows that

power law exponents for fault systems range from 0.8 to 1.3

(for the cumulative frequency distribution). There are,

unfortunately, no studies of fault length distributions within

fault damage zones. However, the Ninety Fathom fault

damage zone shows a power law throw distribution with an

exponent of around 1.6. Accepting a linear relationship

between fault throw and fault length (see Cowie et al., 1996

for a review) thus implies that the fault length distribution is

also power law with a similar exponent. Therefore, in the

fault damage zone model, it is assumed that the fault plane

major axes (fault length) follow a power law. For a power

law relationship, the number of faults with lengths greater

than or equal to l, i.e. the cumulative frequency of faults,

F(l ), with length at least l, is:

FðlÞ / l2D3 ; ð2Þ

where D3 is the three-dimensional power law exponent. In

practice, the length population is constrained to lie within

the range lmin # l # lmax, where lmin and lmax are, respec-

tively, the lower and upper limits of the length scale of

interest. If N faults exist over this length range, then the

cumulative frequency function (2) can be re-written as

follows:

FðlÞ ¼ N
l2D3 2 l

2D3
max

l
2D3

min 2 l
2D3
max

: ð3Þ

The exponent D3 controls the proportion of large to small

faults within the population, so that, as D3 is increased

towards D3 ¼ 3, small faults become increasingly dominant

in the population.

For use in constructing the models, the three-dimensional

population of fault size–frequency is described by the

cumulative frequency distribution of fault major axis

lengths, whose values are drawn randomly from a power

law distribution of the form shown in Eq. (3). The process of

defining the 3D population of N fault lengths consists of a

random sequence of N uniformly distributed values

x [ ½0; 1�. The corresponding length population can then

be recovered from the power law definition given in Eq. (3),

where the length l is:

l ¼ ð1 2 xÞl2D3
max þ xl

2D3

min

h i
21=D3

: ð4Þ

3.1.4. Fault orientation distribution

The orientation distribution of faults has a strong

influence on the connectivity of a fault system. For example,

any spatial distribution of faults will be completely

unconnected if the faults have identical strikes, dips and

plunges (i.e. if they are parallel). The effect of changes in

orientation distribution on spatially random systems of fault

traces in 2D has been studied by Balberg and Binenbaum

(1983) and Robinson (1983), who show that small variations

from perfectly parallel fault sets generate significant

connectivity. The geometry of deformation bands within

the Moab and Ninety Fathom fault damage zones shows that
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deformation bands generally have a trend similar to that of

the main slip plane (Antonellini and Aydin, 1995; Fossen

and Hesthammer, 1997; Shipton and Cowie, 2001), but also

show sufficient variation in orientation to generate good

connectivity in the sub-horizontal plane. Sub-vertical

sections of these damage zones show that the dip of

deformation bands can be either unimodal or bimodal, with

an angle of 20–308 between the two major dips. Even in the

case where dip is unimodal, variations in dip are sufficient to

create good connectivity within the vertical plane. In the

cases of the Ninety Fathom fault and the Moab fault, the

proportion of faults in each of the fault sets where the dips

are bimodal is similar. However, in some cases fault may be

biased towards one dip direction (e.g. Martel and Boger,

1998).

In the fault damage zone model, the variation in

orientation of small faults around larger structures is

expressed through the Gaussian distribution similar to Eq.

(1), but where m is the mean orientation and s its standard

deviation, for both the strike and the dip of the fault planes.

A Gaussian distribution provides a good description of

orientation variations, assuming that the standard deviation

of orientation is small (less than about 208), which is the

case for fault damage zones. In the model results presented

in this paper, the strike and dip of each fault plane are

chosen randomly from separate Gaussian distributions, each

with a standard deviation of 108, following observations

from the Moab fault, and with a mean strike parallel to the

major slip plane and a mean vertical dip. Thus the models

presented here are most representative of fault damage

zones in weakly-consolidated clean sandstones.

3.1.5. Spatial distribution

The spatial distribution of faults or fractures is one of the

most challenging characteristics to quantify. The various

methods that are described in the literature include the

analysis of the fault/fracture spacing along 1D sample lines,

and the determination of the fractal dimension of the

fault/fracture pattern as a whole or of the fault/fracture

centre points, or ‘barycentres’. Clustering from spacing data

along sample lines can be quantified using the coefficient of

variation, Cv (standard deviation divided by the mean),

where a Cv value of 1 corresponds to a random distribution,

Cv . 1 to a clustered distribution, and Cv , 1 to a spacing

distribution more regular than random (Koch and Link,

1970; Odling et al., 1999). There have been numerous

attempts at estimating the fractal dimension of fault and

fracture systems in the literature. A recent review of this

topic (Bonnet et al., 2001) has, however, revealed the

pitfalls in the analysis techniques used and the ease with

which data can be misinterpreted. Fractal dimensions for 2D

maps reported in the literature span the complete possible

range of 1–2.

From the point of view of fault and fracture system flow

simulation, the main problem with the above methods of

quantifying spatial distribution is the difficulty of incor-

porating them into the simulation models. This is, in part,

due to the fact that a fractal dimension or a coefficient of

variation only contains a small part of the information

required to fully describe the spatial distribution of a

fault/fracture system. Other important factors include the

correlations between the previously described fault para-

meters and their position, and variations in fault density in

2D and 3D. Bour and Davy (1999) have found a correlation

between fault length and position which shows quanti-

tatively that large faults are more widely spaced than small

ones. Due to these difficulties, approaches to simulating

fault or fracture spatial distributions rely on geometrical

rules for placing faults, after which the simulated patterns

can be tested against natural patterns using the analysis

techniques described above. In this paper, we explore

different methods of simulating clustering in the fault

distribution and compare the results with observed outcrop

data.

4. Simulation of fault system spatial distribution

Due to the difficulty in characterizing spatial distri-

butions of fault networks, many simulation techniques

described in the literature have used a Poisson point process,

which creates a spatially random distribution in which the

location of every fault is independent of all other faults (e.g.

Baecher et al., 1977; Long et al., 1982). Over the last few

decades, there have also been some attempts at incorporat-

ing non-random spatial distributions into models of fault

networks (Dershowitz and Einstein, 1988), largely in studies

of groundwater flow and contaminant transport. These

include the parent–daughter model of Hestir et al. (1987),

where ‘parent’ fault centre points are located in space using

a doubly-stochastic Poisson process, producing clustered

points, and ‘daughter’ fault centres are then placed at

random distances from the parent centres. Fault planes

(discs of random diameter) are then assigned to each centre.

This technique was used (Billaux et al., 1989) to simulate a

fault system conditioned by observed spatial variations in

fault properties. This simulation technique can produce

clusters of faults, but does not necessarily cluster small

faults around larger ones. Other methods include those used

in the ‘FracMan’ software,1 which employs the ‘nearest

neighbour’ model, a pattern-based technique, which gener-

ates clusters of faults around larger faults, and the ‘war

zone’ model, which simulates shear zones, where clusters of

faults are bounded by major faults (Black, 1993; Dershowitz

et al., 1998). More recently, Belfield (1998) has developed a

technique that builds on fractal concepts and is based on a

multifractal strain model in which fault systems are

generated using a multiplicative cascade technique with

random input from a Lévy-stable distribution. The tech-

nique generates a scale-invariant fault network structure

1 Golder Associates, http://fracman.golder.com
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with spacing distributions that range from exponential to

power law. At present, this model is 1D only and aimed at

reconstructing fault spacing characteristics in bore holes.

In contrast to the above techniques, the stochastic fault

network model presented here is specifically aimed at

simulating the geological architecture within fault damage

zones, as opposed to distributed faulting and fracturing

within a rock mass. In order to test the effects of different

approaches to clustering on the properties of the fault

damage zone model, three types of spatial distribution were

generated. These are: (1) a random spatial distribution,

where fault centres are randomly located in space and are

therefore uncorrelated, (2) a simple clustering model in

which faults are preferentially clustered around the main

fault or slip plane, and (3) a hierarchical clustering model in

which small faults are clustered around a number of the

largest faults in the model in addition to the major slip plane.

The construction of these spatial models is described below

in more detail.

4.1. Random spatial distribution of faults

For a given fault population, the random approach

locates the centres of each fault independently of all other

faults within the population. Clearly, as the fault centres are

positioned randomly in three dimensions, we must specify a

domain in three-dimensional space within which our

population is to be located. This model for spatial

distribution, in which the positions of faults are independent

and uncorrelated, shows no increase in fault density toward

the major slip plane. It does, however, provide a simple case

with which to compare the results of the clustered spatial

schemes.

4.2. Simple clustering—independent location in concentric

ellipsoidal shells

In this clustering technique, groups of faults are placed

within ellipsoidal shells surrounding the major fault. Thus,

each fault is placed independently of any other fault but the

density of faults within each ellipsoidal shell may vary. To

construct this clustered model, an ellipsoidal volume is

created around the major fault whose principal plane and

centre coincide with those of the major fault ellipse. This

ellipsoid completely encompasses the major fault plane and

represents the boundary of the zone containing the centres

of all of the clustering faults (Fig. 2a). The volume within

this ellipsoid is then divided into a number of concentric

ellipsoidal shells (Fig. 2b), so that they cut the principal axis

perpendicular to the major fault plane into equal portions.

The fault population is then arranged in order of size and

divided into groups of equal numbers of faults to be placed

inside each shell. The centres of the group of largest faults

are first placed within the ellipsoidal shell closest to the

major fault and successive groups of faults, of decreasing

size, are located in successive shells in a similar fashion. To

place a particular fault centre, C, within a shell, a random

angle f is first used to define a radius within the plane of the

major fault slip plane (Fig. 3a). A point P is then chosen at a

random location along this radius. The final location of the

minor fault centre, C, is then chosen at random, within the

appropriate shell, along a line normal to the major fault

plane through the point P (Fig. 3b). The resulting system of

faults shows an increasing fault density (defined as fault

area per unit volume) approaching the major slip plane

(Figs. 4 and 8b).

Fig. 2. (a) A section through the ellipsoid defining the boundary of the

region around a fault within which all clustered faults are located. (b)

Concentric ellipsoidal shells within the ellipsoidal region surrounding the

major fault in (a). An equal number of faults is assigned to each shell so that

the resulting density of fault centres within each shell decreases with

increasing shell size.

Fig. 3. The location of the fault centre, C, for the simple clustering

algorithm. (a) The azimuthal angle f and the location of P are random

within the illustrated bounds. (b) Normal to the radial line containing P, the

point C is randomly placed within the chosen ellipsoid shell. The simple

clustering model shows the most intense clustering around the parent fault

centre.
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4.3. Hierarchical fault clustering technique

The hierarchical fault clustering approach differs from

the simple clustering technique by producing spatial clusters

of faults at all scales, i.e. for any fault with length greater

than that of the smallest fault, lmin, there is a chance that a

smaller fault will be clustered about it. In this model,

therefore, the spatial distribution is correlated so that the

location of every fault is dependent on the location of all

larger faults.

As in the simple clustering technique, the fault

population is first arranged in order of size. The major slip

plane is used as a starting point for subsequent steps in the

algorithm. To place each damage zone fault, a larger, pre-

existing fault around which it will cluster is first chosen. The

decision of which existing fault to use for the location of the

next fault is based upon a cumulative distribution function

of the ath power of the fault lengths, where the exponent a

should typically lie between 1 and 3. The value of a controls

the formation of sub-clusters of faults within the damage

zone. The larger values of a lead to a higher probability of

forming clusters around the very largest faults, while lower

values of a will lead to the development of clusters around

faults with a broader range of fault lengths.

In the simple clustering model, it was found that the

technique used to locate fault centres resulted in a large

maximum fault frequency close to the fault centre and along

the fault plane minor axis (Fig. 4a). However, field

observations on the Moab fault suggest that minor faults

in natural fault damage zones are more evenly spread

throughout a volume surrounding the main fault and do not

cluster so markedly around the major fault centre. In order

to spread fault centres more evenly over the parent fault

plane, an additional step in the algorithm for the simple

clustering model was introduced. This resulted in a flatter

frequency profile of clustered minor fault centres, which is

thought to be closer to nature (Fig. 4). The algorithm for

locating a new fault using the hierarchical fault clustering

technique is as follows:

1. We first define an extended ellipse around the major slip

plane ellipse (Fig. 5a). A random proportion of the area

swept through by a radius of this ellipse is used to define

an azimuthal angle u and the radius OP (Fig. 5a). The use

of the swept area produces a bias towards the major axis

of the ellipse in comparison with the use of the random

angle (simple clustering technique, Section 4.2), which

produces a bias towards the minor axis. A bias towards

the major axis is more representative of nature and thus

the method of swept area is preferred.

2. A normalised function, t(r ), is defined in terms of the

normalised distance, r, along the radius of the extended

ellipse, where r ¼ 1 represents the extended ellipse

boundary and r ¼ 0 is the ellipse centre. The normalised

function takes the form shown in Fig. 5b and is defined

by the expression:

tðrÞ ¼

1 for 0 # r # p

1

2
1 þ cos p

r 2 p

1 2 p

� �� 	� �
for p # r # 1

8><
>: : ð5Þ

A random value of the integral
Ðr

0 tð�rÞd�r of the function

(5) is used to define the location C along the radius OP

(Fig. 5a and b), with the value p ¼ 0.2 being used

throughout this paper. This function resembles a

pyramid-shaped displacement profile, which has been

smoothed and also resembles the displacement profile

produced by the Dugdale model (Dugdale, 1960). Thus,

the points C are placed with a density variation that

reflects strain variations in the immediately adjacent rock

mass (Cowie and Scholz, 1992a). This is the extra step

added to the simple clustering method that results in

minor fault centres spread more evenly over the major

fault surface.

3. The point C is used as a starting point for the final steps of

the clustering algorithm, which are similar to the simple

clustering algorithm explained in Section 4.2. Using the

point C as origin, we choose a random (uniform)

azimuthal angle f and position D, located along the

resulting chord from C to the extended ellipse boundary

(Fig. 5c).

4. Finally, as for the simple clustering model (Section 4.2),

the point F in the direction normal to the chosen fault

plane is located randomly within an ellipsoid whose

minor axis, perpendicular to the fault plane, has a length

equal to the maximum fault throw (Fig. 5d). This creates

a wider zone of clustered minor faults near the centres of

larger faults (Fig. 4).

5. Extrapolating from 1D and 2D to 3D—the problem

Fault throw populations, as estimated from 1D samples

(i.e. cores, bore hole logs), and fault length populations,

estimated from 2D samples (i.e. maps), have been widely

reported in the literature. These populations are frequently

Fig. 4. The variations in the locations of fault centres, relative to the parent

fault, for the simple and hierarchical clustering techniques. The total

number of clustering faults is the same for each 3D model, but is clearly

different along the chosen 1D traverse.
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observed to be power law (e.g. Childs et al., 1990; Scholz

and Cowie, 1990; Gillespie et al., 1993; Nicol et al., 1996;

Pickering et al., 1996; Watterson et al., 1996; Steen and

Andresen, 1999) and suggest that the 1D power law

exponent (for the cumulative distribution) lies in the range

0.4–1, whilst the exponent for 2D sampling lies within the

range 0.7–1.4 (Bonnet et al., 2001). In the case where fault

throw and length are uncorrelated with respect to location,

the 3D exponent should be equal to the 1D exponent plus 2

and to the 2D exponent plus 1 (Marrett and Allmendinger,

1991). This will be the case when the spatial distribution of

faults is random or follows an isotropic 3D fractal

represented by a Sierpinski carpet (Sammis et al., 1986;

Gillespie et al., 1993). However, natural fault patterns

seldom resemble these simple cases, and so these simple

rules need not apply (Cowie and Scholz, 1992b; Bour and

Davy, 1999). In particular, different spatial clustering

patterns applied to the same 3D population of faults will

produce different values of the observed power law

exponent when the 3D clustered fault population is

subsampled (Borgos et al., 2000).

To illustrate the importance of clustering within

populations that have been subsampled, consider the

following theoretical example. We suppose that, within a

layer-bound stratigraphic sequence, the faults are located

such that their centres all lie within a single horizontal plane

and that the faults are vertical with horizontal major axes.

Then, a 2D subsample using this plane would produce a

fault length–frequency power law exponent D2 identical to

the original 3D value D3. If, as an extreme example, a line

sample through the domain was to pass through these fault

centres, then we would predict D1 ¼ D3. Thus, depending

upon the spatial distribution of the faults, the difference

D3 2 D2 can lie between 0 and 1, and D3 2 D1 between 0

and 2. In the following sections, the fault damage zone

models are used to investigate the effect of different model

fault length distributions and spatial clustering techniques

on the relationship between the parent 3D population and

the fault length and throw distribution characteristics of

subsamples measured in 2D and 1D, respectively.

6. The effect of size–frequency exponent and spatial

distribution on the characteristics of 1D and 2D

subsamples

6.1. Generating a suite of fault damage zone models

The methods of fault damage zone simulation described

in Section 4 are used to create three suites of models with

different orientation and spatial distributions. For each of

these model types, simulations have been carried out over a

range of size–frequency distribution exponents from 1.6 to

2.8. Examples of 2D sections through each of these 3D

models, for the case of D3 ¼ 2.4, are shown in Fig. 6, which

clearly illustrates the various characteristics of the spatial

distribution algorithms. In Fig. 6, the same 80 m (x-

direction) by 230 m (y-direction) section of the plane

through the centre of the 3D domain is shown for direct

comparison. The first model uses the random spatial

distribution with random orientations and shows no higher

concentration of faults close to the main slip plane (Fig. 6a).

The second model uses the simple clustering technique, so

that smaller faults are concentrated near to the main slip

plane, and results in a narrow zone of dense faulting (Fig.

6b). By only allowing faults to cluster around the single

major fault, the likelihood of sections of large-scale faults

being isolated in space with no other faults around them

Fig. 5. Illustration of the algorithm for determining the location of the centre of a fault with respect to a chosen larger fault within the hierarchical clustering

algorithm: ((a), (b)) radius OP is chosen based upon a random area swept around an extended ellipse. The point C is chosen along OP using a random

proportion of the normalised throw as a function t; (c) D is defined using a random azimuthal angle f and a random location along the chord through C; (d) the

point F is placed randomly along a chord normal to the fault plane through D. The point F acts as the centre for a minor fault clustered around the larger fault.

S.D. Harris et al. / Journal of Structural Geology 25 (2003) 1281–12991288



exists (Fig. 6b). The third model uses the hierarchical

clustering algorithm. In this model, although the initial

orientations are chosen from the same Gaussian distri-

butions as for the simple clustering model, the hierarchical

clustering scheme generates a broader resultant orientation

distribution, which is also approximately Gaussian but less

smooth. The resultant pattern for model 3 (Fig. 6c) shows a

more spatially-distributed pattern than model 2 (Fig. 6b),

since it contains sub-clusters of faults around the larger

faults in the damage zone, which are themselves also

clustered around the major fault. Fig. 7 shows an enlarged

part of Fig. 6c to illustrate this point. The characteristics of

these three model types are summarised in Tables 1 and 2.

Using the traverses shown as arrows parallel to the x-

direction in Fig. 6, the 3D fault arrays are sampled along 1D

lines to investigate the spatial distribution and variations in

fault density across the models. For the random fault

location technique (model 1) shown in Fig. 8a, a relatively

low number of faults is sampled across the whole of the

230 m domain. For the distribution of faults in model 2

(simple clustering technique; Fig. 8b) and model 3

(hierarchical clustering technique; Fig. 8c), the highest

frequency of faults occurs at the location of the major fault

(located at 40 m on the horizontal axis). The distribution is

both narrower and the peak at the major fault is higher for

model 2 than for model 3. This shows the effect of sub-

clustering around other faults within the domain for the

hierarchical clustering algorithm. Comparing these fre-

quency distributions across the model fault damage zones

with those observed for the Moab and Ninety Fathom faults

(Fig. 1b) shows that the hierarchical model (model 3)

produces density variations that most closely resemble these

examples from nature.

6.2. Subsampling of model fault populations

The 3D fault damage zone models described above are

Fig. 6. 2D horizontal slices through the 3D fault arrays produced using (a)

random spatial location of all faults (Section 4.1), (b) the simple clustering

method of Section 4.2, and (c) the hierarchical clustering method of Section

4.3. For (b) and (c) the slice plane is positioned at the centre of the major

fault and the major slip zone (MSZ) is indicated. The regions shown are

each 80 m long in the x-direction and 230 m long in the y-direction. The

original domains had the same volume in each case and contained the same

number of faults, namely 4.5 million. The grey arrows show the locations of

the transects in Fig. 8.
Fig. 7. An enlargement of the region of the fault array highlighted in Fig. 6c,

which emphasises the sub-clustering nature of model 3, generated by the

hierarchical clustering technique presented in Section 4.3.

Table 1

Variables used within the three-dimensional fault model for all spatial

models

Fault attributes Value

Maximum fault length, lmax (m) 10,000

Minimum fault length, lmin (m) 2.5

Power law exponent, D3 1.6–2.8

Aspect ratio Gaussian: m ¼ 2, s ¼ 0.05

Plunge angle 08

Fault throw:length ratio 1:100

Table 2

Characteristics of the three spatial fault damage zone model types

Model Spatial model Orientation

1 Random Random dip and strike

2 Simple clustering Gaussian distribution for dip and strike,

s ¼ 108

3 Hierarchical clustering Approximately Gaussian, s . 108
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used as a basis for investigating the relationships between

the characteristics of 1D and 2D subsamples and those of the

parent 3D population. To ensure that the number of

subsampled faults at each scale are sufficient to deduce

population characteristics, we have populated 3D domains

with large samples of N fault lengths, drawn randomly from

the appropriate power law cumulative frequency function

(Fig. 9). The value of N is an increasing function of D3,

since, for larger values of D3, greater numbers of small

faults are required before the larger faults in the population

are sampled to an acceptable degree. The 3D models

constructed contain fault populations of between approxi-

mately 2 and 6.5 million faults for D3 ¼ 1.6 to 2.8. Fig. 9

shows that the difference between the model 3D fault

population and the original theoretical distribution, as

defined by the cumulative distribution function (3), is only

apparent for the longer faults lengths close to lmax. For the

example of D3 ¼ 2.4 used in Fig. 9, a fault length within one

order of magnitude of lmax ¼ 10,000 m is relatively unlikely

to be represented.

The 2D subsamples are taken using horizontal (x,y )-

planes (perpendicular to the major slip plane) at different z

locations within the 3D models. The 1D line samples are

taken in the x-direction (normal to the major slip plane) at

different positions within the (y,z )-plane. The locations of

these sample planes and lines are illustrated in Fig. 10 for

Fig. 8. The frequency of faults along the 1D traverses through the fault damage zone models 1, 2 and 3 displayed in Fig. 6: (a) model 1 (random fault location),

(b) model 2 (simple clustering technique), and (c) model 3 (hierarchical clustering technique). Note that the y-axis scales vary between each of the three figures

and that model 2 produces an extreme clustering around the major fault compared with models 1 and 3. Model 3 produces a pattern that most closely resembles

the natural faults (Fig. 1b).

Fig. 9. The cumulative frequency function for D3 ¼ 2.4 (dotted line) and a

random sample of N ¼ 6.5 million faults drawn from the population of fault

lengths (solid line). The theoretical distribution (dotted line) approaches the

maximum fault length, lmax, asymptotically, corresponding to the frequency

tending to zero as l ! lmax. The random sample follows the theoretical

distribution closely up to fault lengths of around 500 m.
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the two different domain sizes, chosen according to whether

the fault damage zone model is derived from the spatially

random model (model 1; Fig. 10a) or the spatially clustered

models (models 2 and 3; Fig. 10b). The three sample planes

are located at the centre of the domain, and 50 m above and

below this central plane. The line samples lie in the central

sample plane at locations separated by 50 m in the y-

direction, together with additional samples lines 25 m above

and below this plane in the z-direction.

Based upon the three chosen 3D models of a fault

damage zone, the characteristics of the cumulative fre-

quency distribution of fault lengths, l, in 2D sections and

fault throws, t, in 1D sample lines are investigated. These

represent fault lengths observed in 2D maps and throw

populations observed from displacements of a specific

horizon on a high resolution seismic section or from a 1D

line sample from outcrop. The results of 1D and 2D

subsampling for the case when the 3D fault length

distribution is a power law with D3 ¼ 2.4 are shown in

Fig. 11. From Fig. 11a, it is clear that both 2D and 1D

sections of the 3D model using the random distribution of

faults show results that are relatively independent of

location. However, for sections from the simple and

hierarchical clustering techniques, the numbers of faults

sampled and the slope of the graph can vary dramatically

according to location, particularly for the 1D sections. These

effects are most noticeable for the simple clustering

technique (model 2). This model tends to cluster faults

close to the centre of the major fault, so that sections passing

through this point show the greatest number of faults

sampled and the steepest slopes (due to an increased

proportion of small faults sampled). This problem is not

apparent when the hierarchical clustering technique, which

distributes faults more evenly around the major slip plane, is

used (model 3) and the 2D subsamples are almost identical

for the three locations chosen. The variations seen in this

model are, in this case, not due to extreme focusing of faults

at the centre of the major fault, but due to the existence of

larger sub-clusters of faults located away from the centre of

the major fault.

Fig. 11 shows a variety of cumulative frequency trends

from curves with significant straight line segments to those

where no straight line segment can be identified, and which

therefore are not characterized by a power law. The causes

of deviation from a straight line for the frequency

distribution of a power law population have been exten-

sively discussed in the literature. These include truncation

effects, where, due to limited resolution, small faults are

under-represented, and censoring effects, where, due to the

finite size of the samples, large faults are under-sampled

(Lindsey and Rothrock, 1995; Pickering et al., 1995;

Odling, 1997; Bour and Davy, 1999). These effects produce

Fig. 10. The locations of the horizontal planes (bold lines) and lines (dots) used to subsample the 3D fault damage zone models. The locations indicated in (a)

are for the spatially random fault damage zone model (model 1), using a cubic domain (230 £ 230 £ 230 m), and the locations indicated in (b) are for the

simple and hierarchical clustering techniques (models 2 and 3), for which the domain is cuboid (80 £ 1000 £ 150 m).
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a shallowing of the slope at small scales (truncation) and a

steepening of the slope at large scales (censoring). In

addition, the slope of the cumulative distribution of a power

law population steepens at large scales due to the upper cut-

off imposed by the size of the sample (Bonnet et al., 2001).

Although this effect can be avoided by using the density

distribution, the cumulative distribution has been most

commonly used in the literature since it generates a

smoother trend. In the cumulative distribution, this effect

reduces the segment of the graph over which the exponent

can reliably be estimated. In some cases, the graph of a

subsample from a power law population can become

dominated by these effects, so that it becomes a curve

with no significant straight line segment. In these cases, the

subsamples cannot be used to estimate the power law

exponent and, moreover, cannot be used to infer the nature

of the parent population.

An analysis of the results of the 2D and 1D subsampling

of fault arrays produced using the three spatial fault damage

zone models, for D3 ¼ 1.6 to 2.8, has been made. In these

subsamples, the segments of the graph where a straight line

is appropriate has been determined graphically, which is a

Fig. 11. Log–log plots of the cumulative frequency function against fault length, l, (m) and fault throw, t, (cm) for 2D and 1D subsamples, respectively, of the

3D fault damage zone models in the case of D3 ¼ 2.4: (a) model 1 (random spatial location of faults), (b) model 2 (simple clustering technique), and (c) model 3

(hierarchical clustering technique). The dotted lines for the 2D and 1D plots indicate the gradients 21.4 and 20.4, respectively, corresponding to a reduction

of 1 or 2 with respect to the D3 power law exponent. Multiple lines correspond to the three 2D samples and the (a) seven and ((b), (c)) nine 1D samples.
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commonly used method in the literature. In doing this, the

limitations imposed by the 3D model have been taken into

account. The random sample of faults from the 3D length

population of the model was found to follow a power law

accurately up to fault lengths of around 500 m (Fig. 9),

which thus provides an upper limit to any straight line

segment expected in a subsample. At small scales, the 3D

population has a lower limit of a fault length of lmin ¼

2.5 m, which corresponds to a throw of 2.5 cm. Lengths

smaller than 2.5 m and throws less than 2.5 cm are therefore

under-represented. In order to test the robustness of the

graphical technique, three different subsampled populations

have been analysed to determine the variation in the

predicted slope, using a running average between triplets of

points, and these are shown in Fig. 12. A straight line

segment is considered to be significant when the slope stays

constant (allowing for slight variations) over one order of

magnitude or more of the measured length or throw (Fig.

12a and b). However, in some cases the slope is seen to

steadily increase with the measured length or throw (Fig.

12c), indicating that no straight line segment exists and no

power law relationship can be derived. It was found that the

decision of whether a power law was appropriate, and

the scale range over which it was valid, agreed well with the

purely graphical method.

The results of exponent estimation from 1D and 2D

subsamples for D3 in the range 1.6–2.8 are summarised in

Fig. 13. Fig. 13a and b shows that the number of faults

sampled, Ns, varies widely according to both the model and

the sample location. For the 2D subsamples (Fig. 13a), the

number of faults sampled ranges from 1700 to 120,000, and

for the 1D subsamples (Fig. 13b) this range is from 20 to

49,000. The effects of clustering in the fault spatial

distribution (models 2 and 3) is to cause a general increase

in the number of faults sampled as the exponent increases,

whereas the random model shows less variation. The widest

Fig. 12. Variations in the slope of log–log graphs of cumulative frequency distributions as functions of length or throw. The three examples show the range in

behaviour observed in the 2D (fault length) and 1D (fault throw) subsamples of the 3D fault damage zone models. In (a) and (b) a straight line segment can be

considered to exist over a scale range of one and one and a half orders of magnitude, respectively, to the upper limit indicated. In (c) the slope of the graph

steadily increases with increasing throw and is not representative of a power law distribution.
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range in the number of faults in subsamples occurs in

model 2 (simple clustering model). Here, faults are closely

clustered around the centre of the major fault, so that

sample planes and lines away from the major fault centre

encounter far fewer faults. Part of the variation in Ns is due

to the variations in the number of faults contained within

the 3D models, N, since models with a higher exponent D3

contain more faults to ensure the effective sampling of

large faults. In order to eliminate this effect, the numbers of

faults in 2D and 1D subsamples have been normalised with

respect to the total number of faults, N, in the 3D model,

and the variations in this ratio as a function of D3 are

shown in Fig. 13c and d. However, this plot displays very

similar trends to Fig. 13a and b, showing that the variations

are primarily due to the different spatial distributions of the

models. Fig. 13c and d indicates that, as D3 increases, the

proportion of faults sampled increases for the clustered

models (models 2 and 3), but decreases for the random

model (model 1). As the D3 exponent increases, the

population contains a greater proportion of small faults.

Since small faults have a smaller chance of being sampled

by any plane or line, the proportion of faults sampled falls

with increasing D3 for the spatially random model. For the

clustered model, however, the clustering of small faults

around larger fault centres means that subsamples through

such clusters record more than the expected number of

small faults, so that the proportion of faults sampled tends

to increase with D3. This is most noticeable for the planes

Fig. 13. Plots of ((a), (b)) the logarithm of the number of faults sampled, Ns, and ((c), (d)) the logarithm of the number of faults sampled as a proportion of the

total number of faults, N, in the 3D model, for ((b), (d)) 1D and ((a), (c)) 2D subsamples. Models 2 and 3 (simple and hierarchical clustering models) show

increasing sampled fault numbers as D3 increases, whereas model 1 (random model) shows nearly constant to decreasing sampled fault numbers as D3

increases. The shaded areas indicate a range of values for the plotted data.
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passing through the centre of model 2, which has the

greatest focusing of minor faults.

As illustrated by Fig. 11, the frequency distribution

graphs range from straight lines to smooth curves, and thus a

power law exponent cannot be estimated from all sub-

samples. It was found that 1D subsamples for D3 between

1.6 and 2.2 could not be used to determine a power law

exponent in all models, except for the sample through the

major fault centre in model 2 (simple clustering model).

This is caused, in part, by low fault numbers in these

subsamples, particularly for the off-centre sample planes

and lines in model 2 (simple clustering model). However,

when D3 ¼ 1.6, the through-centre sample for model 2,

which shows power law behaviour, contains a similar

number of faults to the random model, for which an

exponent could not be determined, indicating that the nature

of the spatial clustering also has a significant effect on the

subsample cumulative frequency distribution.

Fig. 14a and b shows the variation in the upper limit to

the range over which straight line segments of the

cumulative frequency distribution were found. The lower

limit in all cases was 2.5 m (length) and 2.5 cm (throw),

giving a range from one order of magnitude (considered to

be the minimum acceptable range) to over two orders of

magnitude. This range is generally greater for the clustering

models (models 2 and 3) than for the random model (model

1). As the D3 exponent increases, the range for all 2D

subsamples (Fig. 14a) tends to converge to around one and

a half orders of magnitude. However, for the 1D line

subsamples (Fig. 14b), the through-centre case for model 2

(simple clustering) and model 3 (hierarchical clustering)

exhibit higher ranges in comparison with the model 1

(random) and off-centre cases for model 2 (simple

clustering). Thus, clustering appears to increase the range

of validity of the power law distribution within the

subsamples.

Fig. 14c and d shows the range of observed D1 and D2

exponents and their dependence on the D3 value derived

from the 2D and 1D subsamples, respectively. In the case of

the models with clustering (models 2 and 3), some of the

subsamples exhibited a range of slopes for the same D3

value, showing that the location of the sample plane or line

has a significant impact on the nature of the subsampled

distribution. In particular, the off-centre cases of model 2

(simple clustering) show lower exponent values than the

through-centre cases, for both the 2D and 1D subsamples.

Model 3 (hierarchical clustering) also indicates a range of

exponents for 1D cases for higher values of D3 (D3 ¼ 2.4 to

2.8).

As D3 increases, there is generally a corresponding

increase in the derived D1 and D2 subsample exponents (Fig.

14c and d). In the 2D subsampling of fault lengths, model 1

(random), the off-centre cases in model 2 (simple clustering)

and model 3 (hierarchical clustering) follow the simple rule

that D2 ¼ D3 2 1. However, the through-centre case for

model 2 (simple clustering) shows exponents that are

consistently and significantly higher than this simple

relationship would predict, with discrepancies of up to

0.15. In the 1D subsampling of fault throws, many of the

subsamples show exponents that differ significantly from

the simple relationship D1 ¼ D3 2 2, which is only

approximated by some of the samples from model 1

(random), the off-centre cases from model 2 (simple

clustering) and model 3 (hierarchical) for higher values of

D3 (D3 ¼ 2.4 to 2.8). Discrepancies between the observed

exponents and this simple relationship are more extreme

than for 2D sampling, with the through-centre case of model

2 (simple clustering) showing exponents around one greater

than that predicted. This is caused by the extreme clustering

within this model, so that, through the centre of the major

fault, the throws of small faults are sampled to a larger

extent than expected, and the sample resembles that

expected from a 2D subsample.

7. Summary and discussion

Three-dimensional, stochastic models representing the

internal structure of fault damage zones have been created,

based upon observations from fault damage zones in sili-

clastic rocks. These models incorporate power law fault

length distributions, preferred orientations and random to

clustered spatial distributions. Three basic model types,

corresponding to three types of spatial distribution, have

been generated. These models have spatially random faults

(model 1), a simple clustered distribution in which the

smaller faults are focused around the major fault (model 2),

and a hierarchically clustered model in which the smaller

faults are clustered around the larger faults throughout the

fault damage zone (model 3). Observations from outcrops

suggest that faults tend to have clustered distributions within

the fault damage zones, and, from a comparison of the

frequency of faults across natural faults with the three

models, it is suggested that the hierarchical model (model 3)

provides the best representation of nature.

In practice, data is seldom available in three dimensions

and the fault characteristics, such as the length and throw

distributions, must be deduced from 2D sections, such as

maps of outcrops or seismic horizons, or from 1D sections

derived from line samples in outcrop, cores, bore hole logs,

or horizon displacements in seismic sections. The extra-

polation from 1D and 2D information to 3D is of crucial

importance for providing an understanding of the fault

network geometry. The three fault damage zone models

have been used to investigate the effect of different parent

3D fault population characteristics on the nature of fre-

quency distributions derived from 2D (fault length) and 1D

(fault throw) subsamples. It was found that the resultant

estimated fault length and throw power law distribution

exponents depend on the 3D model fault size exponent, on

the type of spatial clustering and on the location of the

sample plane or line within the damage zone.
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Despite the power law nature of the parent 3D fault size–

frequency distribution in all cases, 1D subsamples did not

always show power law characteristics, particularly when

the D3 exponent was low (D3 ¼ 1.6 to 2.2). Some of these

samples contained large numbers of faults (up to 600), so

that these observations are unlikely to be due purely to small

sample sizes, but are probably a result of model character-

istics such as the fault length and spatial distributions. It

seems that, in these cases, the effects of truncation and

censoring have dominated, masking the power law nature of

the underlying population. Thus, the presence of a parent

power law length distribution need not necessarily be

Fig. 14. ((a), (b)) Upper limit to the range over which the D1 and D2 exponents can be estimated. The lower limit is 2.5 m for 2D subsamples and 2.5 cm for 1D

subsamples. The scale ranges over which exponents are estimated vary from one to one and a half orders of magnitude. ((c), (d)) Variation in the D1 and D2

exponents with the D3 exponent for the three models. The pale shaded area represents the range between the simply-predicted relationships between the D1, D2

and D3 exponents for a spatially random system of faults. The darker shaded area indicates a range of exponents found for model 3 (hierarchical clustering

model).
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apparent in 1D samples, particularly when the parent length

exponent is low. Conversely, the absence of a straight line

segment in a 1D cumulative frequency distribution of fault

throw does not necessarily imply that the 3D fault

population does not have power law characteristics.

In some of the 2D subsamples of fault length, the

cumulative distribution appears to show two slopes, separ-

ated by a kink, with a steeper slope at larger scales (Fig. 11).

There has been a tendency for such distributions to be

interpreted as physically meaningful. However, here these

cumulative distributions are derived from parent 3D

populations that have power law size distributions with a

single exponent. The change in the slope of the graph

therefore does not reflect properties of the parent fault

population. The most pronounced kinks are found for the

clustered models and for low D3 values (D3 ¼ 1.6 to 1.8),

and may therefore be the result of uneven sampling of the

population due to clusters of small faults around large faults.

This illustrates how it may be misleading to interpret

changes in the slope of the subsampled frequency distri-

bution as physically meaningful without other supporting

evidence, such as a change in the deformation mechanism

from deformation bands to slip bands (Fossen and

Hesthammer, 1997; Shipton and Cowie, 2001) or controlled

by lithological layering from field observations.

For the case in which the fault location is random and

independent of any other fault location, simple rules relate

the exponents expected in 2D and 1D sections to those

of the parent 3D population (Marrett and Allmendinger,

1991), namely D2 ¼ D3 2 1 and D1 ¼ D3 2 2. The pre-

sented models have shown that, in the 2D subsampling case,

these simple rules are obeyed by most of the models, the

only exception being the through-centre section of model 2

(simple clustering), which displays a consistently higher

than expected exponent (discrepancy around 0.1). This is

due to the clustering, which in this model is focused on the

centre of the major fault. Thus, a 2D section through the

centre-line of the major fault cuts more faults and, in

particular, a higher proportion of small faults. The 1D

sections show a wider range of behaviour and greater

deviations from the simple rule that D1 ¼ D3 2 2. Here,

only some of the samples from model 1 (random), the off-

centre cases from model 2 (simple clustering) and model 3

(hierarchical clustering) were found to approximate this

simple relation, and then only for higher values of the D3

exponent. In the case of the through-centre section of model

2 (simple clustering), the exponent lies around that expected

for a 2D, rather than a 1D, section. This is again due to the

concentration of minor faults around the centre of the major

fault, so that 1D sections close to the centre of the major

fault are likely to sample more small faults than expected

within a random spatial distribution. Model 3 (hierarchical

clustering) also shows some increase over the expected D1

exponent by up to 0.25. In this model, the deviations from

the simple rule are due to clusters throughout the damage

zone rather than just a cluster centred on the major fault.

Thus, higher than expected exponents occur in a number of

locations through the fault damage zone, and not just close

to the centre of the major fault. These clusters are not as

pronounced as those developed by the simple clustering

model, and so the effect on the exponent is less significant.

With respect to fault damage zones in nature, it is thought

that model 3 (hierarchical clustering) probably provides the

best representation. This tends to suggest that 2D sections

can be expected to obey the simple rule that D2 ¼ D3 2 1.

However, results from 1D sections display a much more

variable behaviour for this model, and the simple rule that

D1 ¼ D3 2 2 may give rise to an under-estimation of D3 by

up to 0.25. Thus, the use of 1D subsamples of faults to

predict the 3D size–frequency distribution of faults should

be undertaken with care, with some sensitivity analysis

required on the range of fault numbers predicted at a given

size. Our results suggest that spatial clustering based upon

observed values of D2 and D1 will influence the fault

population characteristics.

8. Conclusions

The key observations from the results of this study can be

summarised as follows:

1. A hierarchical clustering scheme (model 3), in which

small faults are clustered around larger faults throughout

the fault damage zone, results in spatial distributions

similar to those observed in nature.

2. The characteristics of 2D sections for fault length and 1D

sections for fault throw depend on the parent fault size

distribution and the spatial distribution of the 3D fault

network.

3. For small values of the 3D power law fault size

distribution exponent (D3 ¼ 1.6 to 2.2), the 1D sub-

sample may fail to show power law characteristics. Thus,

a lack of power law behaviour does not necessarily imply

that the parent population is not power law.

4. Observed kinks in the cumulative frequency distribution

of 2D fault lengths can arise from clustered spatial

distributions and from a 3D parent population with a

single power law size distribution. Thus, care should be

taken not to interpret such kinks as physically meaning-

ful without additional supporting evidence.

5. The simple rules whereby D2 ¼ D3 2 1 and D1 ¼ D3 2 2

are not always obeyed. The degree of clustering has a

significant influence and tends to reduce these integer

differences expected between the D1, D2 and D3

exponents.

6. As a model for natural fault zones, the hierarchical

damage zone model suggests that 2D sections through

natural fault zones may obey the simple rule that

D2 ¼ D3 2 1 with only small deviations, but that 1D

sections may depart from the rule that D1 ¼ D3 2 2 by

amounts of up to 0.25.
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