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Abstract

Current radiometric remote sensing technology enables high resolution data of vegetation biomass to be obtained in the form

of the Normalized Difference Vegetation Index (NDVI). The present study uses such data to examine the spatial structure of

vegetation density at the land surface by wavelet, semivariogram, and spectral analyses. Within the range of 30–800 m, the

results show that vegetation density of arable cropland is persistent and can be characterized as a fractal with a dimension of

1.59. Within the same range of distances, vegetation density across a more diverse landscape (including besides cropland, also

pasture and savanna) exhibits a fractal dimension of 1.69. In the Southern Great Plains, this range is of the order of the typical

size of agricultural fields.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Vegetation density is a valuable land surface

parameter for the estimation of land surface-atmos-

phere interactions. It affects the soil moisture, surface

temperature, and the surface energy and water

budgets. The spatial variability of vegetation density

influences the lower atmospheric circulation and

hydrologic processes over a wide range of scales

(e.g. Avissar and Pielke, 1989; Li and Avissar, 1994).

In the research community, there is a growing

awareness of the need to study the variability of

vegetation density at scales which cannot be rep-

resented efficiently in atmospheric and land surface

models (e.g. Atkinson and Tate, 2000). Research has

begun to investigate the smaller scale variability of

geophysical parameters, such as vegetation density

and soil moisture (e.g. Chen and Brutsaert, 1998;

Jedlovec and Atkinson, 1992) and how these par-

ameters resemble fractals (e.g. Lam and Quattrochi,

1992; De Jong and Burrough, 1995; Rodriguez-Iturbe

et al., 1995).

This paper focuses on the spatial structure of

vegetation density at the atmospheric microscale

(2 m–2 km) (defined by Orlanski, 1975) on the

basis of a fractal approach. Satellite imagery of a

summer vegetation scene was obtained for the

Southern Great Plains of the United States. This

region is typical and representative of other grassland

biomes in the world, many of which have undergone

profound changes by human activities. Three different
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techniques are used to characterize the spatial

structure of vegetation density, namely wavelet

variance, semivariance, and spectral analyses. From

the results of these analyses, conclusions are drawn

about the spatial persistence (positive spatial corre-

lation) and distribution of the vegetation density. In

particular, the fractal nature of this distribution is

investigated. A fractal (self-affine) can be defined as a

variable, yðxÞ which has the cumulative distribution

function

FðyÞ ¼ 1 2 P
yðx þ kÞ2 yðxÞ

k22D
, x0

� �
ð1Þ

where Pð Þ denotes the probability of the statement

inside the brackets, D is the fractal dimension and k is

a separation distance (e.g. Turcotte, 1989). A knowl-

edge of the applicability of the fractal distribution to

vegetation density will allow future modeling of said

parameter to be simulated more accurately (Lam,

1990). One possible approach to characterizing

random variability is on the basis of power law

distributions. In other words, to be successful, this

requires an accurate determination and understanding

of the fractal dimension.

2. Vegetation density and NDVI

The study of vegetation is problematic at the scales

available by satellite remote sensing because of the

wide variety of plant types; therefore, plant type

variation is often ignored and instead a single measure

of plant biomass is used. For applications with

satellite radiometers, several indices have been

developed to quantify the ‘greenness’ of the land

surface, which were determined to be good indicators

of plant biomass. This study focuses on the Normal-

ized Difference Vegetation Index (NDVI) (Rouse

et al., 1974). Further information regarding NDVI can

be found in Schowengerdt(1997). This index is

defined by

NDVI ¼
rNIR 2 rVIS

rNIR þ rVIS

ð2Þ

where rNIR is the reflectance within the near infrared

range (0.7–1.1 mm) and rVIS is the reflectance within

the visible range (0.4–0.7 mm). Larger values indi-

cate ‘greener’ surfaces. Conversely, cities and water-

ways have small values. The data in this study are

dominated by green surfaces and there is little effect

of urbanization.

3. The satellite data

The Landsat satellites have been providing spectral

measurements of the Earth’s surface since 1972. More

specifically in 1997, the Thematic Mapper (TM) on

Landsat-5 was scanning the Earth over seven spectral

bands every sixteen days. Two of these bands are

useful for estimates of vegetation density. Bands 3

(0.63 – 0.69 mm) and 4 (0.76 – 0.90 mm) of TM

retrieve visible and near infrared radiance values

which are used to calculate of NDVI (Schowengerdt,

1997). The pixels in the radiance images cover areas

of approximately 30 m £ 30 m.

This study examined two transects selected from

a TM-derived NDVI scene recorded over the

Southern Great Plains of the United States on

July 25, 1997 as part of the Southern Great Plains

Experiment 1997 (Jackson, 1999). Several transects

were analyzed, but for brevity, these two are

presented. Three scenes from a single satellite track

were joined to form one image as described in

Jackson et al. 1999. The coordinates for each

transect are given in Table 1. Transect A is

4096 pixels long or 123 km and 1 pixel (30 m)

wide extending east to west along the northern part

of the study region. The dominant land use type is

cropland, predominantly wheat stubble. Transect B

is 16,384 pixels long or 492 km and runs from

north to south in the center of the TM image. The

land use type along Transect B is more diverse; it

includes cropland, pasture, and savanna. In both

transects, there are occasional water bodies and

Table 1

Universal transverse Mercator (Zone 14) coordinates for transect A

and B of this study

Transect A Transect B

Beginning coordinate 563025 E 629285 E

4193745 N 4253715 N

Ending coordinate 685905 E 629285 E

4193745 N 3762195 N
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urban areas, but these comprise an insignificant

portion of the signal.

4. Method of analysis

4.1. Wavelet variance analysis

Wavelet variance analysis is a powerful tool for

describing the strength of persistence for a large

data set (Torrence and Compo, 1998). The analysis

begins with the wavelet transform, which is defined

as the convolution of a filter, g½ðx0 2 xÞ=a� for a

data series, f ðx0Þ; where a is the scale parameter.

This transform is similar to a windowed Fourier

transform, but it has the advantage of

resolving localized space and wavelength infor-

mation even the Fourier transform contains only

wavelength information. Mathematically, it is

calculated by,

Wðx; aÞ ¼
1ffiffi
a

p
ðþ1

21
g

x0 2 x

a

� �
f ðx0Þdx0: ð3Þ

The scale parameter represents the effective width

of the filter. It also normalizes the resulting signal

so that each transform has the same energy

(Percival and Walden, 2000). The wavelet filter

must satisfy the requirement that its integral is

zero, so that after convolution no energy is gained

or lost. A common filter is the second derivative of

the Gaussian function, also known as the ‘Mexican

Hat’ function. It is defined as

g
x0 2 x

a

� �
¼

1

2ap

� �1=2

1 2
x0 2 x

a

� �2

£ exp 2ð
x0 2 x

4a
Þ2

� �
;

ð4Þ

and is shown in Fig. 1. After examining alterna-

tives, the ‘Mexican Hat’ was selected because it is

a convenient choice, which is often used to

quantify persistence in geophysical data (Malamud

and Turcotte, 1999). The second moment of each

wavelet transform can be plotted against a to form

the wavelet variance function, VwðaÞ.

VwðaÞ ¼
1

n 2 1

Xn

i¼1

ðWðx; aÞ2 �WðaÞÞ2; ð5Þ

where �WðaÞ is the computed average of the wavelet

transform for a selected scale parameter, a:

It has also been shown (Malamud and Turcotte,

1999) that if the original data series obeys a power law

distribution (and is therefore a fractal), the variance

function can be expressed as a power law relation with

the form

VwðaÞ , aHw
; ð6Þ

where Hw is known as the wavelet exponent.

4.2. Semivariogram analysis

A semivariogram analysis measures the correlation

between values in a data series separated by a lag, k

(Journel and Huijbregts, 1978; Kitanidis, 1997). The

one-dimensional semivariogram is defined as

gðkÞ ¼
1

2ðN 2 kÞ

XN2k

i¼1

ðZðXiÞ2 ZðXiþkÞÞ
2 ð7Þ

where N is the number of data points in the record and

Xi is the ith data point of the distance variable. The

semivariogram is often normalized by the variance of

the data, so that comparisons can be made between

two different functions. While many models can be

fitted to the experimental semivariogram, for this

study, the power law model was selected, because of

its obvious connection with a fractal description. The

power law distribution can be written as

gðkÞ , k2Ha
; ð8Þ

Fig. 1. The Mexican Hat function.
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where Ha is known as the Hausdorff exponent

(Malamud and Turcotte, 1999). Whenever this

exponent tends toward zero, the variable can be

considered statistically homogeneous (or spatially

stationary). This implies that the variable has a

constant mean and variance in space; because only

these two moments are preserved, this is sometimes

also referred to as second order stationarity.

4.3. Spectral analysis

A spectral analysis of a data series reveals its energy

distribution for different wavelengths. A discrete

Fourier transform decomposes data into a sum of sine

and cosine functions. This transform is defined as

Cm ¼ d
XN
n¼1

cne2pinm=N
; ð9Þ

where cn is a discrete data series, N is the length of the

series, d is the distance between data points, and m is an

index for the Fourier coefficients (Priestley, 1981).

These coefficients are complex numbers of the form

Ym ¼ am þ ibm; where am and bm are the real and

imaginary parts, respectively. The complex modulus

of Cm is defined as

lCml ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ða2

m þ b2
mÞ

q
; ð10Þ

which can be used to calculate the power spectral

density function. This function is defined as the energy

distribution of a signal as a function of wavelength. It is

calculated by

SðkÞ ¼ lim
N!1

2lCml
2

Nd

 !
; ð11Þ

where m ¼ 1; 2; 3;…;N=2; and k is the spatial wave-

length (Priestley, 1981). The power spectral density

function of a variable with a fractal distribution follows

the relation

Sk , k2b
; ð12Þ

where b is the power spectral density exponent. This

exponent can be related to the other exponents

mentioned above by the following equation

b ¼ 2Ha þ 1 ¼ Hw ¼ 5 2 2D; ð13Þ

where D is the fractal dimension (Malamud and

Turcotte, 1999).

Wavelength regression of the power spectral

density function to determine a trend line is

problematic because of the logarithmic nature of the

plot. The shorter wavelengths have more data points,

giving that region of the density function more weight

in the regression. Therefore, it is useful to divide the

function into bins of equal logarithmic size so that no

region dominates the regression. The loss of spectral

information to neighboring wavelengths, known as

leakage, can be a problem with discrete Fourier

transforms. This problem can be alleviated by using a

window function on the data (Percival and Walden,

1993). The Welch window is commonly used for this

and is defined as

wn ¼ 1 2
n 2 ðN=2Þ

N=2

� �2

; ð14Þ

where n ¼ 1; 2;…;N: In practice, the data series is

multiplied by this window function before the spectral

analysis is carried out (Malamud and Turcotte, 1999).

5. Analysis and results

5.1. Transect A

The first step in this work was to compute the

wavelet transforms of the data set. A Mexican Hat

function was convolved with Transect A to generate

wavelets for eight levels of analysis. The initial

window had a width of 16 data points (8 on each side)

and is referred to as a ¼ 1: This window length was

doubled for each successive scale, namely to 32 data

points ða ¼ 2Þ; 64ða ¼ 4Þ; etc. The resulting wavelet

scales of analysis are shown in Fig. 2 together with the

original signal. It is observed in the original signal that

there are several downward spikes which represent

water bodies on the scale of less than 1 km.

The variance was calculated for each wavelet scale

and plotted as a logarithm against the scale parameter

a in Fig. 3. Power law regressions for the spectral

density functions of vegetation density (Eq. (4)) were

calculated for a ¼ 1–8. The regression equation

(Eq. (6)) for the resulting variances gives the function

VwðaÞ ¼ 0:0472a1:829
; ð15Þ
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where 1.829 is the value of Hw. The variance function

of the wavelets started to deviate from the power law

beyond a ¼ 8 (point 4), which is equivalent to 960 m.

This is roughly the length of the average agricultural

field, also referred to as a quarter-section. For the first

four points, the regression has an R2 of 0.998,

indicating a very strong relationship between the

data and the regression equation.

The semivariogram of Transect A is shown in

Fig. 4. This confirms that the choice of a power

law relationship (Eq. (8)) is indeed appropriate for

the initial 400 m; the corresponding regression

equation is

gk ¼ 0:00450k0:826
; ð16Þ

with a value of Ha equal to 0.413 for the range of

30–400 m. This distance is approximately half the

length of the average agricultural field. This

analysis depends on pairs of points which are

separated by a lag. When that lag reaches half the

length of a field, approximately half of the pairs

include points in different fields, which may have

different crops. Therefore it is not surprising that

instead of a breakpoint at 800 m, the semivario-

gram breaks at 400 m. The semivariogram reaches

an upper bound at about 2 km, which indicates

Fig. 2. Results of wavelet variance analysis for Transect A. The

original series is indicated at the bottom and the wavelet transforms

are plotted in ascending order. The x-axis is measured in pixels and

the y-axis is scaled to fit on one plot. The relative magnitudes of

each signal have been maintained.

Fig. 3. Wavelet variance function for the wavelet transforms for

Transect A. The R2 and regression equation is for the first four

points of the signal. The function was scaled by the variance of the

entire signal.

Fig. 4. Semivariogram for Transect A with a regression trend line

calculated for the region of 30 m–400 m.
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a second order stationary process at scales larger

than that.

For the spectral analysis, Transect A was divided

into four smaller segments, each with a length of

1024 pixels (30 km) to increase the number of sample

transects. The resulting power spectral density func-

tions were then averaged to reduce noise. A power law

regression (Eq. (12)) was calculated for the averaged

signal, and yielded

Sk ¼ 0:00360k21:830
; ð17Þ

with a b value of 1.830. The power spectral density

function is shown in Fig. 5 with logaritmic bins. A

break point is observed in the function at a wavelength

of approximately 400 m for the same reason as

explained for Fig. 3.

To repeat briefly, the three analyses produced

Hw ¼ 1:829, Ha ¼ 0:413, and b ¼ 1:830, resulting in

fractal dimension, D; estimates of 1.586, 1.587, and

1.585 respectively, calculated from (Eq. (13)). An

average fractal dimension can be calculated to be

1.586. This indicates that for the range of 30 m–

800 km, the data appear to obey a power relationship

fairly well.

5.2. Transect B

This transect was analyzed in the same manner as

Transect A. A plot of each wavelet transform and

the original signal is shown in Fig. 6. The wavelet

variance analysis of Transect B is shown in Fig. 7. The

power law relation (Eq. (6)) for the first four points

was calculated as

VwðaÞ ¼ 0:0457a1:6256
; ð18Þ

with a b of 1.626. This relationship applies to the

range of 30–960 m, as was the case for Transect

A. Beyond 960 m, the variances do not appear to

follow the power law relationship. The R2 for the

regression of the first four points is 0.996, again

indicating a very strong correspondence between the

data and Eq. (18).

The semivariogram analysis of Transect B was

fitted by a power law function (Eq. (8)), and this

produced

gk ¼ 0:0182k0:619
; ð19Þ

with a value of Ha equal to 0.309 for wavelengths up

to 400 m. The details are shown in Fig. 8. The

Fig. 5. Power spectral density function for Transect A. The function

is averaged of logarithmic bins of equal size. A regression line is

also plotted with it’s descriptive equation.

Fig. 6. Results of wavelet variance analysis for Transect B. The

original series is indicated at the bottom and the wavelet transforms

are plotted in ascending order. The x-axis is measured in pixels and

the y-axis is scaled to fit on one plot. The relative magnitudes of

each transform have been maintained.
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semivariogram reaches its sill at 1 km, the range of

spatial autocorrelation.

For the spectral analysis of Transect B, the data

were divided into 4 smaller segments each with a

length of 4096 pixels or 120 km. Again, the resulting

power spectral density functions were averaged to

reduce noise. The analysis revealed a power law

relation (Eq. (12)), namely

Sk ¼ 0:00250k21:660
; ð20Þ

giving a b value of 1.660 for the range of 30 m–

1.0 km. The logarithmically binned power spectral

density function is plotted in Fig. 9.

These three analyses produced the following

results: Hw ¼ 1:626, Ha ¼ 0:309, and b ¼ 1:6334.

The estimates of the fractal dimension, D; were

calculated from (Eq. (13)), namely 1.687, 1.691, and

1.683, and averaged to produce a mean fractal

dimension for Transect B of 1.687.

6. Conclusions

The power law distribution of vegetation density

was established by each of the three methods of

analyses. Table 2 contains a summary of the results of

these analyses. Wavelet variance analysis demon-

strates a strong persistence and a power law

relationship for the first four data points in both

transects, covering approximately 960 m. This length

Fig. 7. Wavelet variance function for Transect B. The R2 and

regression equation are for the first four points of the signal. The

function was scaled by the variance of the entire signal.

Fig. 8. Semivariogram for Transect B with a regression trend line

calculated for the region of 30–400 m.

Fig. 9. Power spectral density function for Transect B. The function

is averaged with logarithmic bins of equal size. A regression line is

also plotted with it’s descriptive equation.
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is of the order of the average length of large

agricultural fields in the Southern Great Plains,

which are approximately 800 m. Much of the land is

this region was divided into square mile sections and

these sections were then divided into at least four

fields with a length of one half mile or 800 m. From

visual inspection of the NDVI image, it was observed

that the typical road spacing was 1 mile and each

block was divided into four sections. Semivariogram

analysis confirmed the power law distribution;

however, only up to a scale of half of the average

agricultural field, or 400 m. This anomaly may be

attributed to a natural bias of semivariograms for data

with heterogeneity such as NDVI for cropland.

Indeed, for distances larger than half of the field

size, a larger number of pairs of points used to

calculate the semivariogram will be sampled from

adjacent agricultural fields with a different crop. The

spectral density function also corroborated the power

law exponent. The estimated fractal dimension of this

distribution is 1.586 for cropland. For a more diverse

landscape, containing cropland, pasture, and savanna,

the fractal dimension was estimated to be 1.687.

These dimensions indicate a signal with strong long-

range persistence and the signal can be referred to as a

fractional motion (Malamud and Turcotte, 1999). A

fractal dimension for a Brownian motion is 1.5 for

comparison. Therefore, the NDVI values observed in

this study are more persistent than a Brownian

motion. At distances greater than 1 km, the semivar-

iogram analysis indicates that NDVI reaches an upper

bound. This will have significant implications for the

parameterization of vegetation density in land surface

modelling, because the variability can be assumed to

be constant (or stationary) beyond that scale. Further-

more, the persistence of the data at scales smaller than

800 m makes dense data sampling unnecessary.

Clearly, it has implications on the modelling of its

spatial variability at these smaller scales as well. In

any type of modelling of the variability in a non-

deterministic way, knowledge of the fractal dimen-

sion is required.

The variability of vegetation density appears to

have a similar structure to that of surface soil moisture

analyzed in other studies. Pelletier et al. (1997)

determined that soil moisture fields follow a power

law distribution with a b value of 1.8 at scales smaller

than 2 km and Rodriguez-Iturbe et al. (1995)

established that the scale invariance continued down

to a scale of 30 m. The present study established

that the exponent of the spectral density function is

b ¼ 1:830 for cropland. This strongly suggests that

there is a proportional relationship between the scale

invariance, that is the fractal nature, of the density of

uniform vegetation (consisting of the same crop

species) and that of surface soil moisture at scales

smaller than 800 m.
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