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Abstract

A stochastic perturbation-based formulation for transient contaminant transport in the vadose zone was developed and

implemented. The proposed methodology provides an efficient way to incorporate the small-scale variability of soil properties

into large-scale models using effective parameters. A finite element solution of the stochastic differential equation for transient

contaminant transport was formulated. The mean concentration value and its variance at each node were evaluated. The

advantage of the proposed stochastic finite element approach is that only a few soil parameters are required to describe the

variability of its stochastic properties. In addition, the proposed approach is neither site-specific nor contaminant-specific. A

one-dimensional transient contaminant transport was simulated and the stochastic results were compared to deterministic and

experimental results. The stochastic perturbation-based numerical formulation predicted the velocity of spreading of the

contaminant much closer to the experimental measurements, as compared to the deterministic approach.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Groundwater is one of the most important sources

of water, and because of its extensive use, ground-

water contamination has become a major environ-

mental concern (Durmusoglu, 2000; Reddy and Lin,

2000). Aquifers supply approximately 19% of the

water consumed in the US (Solley et al., 1998). For

public supply and domestic use, groundwater supplies

approximately 42% of the total (Hudak, 2000).

The quality of groundwater has become a signifi-

cant concern in the USA and internationally. Agri-

cultural production has come under greater scrutiny

for its potential role in the degradation of water

resources (Lovejoy et al., 1997). Surface applied

agrochemicals are being detected with increasing

frequency in groundwaters worldwide (Chu et al.,

2000). Detection of these chemicals in drinking water

supplies has increased public concern about the safety

of the current agricultural practices and techniques

used to quickly identify and remediate contaminated

groundwater. Prevention of groundwater contami-

nation is absolutely necessary to ensure public safety

(Ehteshami et al., 1991).

To evaluate the likelihood of groundwater con-

tamination by agricultural chemicals, various con-

taminant transport models have been developed to

simulate the fate and transport of pollutants in soils

and groundwater (Chu et al., 2000; Cunningham et al.,
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1999). Groundwater contamination may often orig-

inate in contamination sources that are often located

near the soil surface, such as agricultural fields and

waste deposits (Jensen and Mantoglou, 1992; Man-

toglou, 1992; Russo et al., 2001). Since the contami-

nant travels first through the vadose zone, it is very

important to obtain accurate predictions of the

movement of the contaminant in this region. The

vadose zone acts as a source of water and solute for

the transport processes in the saturated zone (Russo

et al., 2001). In this paper, the stochastic perturbation-

based approach for contaminant transport through

porous media developed by Mantoglou (1984) and

Mantoglou and Gelhar (1985) is implemented using a

finite element formulation.

In the last 20 years, groundwater research has been

focused in developing quantitative models to predict

contaminant transport in aquifers. These predictive

tools are very important in the investigation and

cleanup of contaminated subsurface systems. It is also

known that the transport and fate of contaminants are

greatly affected by the heterogenity of aquifer

properties (e.g. Leblanc et al., 1991).

The prediction of contaminant transport from

mathematical models deals with considerable uncer-

tainty due to the presence of heterogeneities in natural

soil formations (Zhan and Wheatcraft, 1999; Chang

et al., 1999; Wheater et al., 2000; Aguirre et al., 2001;

Russo et al., 2001). During the last two decades,

stochastic models have been used to quantify the

uncertainty in subsurface hydrology (Fiori and Dagan,

1999; Cvetkovic and Dagan, 1994). These models

usually deal with stochastic partial differential

equations and their analytical solutions, which are

restricted to simple geometries, and then, more general

numerical approaches are needed for stochastic flow

and transport models (Osnes and Langtangen, 1998).

Numerical techniques have been improved drasti-

cally but they cannot yield accurate results since the

effective large-scale (or field-scale) parameters cannot

be accurately determined. This limitation of the

standard deterministic modeling approaches,

especially in the vadose zone, emphasizes the use of

statistical techniques that can incorporate the effects of

natural variability of soil parameters (Harter and Yeh,

1998; Aguirre, 2000; Dillah and Protopapas, 2000).

Prediction contaminant movement through an

aquifer is crucial when deciding among alternative

techniques for remediation (Aguirre, 2000). In order

to have reliable predictions, stochastic methodologies

are being used more widely in solving flow and

contaminant transport in the unsaturated zone (Yeh,

1992; Russo, 1995a,b; Mantoglou and Gelhar, 1989;

Zhu and Sykes, 2000; Labolle et al., 2000; Yeh et al.,

1985a,b,c; Mantoglou and Gelhar, 1987a,b,c; Harter

and Yeh, 1998). Stochastic differential equations can

be solved using traditional numerical techniques such

as finite differences or finite elements (Nicolai, 1994).

The advantages of finite element methods (FEM) over

finite differences are many. FEM handle mixed

boundary conditions very easily, they can incorporate

different material properties and model complex

geometries without difficulties (Haghighi et al.,

1990; Franca and Haghighi, 1994).

There is an increased need for dealing with large-

scale and complicated subsurface problems. In

addition, efficiency and accuracy in numerical results

are important issues to model developers (Li et al.,

2000). The research gap that should be filled is to use

efficient and versatile numerical techniques to solve the

stochastic differential equations. The use of a stochastic

finite element methodology, to deal with contaminant

transport in the unsaturated zone, can dramatically

improve the efficiency and flexibility of the solution

process, and the quality of the results, and can be used as

a powerful tool to make an early prediction of the

possibility of an environmental disaster.

This paper presents a general finite element

methodology for obtaining a large-scale model of

transient solute transport in stratified porous media

using a stochastic perturbation-based approach. The

model assumes the general case of three-dimen-

sional anisotropic heterogeneity with finite local

dispersion. It assumes that the scale of variations in

hydraulic conductivity exceeds the size of a

representative elementary volume (Bear, 1972). A

numerical example demonstrates the performance

and capability of the proposed numerical model.

2. Stochastic methodology for transient

contaminant transport

The stochastic approach used for derivation of the

large-scale transport model consists of four basic steps

(Bakr et al., 1978; Mantoglou and Gelhar, 1985; 1989;
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Gelhar and Axness, 1983; Gelhar et al., 1985; Gelhar,

1993; Aguirre, 2000):

1. The local governing transport equation is averaged

over the ensemble of soil property realizations;

2. Cross-correlations between concentration and

specific discharge fluctuations are evaluated ana-

lytically and then, the expressions for the effective

transport parameters are developed;

3. Simplified linearized equations relating concen-

tration fluctuations to specific discharge fluctu-

ations and to soil property fluctuations are derived;

4. The large-scale transport model and the effective

macrodispersion parameters are developed.

These steps are briefly summarized below.

2.1. Large-scale model of transient contaminant

transport

The governing equation of an ideal non-reactive

conservative solute transport in unsaturated flow

(assuming constant density and viscosity) is given by:

›ðucÞ

›t
¼

›

›xi

Eij

›c

›xj

2 cqi

" #
i; j ¼ 1; 2; 3 ð1Þ

where c is the concentration of transported solute; u is

the soil moisture content; Eij is the local bulk

dispersion coefficient (hydrodynamic dispersion and

molecular diffusion are included) and qi is the local

specific discharge.

The unsaturated hydraulic conductivity KðcÞ can

be parameterized following the expression proposed

by Gardner (1958):

ln KðcÞ ¼ ln Ks 2 ac ð2Þ

where c is the capillary tension head output, Ks is the

saturated hydraulic conductivity and a is the incli-

nation of ln KðcÞ vs. c:

Assuming that the local soil properties ln Ks and a

the local specific discharge qi; the concentration c and

the soil moisture content u are realizations of

stationary random fields, yields:

ln Ks ¼ F þ f ð3Þ

a ¼ A þ a ð4Þ

qi ¼ �qi þ q0
i i ¼ 1; 2; 3 ð5Þ

c ¼ �c þ c0 ð6Þ

u ¼ �uþ u0 ð7Þ

where F; A; �qi; �c and �u are the mean values and f a; q0
i;

c0 and u0 are the fluctuations. The mean values are

deterministic, smooth spatial functions and the

fluctuations are realizations of three-dimensional

zero mean second-order stationary random fields.

In order to obtain the large-scale model of transient

solute transport in unsaturated soils, Eq. (1) is

averaged over the ensemble of realizations of the

random fields a and f : Taking the expected value of

Eq. (1), yields:

›E½uc�

›t
¼

›

›xi

Eij

›E½c�

›xj

" #
2

›E½ðcqiÞ�

›xi

¼
›

›xi

Eij

›�c

›xj

" #
2

›E½ðcqiÞ�

›xi

ð8Þ

where E½ � is the expected value operator.

Substituting Eqs. (5)–(7) into Eq. (8), the expected

value of the last term on the right hand side of Eq. (8)

can be rewritten as:

E½ðcqiÞ� ¼ �c�qi þ E½c0q0
i� ð9Þ

Using Fick’s Law yields:

E½c0q0
i� ¼ 2Êij

›�c

›xj

ð10Þ

where Êij is the effective bulk macrodispersion

coefficient tensor.

Defining a macrodispersivity tensor as:

Aij ¼
Êij

q
ð11Þ

where q is the mean specific discharge.

Substituting Eq. (11) into Eq. (10):

E½c0q0
i� ¼ 2Aijq

›�c

›xj

ð12Þ

Substituting Eqs. (9), (11) and (12) into Eq. (8) and

assuming that the fluctuations u0 and c0 are small

(neglecting the second order terms), yields:

› �u�c

›t
¼

›

›xi

ðEij þ AijqÞ
›�c

›xj

" #
2

›ð�c�qiÞ

›xi

ð13Þ
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Eq. (13) is the large-scale transport equation.

Comparing Eq. (13) to the local transport Eq. (1),

it is noticed that they have a similar form. The

term Eij þ Aijq is the total large-scale dispersion

coefficient. The term Aijq; the bulk macrodispersion

coefficient defined in Eq. (12), takes into account

the dispersion due to the spatial variability of qi:

2.2. Linearized fluctuation equation

A linearized perturbation equation for steady state

conditions relating the concentration fluctuations c0 to

q0
i is derived substituting Eqs. (5) and (6) into Eq. (1)

and taking the expected value:

›

›xi

½�c�qi þ E½q0
ic
0�� ¼ Eij

›2 �c

›xi›xj

ð14Þ

Subtracting Eq. (14) from the steady-state part of Eq.

(1), yields:

›

›xi

½�qic
0 þ q0

i �c þ q0
ic
0 2 E½q0

ic
0�� ¼ Eij

›2c0

›xi›xj

ð15Þ

Assuming that the fluctuations c0 and q0
i are small, then

the second order terms in Eq. (15) may be neglected.

The first order approximation for Eq. (15) is then:

›

›xi

½�qic
0 þ q0

i �c� ¼ Eij

›2c0

›xi›xj

ð16Þ

Eq. (16) relates the concentration fluctuations c0 to the

specific discharge fluctuations q0
i:

Fig. 1 shows the coordinate system x01x02 that

represents the principal anisotropy axes and the

coordinate system x1x2 that has the axis x1 oriented

in the direction of the mean specific discharge ~q:

The local dispersion tensor for a two-dimensional

problem may be written in the form (Bear, 1972):

½Eij� ¼
aLq 0

0 aTq

" #
ð17Þ

where aL and aT are the local longitudinal and

transversal dispersivities, respectively.

x1 axis of coordinate system is oriented in the

direction of the mean specific discharge ~q:

Substituting Eq. (17) into Eq. (16) and expanding

the left hand side term, yields:

q0
i

›�c

›xi

þ q
›c0

›xi

¼ aLq
›2c0

›x2
1

þ aTq
›2c0

›x2
2

ð18Þ

Eq. (18) is a linearized differential equation. The

mean specific discharge q is given by:

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̂11J 0

1 þ K̂22J 0
2

q
ð19Þ

where K̂ii are the effective hydraulic conductivities

given by Aguirre (2000) and J 0
i is the mean gradient in

the x0i direction.

The direction of q is given by:

f ¼ arctg
K̂11J 0

1

K̂22J 0
2

 !
: ð20Þ

2.3. Evaluation of effective macrodispersion

coefficients

The methodology for evaluation of macrodisper-

sivities Aij adopted in this paper was developed by

Mantoglou (1984). The methodology utilizes the

steady-state linearized fluctuation Eq. (18) and

spectral representations. A summary of the results

for the general case of statistically anisotropic soil

with arbitrary orientation of mean flow is presented

next. Two assumptions are necessary in order to get

analytical expressions for the macrodispersivities: the

soil is supposed to be horizontally stratified and lateral

head gradients are considered small.

Fig. 1. Coordinate system x01x02 corresponds to the principal

anisotropy axes.
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The macrodispersivities Aij are given by:

A11 ¼
s2

f l1l2

pg2b
ðT22 þ 2j2T23 þ j4T33Þ ð21Þ

A22 ¼
s2

f l1l2

pg2b

J2
2

J2
1

ðj4T33Þ ð22Þ

A12 ¼
s2

f l1l2

pg2b

J2
2

J2
1

j2ðT23 þ j2T33Þ ð23Þ

where:

g2 ¼
q2

K2
mJ2

1b
2

ð24Þ

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1ðsin fÞ2 þ l2
2ðcos fÞ2

q
ð25Þ

j2 ¼
l2

1

l2
2

ðsin fÞ2 þ ðcos fÞ2 ð26Þ

If a and f are uncorrelated, then

b2 ¼ 1 þ j2H2 ð27Þ

If a and f are perfectly correlated, then

b2 ¼ 1 2 jH ð28Þ

where H is the mean pressure head and j2 is given by

j2 ¼
s2

a

s2
f

: ð29Þ

The gradients J1 and J2 are evaluated as:

J1 ¼ J 0
1 cos fþ J 0

2 sin f ð30Þ

J2 ¼ 2J 0
1 sin fþ J 0

2 cos f ð31Þ

The integrals T22; T23 and T33 are evaluated

numerically using trapezoid rule (Hoffman, 1992)

and they are given by the following expressions:

T22 ¼ 4
ðp=2

0

1

8ða2 2 c2Þ
p2

8c2

a2 2 c2
ln

c2

a2

 !" #

� ðcos fÞ4 df ð32Þ

T23¼4
ðp=2

0

ð1

0

r5½122ðsinfÞ2ðcosfÞ2�

ða2r2þc2Þð1þr2Þ2
drdf ð33Þ

T33¼4
ðp=2

0

1

8ða22c2Þ
p2

8c2

a22c2
ln

c2

a2

 !" #
ðsinfÞ4df

ð34Þ

where

a2¼ðcosfÞ2þj2ðsinfÞ2 ð35Þ

c2¼A2L2
2b2ðcosfÞ2 ð36Þ

where A is defined by Eq. (4) and L2 is given by:

L2¼J2þ
›H

›xi

ð37Þ

The prediction of an actual concentration distribution

consists of the ensemble mean value and a quantifi-

cation of the deviation around the mean ðscÞ:

Vomvoris and Gelhar (1990) derived an analytical

expression for the concentration variability in the case

of a steady concentration field. This expression was

used in this study to approximately quantify the

concentration variance for unsteady conditions in

unsaturated soils (Aguirre, 2000).

3. Finite element formulation for transient solute

transport

The large-scale transient transport model for two-

dimensional problems is given by:

› �u�c

›t
¼2 �c

›�q1

›x1

þ �q1

›�c

›x1

þ �c
›�q2

›x2

þ �q2

›�c

›x2

� 	

þ
›

›x1

ðE11 þA11 �qÞ
›�c

›x1

þðE12 þA12 �qÞ
›�c

›x2


 �

þ
›

›x2

ðE21 þA21 �qÞ
›�c

›x1

þðE22 þA22 �qÞ
›�c

›x2


 �
ð38Þ

Substituting the local dispersion tensor Eq. (17) into

Eq. (38), yields:

› �u�c

›t
¼2 �c

›�q1

›x1

þ �q1

›�c

›x1

þ �c
›�q2

›x2

þ �q2

›�c

›x2

� 	
þ

›

›x1

� ðaLqþA11 �qÞ
›�c

›x1


 �
þ2

›

›x1

� ðA12 �qÞ
›�c

›x2


 �
þ

›

›x2

ðaTqþA22 �qÞ
›�c

›x2


 �
ð39Þ

The system of finite element equations is obtained

by applying the Galerkin Method to the large-scale

transient contaminant transport Eq. (39). Combining
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the element matrices and summing over all the

elements using the direct stiffness procedure yields:

½P�{_�c}þ½S�{�c}¼{0} ð40Þ

where ½P� is the global capacitance matrix, ½S� is

the global stiffness matrix, {�c} is the mean

capillary tension head value and {_�c}¼d{�c}=dt:

The global system of equations is evaluated using a

finite difference approximation in the time domain

(Segerlind, 1984):

ð½P� þ bDt½S�Þ{�c}tþDt

¼ ð½P�2 ð1 2 bÞDt½S�Þ{�c}t ð41Þ

Prescribed values along the boundaries are directly

introduced in the final system of Eqs. (41):

�cðx1; x2ÞG ¼ �cG ð42Þ

The set of finite element equations given by Eq. (42) is

solved by Gauus Elimination (Taylor and Hughes,

1981).

4. Solution methodology

The solution methodology used to solve transient

contaminant transport problems in this study is

summarized next:

(a) At t ¼ 0; the velocity field, chemical concen-

tration distribution and soil properties (mean

values, variances and correlation lengths) are

given and boundary conditions are specified.

(b) The associated perturbation Eq. (18) is solved

analytically using spectral analysis to obtain the

macrodispersivities.

(c) The finite element equations for the large-scale

transient contaminant transport (13) is solved

numerically by Gauss elimination.

(d) Mean chemical concentration values and var-

iances are obtained at each node.

(e) Time is increased and a new velocity field is

computed.

(f) The above steps are repeated until t ¼ tf :

A finite element code (written in Fortran 90

programming language) was developed for the

solution of Eq. (41).

5. Steady-state unsaturated flow transient

contaminant transport—Etiwanda Field Station

Considerable progress has been made in the last

decade in solute transport research. Many theoretical

transport models for unsaturated field soil have been

proposed but they remain largely untested because

very few large-scale solute transport experiments

have been conducted under natural field conditions.

The field-scale transport experiment performed by

Butters et al. (1989) is briefly described next. The

experiment was designed to expand the database for

unsaturated zone solute transport on a scale of interest

for agricultural and management scenarios, and also

to study the solute dispersion below the soil surface. A

two year field study of mobile solute transport in the

unsaturated zone was conducted over a 0.64 ha area to

a depth of 25 m.

5.1. Experimental site

The experimental site is located at the Etiwanda

Field Station approximately 15 miles west of River-

side, California. The extent of the unsaturated zone is

in excess of 150 m. The soil on the field site is a nearly

level Tujunga loamy sand. The texture in the upper

4.5 m was studied by sampling at 0.3 m in five

locations across a 0.64 ha area. The results are listed

in Table 1. The dominant characteristics are the gravel

layer near 1.2 m and the layer of finer textured soil in

the neighborhood of 3 m. Several 25 m long continu-

ous soil cores were also taken and revealed a

substratum of variable alluvial layers of sands, coarse

sands with gravel, and loams. Soil bulk measurements

at 30 cm depth intervals to 1.8 m at different locations

had a mean of 1.51 g/cm3 and a standard deviation of

0.38 g/cm3. The saturated hydraulic conductivity ðKsÞ

of the soil surface was measured at 56 selected points

across the field (Butters et al., 1989). The distribution

of measured Ks was normal with a mean of 6.15 cm/h

and a CV of 44%. Analysis of the spatial structure of

Ks revealed a horizontal correlation length-scale of

the stochastic component of about 27 m.

The field site was established in 1979 and consists

of 1.44 ha covered by sprinkler irrigation and an inner

0.64 ha containing monitoring devices. The field

contains 16 sampling locations separated by 20 m

and arranged in a mapped 4 £ 4 square grid (Fig. 2).
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Each sampling location contains six ceramic soil

solution vacuum samplers, offset by 0.3–0.6 m and

are installed at depths of 0.3, 0.6, 0.9, 1.2, 1.8 and

3.05 m. Six of the locations have an additional

sampler at 4.5 m. The sprinkler irrigation system

over the 1.44 ha plot and border area delivers a flux of

0.05 cm/h. Irrigation collection cups were placed at

each of the sampling sites. A cover crop of sorghum

and wheat was planted in order to protect the soil from

wind erosion and mechanical stress of the excessive

sprinkler irrigations.

5.2. Experimental method

The field was irrigated regularly for several weeks

prior to the tracer application to leach the soil of

residual salts from previous experiments and to

achieve a reasonably time invariant water content

profile to a depth in excess of 3 m. The gravimetric

water content ug as a function of depth, measured at

intervals of 0.15–4.5 m between two irrigation

events, is presented in Fig. 3. Temporal variations in

the ug profile were neglected.

When water could be extracted from all the

solution samplers, between 0.3 and 4.5 m, it was

assumed that the area-averaged soil water flux was

relatively uniform with depth. The inorganic water

trace pulse was then injected through the sprinkler

system. The 166.5 kg of reagent-grade NaBr were

mixed in several 50 gallon drums (1 gallon ¼ 3.785

l) and simultaneously siphoned into the irrigation

system in a 30 min period followed by an

additional 2.5 h of irrigation. The application

mass was 142.9 mmol/m2 and input concentration

of 58.9 mol/m3. The soil was then leached free of

bromide down to 4.5 m over the next nine months

by irrigation at 2-day intervals. A field average of

2.32 m of applied irrigation was required over a

period of 265 days to leach the bromide tracer past

the 450 cm depth at all six solution sampler sites.

Fig. 3. Steady state gravimetric water content profile estimated from

six replicates, along 95% confidence interval (based on t statistic)

(Butters et al., 1987).

Table 1

Results of soil texture analysis with USDA textural classification

(Butters et al., 1989)

Depth

(cm)

Sand

(%)

Silt

(%)

Clay

(%)

Textural classification

30 81 13 6 Loamy sand

60 78 17 5 Loamy sand

90 86 10 4 Loamy sand

120 87 8 5 Gravelly coarse sand

150 81 13 6 Loamy sand

180 76 14 10 Fine sandy loam

210 73 15 12 Fine sandy loam

240 64 22 12 Fine sandy loam

270 54 28 17 Fine sandy loam

300 51 34 15 Loam

330 51 33 15 Loam

360 53 31 16 Sandy loam

390 71 20 9 Fine sandy loam

420 66 24 10 Fine sandy loam

450 71 19 10 Fine sandy loam

Fig. 2. Sketch of field plot, quadrants and sampling sites (Butters,

1987).

C.G. Aguirre, K. Haghighi / Journal of Hydrology 276 (2003) 224–239230



However, of this total, only the net applied water

(NAW) was effective in moving the tracer down-

ward. A plot of cummulative applied water,

cumulative evapotranspiration and cumulative

NAW vs. time is shown in Fig. 4. The drainage

flux is approximated by two values:

q1 ¼ 0:9 cm=day for t , 150 days ð43Þ

q1 ¼ 0:5 cm=day for t $ 150 days ð44Þ

The pressure head distribution through the soil

layers was computed using the Van Genuchten

expression:

h ¼
1

a

u2 ur

f2 ur

� 	21=m

21

" #1=m

ð45Þ

where a is given by the inverse of the bubbling

capillary pressure ðhbÞ; u is the volumetric water

content; ur is the residual water content; f is the

soil porosity; m and n are function of the pore size

index ðlÞ and are given by:

n ¼ l þ 1 ð46Þ

m ¼ l=n ð47Þ

The volumetric water content for each depth is

obtained from Fig. 3 by multiplying the gravimetric

water content by the dry soil bulk density (1.51 g/

cm3) and dividing by the water density (0.998 g/

cm3). All the others parameters listed above where

obtained from Rawls and Brakensiek (1989). The

values are presented in Table 2.

The input data used to run the simulations are

summarized below in Table 3:

The parameters A; a2
a and l1 were not measured

experimentally. Polmann et al. (1998) performed a

literature review to identify whether the spatial data

required to estimate the stochastic parameters could

be found in papers which describe field soil spatial

variability experiments. Many studies involving

spatial variability of soil parameters were identified,

but most of the papers did not contain information on

the parameters required for this model. Parameter A

was chosen such that the curve describing the

relationship between the unsaturated hydraulic con-

ductivity and pressure head is represented by a smooth

Table 3

Input data

Parameter Value

Ks (m/day) 1.476

A (m21) 1

s2
a (m22) 0.5266

F 0.3893

s2
f 0.1864

l1 (cm) 30

aL (cm) 1

q (cm/day) Eqs. (43) and (44)

h (cm) Eq. (45)

Dt (day) 0.005–0.5

Total time of simulation (days) 250

Initial condition c (mol/m3) 0

Table 2

Hydrologic soil properties

Depth (cm) f (cm3/cm3) ur (cm3/cm3) hb (cm) l

30 0.437 0.055 20.58 0.553

60 0.437 0.035 20.58 0.553

90 0.437 0.035 20.58 0.553

120 0.437 0.020 15.98 0.694

150 0.437 0.035 20.58 0.553

180 0.453 0.041 30.20 0.378

210 0.453 0.041 30.20 0.378

240 0.453 0.041 30.20 0.378

270 0.453 0.041 30.20 0.378

300 0.463 0.027 40.12 0.252

Fig. 4. Water balance for duration of experiment. Water applied is

irrigation þ precipitation (Butters, 1987).

C.G. Aguirre, K. Haghighi / Journal of Hydrology 276 (2003) 224–239 231



curve. The coefficient of variation used to compute is

44% and is the same as the coefficient of variation

measured for the saturated hydraulic conductivity at

the soil surface. Vertical correlation length was

assumed to be 30 cm to characterize a stratified soil.

Vertical correlation length values found in the

literature for different types of soils range from 0.08

to 1.8 m (Polmann et al., 1998). All parameters listed

in Table 3 are constant values except the drainage flux

(Eqs. (43) and (44)) and the initial pressure head

distribution (Eq. (45)).

5.3. Results

Local breakthrough curves at different depths were

plotted and compared to real breakthrough curves

obtained experimentally (Butters, 1987). Numerical

results obtained were closer to the experimental

results obtained for sampling site number 8 (Fig. 2).

This fact may suggest that the values used to

characterize the stochastic parameters of the soil are

a good approximation of the real values of the soil

properties for that specific location. A two-dimen-

sional mesh consisting of 180 six-noded triangular

elements and 543 nodes was used (Fig. 5). The

vertical domain was extended until 900 cm such that

the boundary condition of zero prescribed concen-

tration or dc=dz ¼ 0 did not affect the results at z ¼

450 cm:

Fig. 6 shows the local solute breakthroughs at

different times as a function of depth. The transport

problem was solved using a perturbation and a

deterministic approach. The variances of the soil

Fig. 6. Bromide concentration vs. depth at different times (deterministic vs. stochastic approaches).

Fig. 5. Finite element mesh: 120 six-noded triangular elements and

305 nodes.
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properties where set to zero when the deterministic

approach was adopted. The dashed lines represent the

deterministic results and the solid lines represent the

stochastic results. After 1 day, the maximum concen-

tration is 4.49 mol/m3 for the deterministic approach

against 3.71 mol/m3 for the stochastic approach. The

deterministic contaminant front achieves 90 cm and

the stochastic contaminant front traveled 140 cm.

After 5 days, the peak concentration is around

1.80 mol/m3 and the contaminant front achieves

180 cm when using the deterministic approach. For

the stochastic results, the peak is lower (1.34 mol/m3)

and the contaminated zone extends until 270 cm.

After 10, 15 and 20 days, the maximum concen-

trations for the deterministic results are, respectively,

1.37, 1.06 and 0.89 mol/m3. For the stochastic

approach, the maximum values after 10, 15 and 20

days are, respectively, 1.00, 0.59 and 0.56 mol/m3.

The deterministic contaminant plume extends until

300, 350 and 400 cm after 10, 15 and 20 days,

respectively. The stochastic contaminated zone goes

further reaching 350, 400 and 450 cm after 10, 15 and

20 days. After 25 days, the maximum concentration is

around 0.76 and 0.52 mol/m3 for the deterministic and

stochastic approaches, respectively. The deterministic

contaminant zone reaches 450 cm and the stochastic

one goes beyond this value. These results and

percentage differences are listed in Table 4. The

percentage differences show that the deterministic

approach predicts a higher maximum concentration

and a smaller contaminated zone than the results

obtained by using the stochastic approach.

The local solute breakthroughs at different depth as

a function of NAW are presented in Fig. 7. At 30 cm

depth, the maximum concentration obtained using the

stochastic approach is 7.34 mol/m3 compared to

4.5 mol/m3 measured experimentally. For 60, 90,

120 and 180 cm depth the maximum concentration

values for the stochastic and experimental results are,

respectively, 2.30 and 2.50; 2.15 and 1.71; 1.34 and

1.21; 0.59 and 0.49 mol/m3. At 300 cm depth, the

maximum concentrations for the stochastic and

experimental results are, respectively, 0.54 and

0.82 mol/m3. One important parameter to consider

when comparing both results is when the contaminant

reaches a specific depth and when it is leached from a

specific depth. At 30 cm depth, the arrival point is

0 cm of NAW and the contaminant is not present any

more after 12 cm of NAW. These values agree for

both stochastic and experimental results. At 60 cm

depth, the arrival and departure point for both

stochastic and experimental results are, respectively,

2.5 and 5 cm NAW; 22.0 and 22.5 cm NAW. At

90 cm depth, the contaminant arrives at 5 cm of NAW

and is not present anymore after 31 cm for the

stochastic results. The experimental results show that

the contaminant arrives at 90 cm depth at 8 cm of

NAW and is all leached at 31 cm of NAW. At 120 cm

depth, the arrival and departure point for both

stochastic and experimental results are, respectively,

8 and 11 cm NAW; 38.0 and 50 cm NAW. At 180 cm

depth, the arrival points are 19 and 24 cm of NAW

and the contaminant is not present anymore after 80

and 98 cm of NAW, for the stochastic and exper-

imental results, respectively.

Finally, at 300 cm depth, the contaminant arrives at

28 cm of NAW and is not present anymore after

100 cm for the stochastic results. The experimental

results show that the contaminant arrives at 300 cm

depth at 31 cm of NAW and is all leached at 100 cm

of NAW. These results and percentage differences are

summarized below (Table 5). The contaminant arrival

time is earlier for the stochastic results than for the

experimental results. This difference decreases with

depth. The time that the contaminant is completely

leached from a certain depth is basically the same for

both stochastic and experimental results at most

depths.

Fig. 8 shows the stochastic results represented by a

mean value plus or minus one standard deviation at

Table 4

Maximum concentration and length of contaminated zone for

deterministic and stochastic approaches (% difference ¼ (det 2

stoch)/stoch £ 100)

Time

(days)

Maximum concentration

(mol/m3)

Length of contaminated

zone (cm)

Det Stoch % Difference Det Stoch % Difference

1 4.49 3.71 21 90 140 236

5 1.80 1.34 34 180 270 233

10 1.37 1.00 37 300 350 214

15 1.06 0.59 79 350 400 212

20 0.89 0.56 59 400 450 211

25 0.76 0.52 46 450 .450 –
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different depths. The standard deviation is higher near

the maximum concentration values for each one of the

BTC. This means that there is a higher uncertainty in

these regions compared to the other regions. Since the

standard deviation is low, the level of uncertainty is

not high enough to make the results unreliable.

A mass balance was performed in order to

calculate the solute mass recovered per unit area as

a percentage of the total applied mass. Flux

concentration is defined as the mass of solute per

unit volume of fluid passing through a given cross-

section during a short time interval. Mass per unit area

Ms is determined by summing the product of the

observed solute flux concentration, Cf ; and the NAW:

Ms ¼
ð1

0
Cfðz0;NAWÞdNAW ð48Þ

Table 5

Maximum concentration and arrival and end point of contaminant at a specific depth for stochastic approach and experimental results (%

difference ¼ (stoch 2 experim)/experim £ 100)

Depth (cm) Maximum concentration (mol/m3) Arrival point (cm NAW) Ending point (cm NAW)

Stoch Exp % Difference Stoch Exp % Difference Stoch Exp % Difference

30 7.34 4.50 63 0 0 0 12.0 12.0 0

60 2.29 2.50 28.4 2.5 5.0 250 22.0 22.5 22.2

90 2.15 1.71 25.7 5.0 8.0 237.5 31.0 31.0 0

120 1.34 1.21 11.0 8.0 11.0 27.3 38.0 50.0 224.0

180 0.59 0.49 20.4 19.0 24.0 220.8 80.0 98.0 218.4

300 0.54 0.82 234.0 28.0 31.0 29.7 100.0 100.0 0

Fig. 7. Bromide concentration vs. NAW at different depths (stochastic vs. experimental results).
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The integral in the expression for the mass

represents the area under the solute BTC using

NAW as the abscissa. The area under the BTC at

each depth was estimated numerically using trape-

zoidal rule (43). Tracer mass applied per unit area

was 1.429 £ 1025 mol/cm2. Results are presented in

Table 6. The mass recovery increases with depth and

it varies from 76 up to 84%. The expression used for

the macrodispersion coefficient was derived for

steady state and since this problem is a transient

one, the results for earlier times might not be as

good as the results for later times. Since the

contaminant is moving vertically, it achieves the

first layers at early times and as it is shown in

Table 6, the mass recovery is the lowest at 30 cm.

Other factor that might have contributed to the low

Fig. 8. Mean bromide concentration (^1 standard deviation) vs. NAW at different depths.

Table 6

Estimated solute mass and mass recovery at each depth

Depth

(cm)

Solute mass ðMsÞ;

( £ 1025 mol/cm2)

(stochastic)

Mass recovery

(%) ðMs £ 100=1:429 £ 1025Þ

Solute mass ðMsexpÞ;

( £ 1025 mol/cm2)

(experimental)

Mass recovery

(%) ðMsexp £ 100=1:429 £ 1025Þ

30 1.086 75.997 1.670 116.80

60 1.162 81.316 1.606 112.40

90 1.204 84.255 1.035 72.43

120 1.184 82.855 1.467 102.70

180 1.167 81.665 1.644 115.10

300 1.202 84.115 1.193 83.48
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mass recovery at all depths is that many of the input

data values were not measured experimentally in the

field. Parameters A; s2
a and l1 were not measured

experimentally and values available from the

literature were assumed. This fact is also a source

of error and if the real properties of the soil were

used, the recovery mass should be approximately

100% at all depths.

The mass recovery was also evaluated for the

experimental data plotted in Fig. 9. The calculated

values were more than 100% of recovery for most

of depths. Three main reasons can lead to these

results. The first one is measurement errors made

during the collection of samples to determine the

concentration of bromide. The second reason could

be the presence of bromide in the soil right before

the experiment starts. This means that the soil was

not completely leached of bromide prior the

beginning of the experiment. The third reason is

related to the insufficient number of data points

necessary to realistically represent the breakthrough

at each depth.

5.4. Sensitivity analysis

A sensitivity analysis was performed in order to

improve the numerical results. The variances of

stochastic parameters and the vertical correlation

length values assumed different values and the

Fig. 9. Bromide concentration vs. NAW at different depths (stochastic vs. experimental results)—optimal BTC.

Table 7

Optimal input data

Parameter Value

Ks (m/day) 1.476

A (m21) 1

s2
a (m22) 0.2

F 0.3893

s2
f 0.14

l1 (cm) 20

aL3 (cm) 1

q (cm/day) Eqs. (43) and (44)

h (cm) Eq. (45)

Dt (day) 0.005–0.5

Total time of simulation (days) 250

Initial condition c (mol/m3) 0
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combination that produced the optimal results

(closer to experimental results and mass recovery

closer to 100%) were then selected as the optimal

input data set (Table 7). The optimal BTCs are

presented in Fig. 9. Comparing the optimal BTCs

to Fig. 7, the maximum concentration values are

closer to the experimental values, except for 60 and

180 cm depths. The arrival and ending points did

not change with the new set of input data except

for 300 cm depth where these points are now

coincident. A mass recovery analysis was pre-

formed under the new set of BTCs and the results

are presented in Table 8. The mass recovery

basically increases for all depths except for 60

and 90 cm. The mass recovery is around 95% at

180 and 300 cm.

6. Conclusions

A stochastic perturbation-based numerical meth-

odology for transient contaminant transport through

unsaturated soils was developed and implemented.

The methodology provides an efficient way to

incorporate the small-scale variability of the soil

properties into large-scale models. Standard deviation

of chemical concentration can be evaluated along with

the predictions for the mean tension nodal values. The

large-scale equation is similar in form to the

governing equations of traditional deterministic

models. Macrodispersion coefficients depend on the

statistical parameters of the intercept ðln KsÞ and slope

ðaÞ of the local log unsaturated hydraulic conductivity

vs. tension function. Site investigations, that are going

to implement this methodology, must provide

the mean and variance of a (A and s2
a), the mean

and variance of ln Ks (F and s2
f ) and the correlation

scales.

A one-dimensional transient contaminant transport

was solved using a deterministic and a stochastic

approach. This example was used to compare

deterministic and stochastic results and verify the

stochastic results against real data. The input data

necessary to perform the stochastic analysis was not

available and values from the literature were assumed.

A sensitivity analysis was made in order to get mean

BTCs closer to the experimental BTCs and mass

recovery closer to 100%. Although the lack of soil

property values is a limitation, the stochastic results

obtained numerically are in good agreement with

experimental results.

The numerical results presented in this study show

that the stochastic finite element approach is a very

attractive alternative to deterministic approaches in

terms of cost, efficiency and accuracy of the results.
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