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Abstract

The rainfall-runoff process is widely perceived as being non-linear; however, the degree of non-linearity might not be

significant in hydrologic time series. Evidence of non-linearity was reported in the past in the detrended time series of daily

precipitation, but found not to be significant in annual series. The objective of this study is to detect non-linearity in monthly

hydrologic time series by applying the Hinish tests for Gaussianity and linearity to selected stationary segments of four kinds of

such series, namely, streamflow, temperature, precipitation and Palmer’s drought severity index. The results indicate that all of

the stationary segments of standardized monthly temperature and precipitation series are found to be either Gaussian or linear.

Some of the standardized monthly streamflow and Palmer’s drought severity index are found to be non-linear.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Linear models and Gaussian distributed variables

are usually used in time series analysis mainly due to

the convenience in studying relevant statistical

properties. For models such as linear autoregressive

(AR) and autoregressive-moving average (ARMA)

models, procedures for model identification and

parameter estimation have been well

formalized based on Gaussianity and linearity (Box

and Jenkins, 1976; Priestley, 1981; Hamilton, 1994).

Both Gaussianity and linearity also play important

roles in a recently developed signal processing

technique—wavelet analysis (Chen and Rao, 2002;

Donoho and Johnstone, 1994; Hu, 1994; Ogden and

Richwine, 1996; Wang, 1995). However, non-linear

mechanisms are often encountered in physical

sciences. Non-Gaussian stationary time series may

be generated as a result from a specific non-linear

operation on a Gaussian input process. Therefore,

non-linear modeling approaches have gained increas-

ing attention from time series analysts (Subba Rao and

Gabr, 1984; Nikias and Petropulu, 1993; Priestley,

1988).

Applications of linear models to hydrologic time

series have been widely and thoroughly discussed in

the literature (Kashyap and Rao, 1976; Salas et al.,

1985). Meanwhile, investigations on non-linearity and

application of non-linear models in hydrology have

also received attention from researchers (Kember
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et al., 1993; Prasad, 1967; Rao and Yu, 1990; Rao

et al., 1971; Rogers, 1980, 1982; Rogers and Zia,

1982; Tong, 1990). Although the rainfall-runoff

process is widely perceived as being non-linear, the

signatures of non-linearity are not all recognizable in

hydrologic time series. By using Hinich’s (1982) test,

non-linearity is detected in daily hydrologic time

series by Rao and Yu (1990), but not in annual series.

Monthly hydrologic time series is seasonal with a

cycle of 12 months. A standardization procedure is

often applied to monthly hydrologic time series (Hipel

and McLeod, 1994). However, this standardization

procedure does not assure stationarity in the trans-

formed series (Salas, 1993). A segmentation algor-

ithm to identify and partition non-stationary time

series into stationary segments was applied by Chen

and Rao (2002) to the standardized monthly series,

and the results indicate that the majority of the

investigated monthly streamflow and Palmer’s

drought severity index (Palmer, 1965) series are

identified as non-stationary and the majority of the

investigated monthly precipitation series are

stationary.

The objective of this study is to further investigate

the signature of non-linearity in monthly hydrologic

time series. Hinich’s (1982) Gaussianity and linearity

tests are applied only to the stationary segments of

hydrologic time series discussed in Chen and Rao

(2002).

2. Tests for Gaussianity and linearity

The second-order cumulants (sample autocovar-

iances) and spectra do not contain enough infor-

mation to characterize non-linear or non-Gaussian

time series (Subba Rao and Indukumar, 1996).

Standard whiteness tests cannot detect non-linear

serial dependence in the residuals obtained from

fitting a linear model, because these tests mostly

rely on the second-order cumulants. Tests based on

the sample estimate of the third-order spectrum

(bispectrum) for Gaussianity and linearity were

proposed by Subba Rao and Gabr (1980). Hinich

(1982) modified Subba Rao and Gabr’s (1980)

approach by using the asymptotic properties of the

sample bispectrum. It is shown in the simulations

of Ashley et al. (1986) that Hinich’s (1982) test has

substantial power for many non-linear models. Both

their empirical and theoretical results also show

that the test is equally powerful in detecting non-

linearity either in source or in residual series. In

this section, the theoretical aspects of Hinich’s

(1982) tests are presented.

Suppose that a series {Yt; t ¼ 1; 2;…;N} is linear,

that is,

Yt ¼
X1
j¼0

bj1t2j; ð1Þ

where {bj} are weights, and {1j} are assumed to be

independently identically distributed. The bispectrum

of {Yt} at frequency pair ðf1; f2Þ is given by

S3Y ðf1; f2Þ ¼ m3Bðf1ÞBðf2ÞB
pðf1 þ f2Þ; ð2Þ

where m3 ¼ E½13
t �;

Bðf Þ ¼
X1
j¼0

bj expð22pifjÞ; i ¼
ffiffiffiffi
21

p
;

and Bpðf Þ is its complex conjugate. S3Y ðf1; f2Þ is a

spatially periodic function of which the principle

domain is the triangular set V ¼ {0 # f1 # 1
2
; f2 #

f1; 2f1 þ f2 # 1}: A normalized bispectrum is defined

as having the form of the squared bicoherence

c2ðf1; f2Þ ¼
lS3Y ðf1; f2Þl

2

SY ðf1ÞSY ðf2ÞSY ðf1 þ f2Þ
¼

m2
3

s6
1

; ð3Þ

where

SY ðf Þ ¼ s2
1lBðf Þl

2
;

is the spectrum of {Yt}: The squared bicoherence is

equivalent to the square of the skewness function of

{Yt}; which is constant if {Yt} is linear. If {Yt} is

Gaussian distributed, the squared bicoherence is zero.

An estimator of the bispectrum S3Y is defined as

follows. Let

Fðj; kÞ ¼

Y
j

N

� �
Y

k

N

� �
Yp j þ k

N

� �

N
; ð4Þ

where

Y
j

N

� �
¼

XN21

t¼0

Yt exp
22pitj

N

� �
: ð5Þ
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The principle domain of Fðj; kÞ is the triangular

grid set D ¼ {0 , j # ðN=2Þ; 0 , k # j; 2j þ k #

N}: A consistent estimator at the frequency pair

m 2
1

2
N

;
n 2

1

2
N

0
BB@

1
CCA;

is obtained by averaging Fðj; kÞ over M2 adjacent

frequency pairs in the domain as

Ŝ3Y ðm; nÞ ¼

XmM21

j¼ðm21ÞM

XnM21

k¼ðn21ÞM

Fðj; kÞ

M2
; ð6Þ

where M is an integer greater than ðNÞ0:5: The center

of the M2 frequency pairs is defined by the lattice

L ¼
ð2m 2 1ÞM

2
;
ð2n 2 1ÞM

2
:

�

m ¼ 1;…; n and m #
N

2M
2

n

2
þ

3

4

�
:

It follows from Eq. (3) that an estimator of the

bicoherency is defined as

ĉm;n ¼
Ŝ3Y ðm; nÞ

N

M2

� �1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŜY ðgmÞŜY ðgnÞŜY ðgmþnÞ

q ; ð7Þ

where

gj ¼
ð2j 2 1ÞM

2N
;

and ŜY is a smoothed estimator of the periodogram.

ĉm;n is complex Gaussian distributed with unit

variance. Under the null hypothesis of Gaussianity,

the bicoherence of {Yt} is zero:

H0G : c2ðf1; f2Þ ¼ 0:

A test statistic is defined as

Tc ¼ 2
X
m

X
n

lĉm;nl
2
; ð8Þ

is asymptotically chi-square distributed with 2P

degrees of freedom, where P denotes the number of

frequency pairs

m 2
1

2
N

;
n 2

1

2
N

0
BB@

1
CCA;

with the entire lattice square within the principle

domain. Consequently, the decision rule is

Tc , x2
að2PÞ; accept H0G

Tc $ x2
að2PÞ; do not accept H0G

8<
: :

Under the null hypothesis of linearity, the squared

bicoherence of {Yt} is constant. If {Yt} is Gaussian

(i.e. the normalized bispectrum is zero), it cannot be

concluded whether or not the process is linear based

on the bispectrum alone. Therefore, the hypothesis of

linearity is tested only if {Yt} is deemed to be non-

Gaussian. Assuming {Yt} is non-Gaussian, the null

hypothesis of linearity is

H0L : c2ðf1; f2Þ

is constant. Under H0L; 2lĉm;nl
2

are asymptotically

non-central chi-square distributed ðx2ð2;lm;nÞÞ with

two degrees of freedom and the noncentrality

parameter has the form

lm;n ¼
2M2

N

lS3Y ðf1; f2Þl
2

SY ðf1ÞSY ðf2ÞSY ðf1 þ f2Þ
: ð9Þ

A consistent estimator of lm;n is

l̂0 ¼
Tc

P
2 2: ð10Þ

A robust test statistic based on the sample interquartile

range, 13 2 11 (where 13 is third quartile and 11 is the

first quartile), is asymptotically Gaussian distributed

as Nðj3 2 j1;s
2
0Þ; where

s2
0 ¼

ð3f22ðj1Þ2 2f21ðj1Þf
21ðj3Þ þ 3f22ðj3ÞÞ

16P
;

j1 and j3 are the true quartiles, and f is the density

function of x2ð2;lm;nÞ: The decision rule for this

case is
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The threshold is chosen corresponding to a given level

of significance a:

Two stages of hypothesis testing are performed for

testing Gaussianity and linearity. First, the hypothesis

of Gaussianity (H0G) is tested. If H0G holds, the

assumption of Gaussianity is accepted. Since the

bispectrum is zero when H0G holds, linearity cannot

be detected from the bispectrum. Next, if H0G fails,

the hypothesis of linearity (H0L) is tested. If H0L

holds, the assumption of linearity is accepted. The

averaging parameter M in Eq. (6) is specified by

rounding off ðNÞ0:51: Both hypotheses are tested at the

significance level a ¼ 0:05:

3. Data used in this study

Four types of hydrologic and climate related

monthly time series recorded in the midwestern

United States are analyzed in this study, namely,

streamflow, temperature, precipitation and Palmer’s

drought severity index (PDSI) series. PDSI has

been the most commonly used drought indicator in

the United States, which is a dimensionless index

derived from measurements of precipitation, air

temperature, and local soil moisture. Values of

PDSI range from 24.0 (extreme drought) to 4.0

(extreme wet conditions). Details of the statistical

characteristics of these series can be found in

Bhattacharya (1996a,b,c). A standardization pro-

cedure is used to transform these monthly hydro-

logic time series to remove the seasonality in the

mean and variance. The possible trend of each

standardized series is removed by differencing.

Both the standardized series and the first-order

differences of the standardized series are tested for

linearity. The standardization procedure adopted is

given below:

1. The average value of the hydrologic variable Yij

is computed for each particular month as

�Yi ¼

XT
j¼1

Yij

T
for i ¼ 1; 2;…; 12; ð11Þ

where i represents the month, j represents the

year and T is the number of years in total.

2. The standard deviation of Yij is computed for

each particular month by using

ŝi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT
j¼1

ðYij 2 �YiÞ
2

T 21

vuuuut
for i¼ 1;2;…;12: ð12Þ

3. The standardized variable of Yij is defined as

Xt ¼
Yij 2 �Yi

ŝi

; ð13Þ

where t ¼ 12ðj21Þþ i:

The hydrologic and climate related series analyzed

in this study are summarized as follows:

The monthly streamflow series at five stations

(EarthInfo, 1993) are analyzed. The monthly stream-

flow is computed by summing each average daily flow

and dividing by the number of days corresponding to

that particular month. The statistical characteristics of

each monthly streamflow series are summarized in

Table 1. The skewness coefficient and the autocorre-

lation coefficient for the first lag (ACF(1)) are

computed from the standardized series. It is shown

that most of the standardized monthly streamflow

series are highly positively skewed, and the values of

the ACF(1) are significant.

The monthly temperature series at five

stations (EarthInfo, 1993) are analyzed. The monthly

N12ða=2Þð0; 1Þ ,
ð13 2 11Þ2 ðj3 2 j1Þ

s0

, Na=2ð0; 1Þ; accept H0L;

ð13 2 11Þ2 ðj3 2 j1Þ

s0

# N12ða=2Þð0; 1Þ or
ð13 2 11Þ2 ðj3 2 j1Þ

s0

$ Na=2ð0; 1Þ; do not accept H0L:

8>>><
>>>:
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temperature is computed as the sum of each maximum

daily temperature divided by the number of days

corresponding to that particular month. It is shown in

Table 1 that most of the skewness coefficients of the

standardized monthly temperature series are close to

zero, and that the values of the ACF(1) are significant

but less than those of the monthly streamflow series.

The monthly precipitation series at five stations

(EarthInfo, 1993) are analyzed. The total monthly

precipitation is computed by summing each daily

precipitation in that particular month. Most of the

standardized monthly precipitation series are highly

positively skewed, and the values of the ACF(1) are

insignificant (Table 1).

The monthly PDSI series analyzed in this study

comprise six series from stations in Indiana, Illinois,

and Ohio. These PDSI data were originally obtained

from the United States National Climatic Data Center.

It is shown in Table 1 that most of the values of the

ACF(1) are highly significant.

4. Segmentation of stationary segments

Both the standardized series and the first-order

differences of the standardized series were tested for

non-stationarity and partitioned into stationary seg-

ments by Chen and Rao (2002). The stationary

segments were obtained using a segmentation algor-

ithm with three statistical tests (Chen (1999); de Souza

and Thomson (1982); Tsay (1988)). The segmentation

algorithm consists of three stages, the procedures for

which can be found in Chen and Rao (2002). The

preliminary ending segment boundary (te in Fig. 1) is

detected in the first stage, the optimal ending boundary

is determined in the second stage (teo in Fig. 1), and the

optimal starting boundary is determined in the third

stage (tso in Fig. 1).

Table 1

Summary of the hydrologic time series used in this study

Streamflow at Station Period of record Mean (cfs) Standard deviation (cfs) Skewness coefficient ACF(1)

Minnesota River at Clinton, IA 1874–1993 47 936 30 354 1.213 0.645

White River near Alpine, IN 1928–1992 560 568 2.176 0.389

Kalamazoo River at Fennville, MI 1929–1993 1472 657 0.920 0.597

Missouri River at Hermann, MO 1929–1993 77 177 52 031 1.531 0.628

Wisconsin River at Merrill, WI 1903–1991 2673 1513 0.963 0.614

Temperature at Station Period of record Mean (8F) Standard deviation (8F) Skewness coefficient ACF(1)

Urbana, IL 1902–1992 61 19 20.050 0.190

Aledo, IL 1901–1989 61 20 0.054 0.211

Ft. Wayne, IN 1948–1992 60 19 0.071 0.239

Evansville, IN 1950–1992 64 19 0.177 0.226

Minneapolis, MN 1891–1992 54 22 0.049 0.228

Precipitation at Station Period of record Mean (in.) Standard deviation (in.) Skewness coefficient ACF(1)

Urbana, IL 1903–1992 3.12 1.96 1.009 0.037

Aledo, IL 1901–1989 2.87 2.10 0.945 0.065

Ft. Wayne, IN 1948–1992 3.02 1.65 1.010 0.063

Indianapolis, IN 1948–1992 3.29 1.87 1.004 0.043

Minneapolis, MN 1891–1992 2.28 1.90 1.197 0.056

PDSI at Station Period of record Mean Standard deviation Skewness coefficient ACF(1)

Region 2, IL 1895–1993 0.06 2.12 20.544 0.895

Region 8, IL 1895–1993 20.16 2.15 20.123 0.896

Region 1, IN 1895–1993 0.07 2.34 20.307 0.840

Region 7, IN 1895–1993 20.02 2.26 20.207 0.890

Region 2, OH 1895–1993 20.08 2.38 20.454 0.904

Region 9, OH 1895–1993 20.08 2.12 20.144 0.871
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In the first stage of the segmentation algorithm, a

reference window (Wr in Fig. 1) is fixed at a starting

point (ts in Fig. 1) of the series. A test window (Wt in

Fig. 1) next to the reference window slides along the

series until the preliminary ending boundary te is

detected at the observation where the test statistic

computed from the two windows fails the null

hypothesis of ‘no change’. In the second stage, the

optimal ending boundary teo is determined at the

observation corresponding to the local critical value

of the test statistic within the stopped test window in

the first stage. In the third stage, the optimal starting

boundary tso is determined at the observation

corresponding to the local critical value of the test

statistic within the reference window used in the first

stage. The segmentation algorithm has been used to

partition the time series of temperature gradient

measured in lakes into stationary segments (Chen

et al., 2002). By fitting the spectrum of a stationary

temperature gradient segment to the theoretical one,

the turbulence kinetic energy dissipation rate can be

estimated (Chen et al., 2001).

The tests of de Souza and Thomson (1982) and

Tsay (1988) are based on AR models, which require

specifying the AR order p: The test of Chen (1999) is

based on wavelet analysis. According to Chen (1999),

higher AR orders used in the tests of de Souza and

Thomson (1982) and Tsay (1988) lead to higher rates

of false identification; the wavelet-based test of Chen

(1999) renders comparable detection results to these

AR tests with the AR order p appropriately specified.

The numbers of stationary segments partitioned

from differenced standardized and standardized hydro-

logic monthly series are given in Tables 2 and 3,

respectively. Each of the tests (Chen (1999); de Souza

and Thomson (1982); Tsay (1988)) is applied to both

differenced standardized and standardized monthly

series. The stationary segments partitioned from a

monthly temperature series are given in Fig. 2. The

stationary segments obtained corresponding to the

three statistical tests (Chen (1999); de Souza and

Thomson (1982); Tsay (1988)) are denoted as

segmentations 1, 2 and 3, respectively, in Tables 2

and 3. The denominator in each cell indicates the

number of stationary segments partitioned from each

series. The segmentation results indicate that the

majority of monthly streamflow and PDSI series are

identified as being non-stationary, while the majority

of monthly precipitation series are found to be

stationary (Tables 2 and 3). According to Chen and

Rao (2002), the change points in these hydrologic

series, either differenced or not, are distributed in a

similar pattern commonly observed during two

periods, one between 1960 and 1970, and the other

between 1930 and 1940. This suggests the possibility

that a common non-stationary mechanism (e.g.

periodicity) has an influence on these hydrologic series

(Chen and Rao, 1998). Change points in 1960s and

1970s have been found in hydrologic related data by

Bardossy and Caspary (1990), Hurrell (1995), Per-

reault et al. (1999) and Rodionov and Krovin (1992).

Change points in the late 1930s have been reported by

Quinn (1981).

5. Results of testing for Gaussianity and linearity

using the Hinich tests

Since the standardized hydrologic time series are

not always stationary, it does not make sense in testing

for linearity on the entire length of each series. In the

following analyses, the stationary segments are

obtained from Chen and Rao (2002) using the

segmentation algorithm with the above-mentioned

three statistical tests denoted as segmentations 1, 2

and 3. The results of Gaussianity and linearity tests on

stationary segments partitioned from differenced

standardized and standardized monthly series are

shown in Tables 2 and 3, respectively. For each series,

Fig. 1. A stationary segment between optimized boundaries tso and

teo determined by the segmentation algorithm.
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the results of testing for Gaussianity and linearity,

using the Hinich (1982) tests, corresponding to a

specific segmentation results, are given in three cells:

Gaussian (G), linear (L) or non-linear (NL).

The denominator in each cell indicates the number

of stationary segments partitioned from each series,

and the numerator represents the number of segments

is identified as being Gaussian (G), linear (L) or non-

Table 2

Ratios of Gaussian, linear and non-linear segments partitioned from differenced standardized monthly series (G: Gaussian; L: Linear; NL: Non-

Linear)

Streamflow at Station Segmentation 1 Segmentation 2 Segmentation 3

G L NL G L NL G L NL

Minnesota River at Clinton, IA 1/3 2/3 1/3 2/3 3/4 1/4

White River near Alpine, IN 1/1 1/1 1/1

Kalamazoo River at Fennville, MI 1/1 2/2 2/2

Missouri River at Hermann, MO 2/2 2/2 2/2

Wisconsin River at Merrill, WI 1/1 0/1 1/3 2/3 1/2 1/2

Temperature at Station Segmentation 1 Segmentation 2 Segmentation 3

G L NL G L NL G L NL

Urbana, IL 2/2 2/2 1/3 2/3

Aledo, IL 1/1 2/2 1/1

Ft. Wayne, IN 1/1 2/2 1/1

Evansville, IN 1/1 2/2 1/1

Minneapolis, MN 2/2 1/1 2/2

Precipitation at Station Segmentation 1 Segmentation 2 Segmentation 3

G L NL G L NL G L NL

Urbana, IL 1/1 1/1 1/1

Aledo, IL 1/1 1/1 1/1

Ft. Wayne, IN 1/1 1/1 2/2

Indianapolis, IN 1/2 1/2 1/1 1/1

Minneapolis, MN 1/1 2/3 1/3 2/4 2/4

PDSI at Station Segmentation 1 Segmentation 2 Segmentation 3

G L NL G L NL G L NL

Region 2, IL 1/1 2/3 1/3 1/2 1/2

Region 8, IL 1/1 2/4 2/4 3/4 1/4

Region 1, IN 1/1 3/4 1/4 2/3 1/3

Region 7, IN 1/1 3/3 1/1

Region 2, OH 1/1 3/4 1/4 2/2

Region 9, OH 1/1 2/2 1/1

Summary

Series Type Total no. Gaussian Linear Non-linear

Streamflow 30 9 20 1

Temperature 24 22 2

Precipitation 22 18 4

PDSI 39 30 9
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linear (NL). For example, the streamflow series of the

Minnesota River at Clinton, IA (Table 2) is parti-

tioned into three stationary segments, including one

segment detected as being Gaussian (G), two as linear

(L), and none as non-linear (NL). The results of

testing the four types of hydrologic series (stream-

flow, temperature, precipitation and PDSI), using the

Hinich (1982) tests, are discussed below.

According to the results of testing on the

segments of the streamflow series, all but one of

Table 3

Ratios of Gaussian, linear and non-linear segments partitioned from standardized monthly series (G: Gaussian; L: Linear; NL: Non-Linear)

Streamflow at Station Segmentation 1 Segmentation 2 Segmentation 3

G L NL G L NL G L NL

Minnesota River at Clinton, IA 2/3 1/3 3/4 1/4 1/3 2/3

White River near Alpine, IN 1/1 1/1 2/2

Kalamazoo River at Fennville, MI 1/1 1/2 1/2 2/2

Missouri River at Hermann, MO 1/2 1/2 1/3 2/3 1/2 1/2

Wisconsin River at Merrill, WI 1/1 3/3 2/3 1/3

Temperature at station Segmentation 1 Segmentation 2 Segmentation 3

G L NL G L NL G L NL

Urbana, IL 1/1 2/2 2/2

Aledo, IL 1/1 2/2 1/1

Ft. Wayne, IN 1/1 1/1 1/1

Evansville, IN 1/1 2/2 1/1

Minneapolis, MN 1/1 1/1 2/2

Precipitation at station Segmentation 1 Segmentation 2 Segmentation 3

G L NL G L NL G L NL

Urbana, IL 1/1 1/1 1/1

Aledo, IL 1/1 1/1 1/1

Ft. Wayne, IN 1/1 1/1 1/1

Indianapolis, IN 2/2 1/1 1/1

Minneapolis, MN 1/1 2/2 1/3 2/3

PDSI at station Segmentation 1 Segmentation 2 Segmentation 3

G L NL G L NL G L NL

Region 2, IL 1/1 1/2 1/2 2/3 1/3

Region 8, IL 1/2 1/2 1/3 1/3 1/3 1/4 2/4 1/4

Region 1, IN 1/1 1/4 3/4 1/4 3/4

Region 7, IN 1/1 2/5 3/5 1/4 3/4

Region 2, OH 2/2 1/3 2/3 1/4 2/4 1/4

Region 9, OH 1/1 2/4 2/4 2/3 1/3

Summary

Series type Total no. Gaussian Linear Non-Linear

Streamflow 33 2 22 9

Temperature 20 20

Precipitation 19 15 4

PDSI 51 20 27 4
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the 30 segments of the differenced standardized

series are identified as being either Gaussian or

linear, the one segment being non-linear (Table 2);

two segments of the 33 standardized series are

found to be Gaussian, 22 segments are linear and 9

are non-linear (Table 3).

For the temperature series, 22 of the 24

segments of the differenced standardized series

are Gaussian, two segments being linear (Table 2);

all of the 20 segments of the standardized series

are found to be Gaussian (Table 3). No segment is

non-linear.

Eighteen of the 22 segments of the differenced

standardized precipitation series are Gaussian, two

being linear (Table 2); of the 19 standardized

segments (Table 3), 15 are Gaussian and four are

linear. No segment is non-linear.

For the PDSI series, all of the 39 segments of the

differenced standardized series are either Gaussian or

linear (Table 2); of the 51 segments of the

standardized series, 47 are either Gaussian or linear,

with four segments being detected as non-linear

(Table 3).

With one exception, the segments of differenced

standardized monthly series (Table 2) are found to

be either Gaussian or linear, with one segment of

streamflow series partitioned by the algorithm using

test 3 being identified as non-linear (Table 2).

The results of testing the standardized monthly series

(without differencing;Table 3) indicate that nearly 90%

of the segments are either Gaussian or linear, except for

13 segments from six streamflow and PDSI series being

identified as non-linear (Table 3). It is also shown in the

results that all of the segments of monthly temperature

andprecipitationseries, either differencedstandardized

or standardized (without differencing), are identified as

being either Gaussian or linear, i.e. non-linearity is not

detected in the segments of monthly temperature and

Fig. 2. Segmentation results from monthly temperature of Urbana, IL. Test used in the segmentation algorithm: ( p ) test 1; (S) test 2; (K) test 3;

(–-) segments from standardized series; (—) segments from differenced standardized series.
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precipitation series, either differenced standardized or

standardized.

6. Conclusions

The rainfall-runoff process is widely perceived

as being non-linear; however, the degree of non-

linearity might not be significant enough for

detection in hydrologic time series. Evidence of

non-linearity in the detrended daily precipitation

series was reported by Rao and Yu (1990), but

found not to be significant in the annual series.

Since the monthly series have the time scale in

between, the question of linearity naturally came to

attention. For monthly hydrologic time series, a

standardization procedure can be used to remove

the monthly cycle (Hipel and McLeod, 1994). Chen

and Rao (2002) tested the standardized monthly

series for stationarity, and the results indicate that

the majority of the investigated monthly streamflow

and PDSI series are identified as non-stationary and

the majority of the investigated monthly precipi-

tation series are stationary. Given that the standar-

dized monthly series is not stationary, Hinich’s

(1982) Gaussianity and linearity tests cannot be

directly applied to.

In this study, Hinich’s (1982) tests are performed

on the stationary segments of monthly hydrologic

time series partitioned by using a segmentation

algorithm (Chen and Rao, 2002). In general, the

results indicate that stationary segments of standar-

dized monthly temperature and precipitation series

are Gaussian or linear, while the conventional

assumption of linear models, i.e. that of Gaussian-

distributed variables, may not be valid for all

standardized monthly streamflow and PDSI series.
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