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S U M M A R Y
Geological causes of crustal anisotropy include regional fractures and cracks, isotropic het-
erogeneity or layering and material composition and textural properties. In addition, shear or
metamorphic foliations in fault zones or structural terranes can serve as proxies for intracrustal
deformation in a manner analogous to the lattice-preferred orientation of olivine produced by
mantle shear. The primary factor in the production of crustal anisotropy is the relative angle
between a seismic wave and the (dipping) symmetry axes of crustal material as either change
along the propagation ray path. Complex and heterogeneous, crustal material is not necessarily
oriented with vertical/horizontal symmetry axes, but is more normally tilted in accordance
with structure. Calculation of the anisotropic response to material tilt for elastic seismic wave
propagation requires rotation of the stiffness tensors describing the crustal material. We exam-
ine the alteration of anisotropic stiffness tensors and provide rotation directional cosines based
on geological measurements. Material tilt produces strong effects in examples of 2-D and
3-D finite-difference synthetic seismograms that might otherwise be attributed to velocities or
structure in other regions of the crust or mantle.

Key words: elastic-wave theory, finite-difference methods, seismic anisotropy, seismic
modelling, seismic wave propagation.

I N T RO D U C T I O N : WAV E P RO PA G AT I O N I N H E T E RO G E N E O U S A N I S O T RO P I C
C RU S TA L M E D I A

While recent studies have examined the effect of lattice-preferred orientation of olivine-rich rocks in the mantle (e.g. Savage et al. 1990;
Silver & Chan 1991; Russo & Silver 1994; Savage 1999), fewer studies have investigated the role of inherent material anisotropy on seismic
propagation within the crystalline crust. These latter studies are made more complex because of the presence in the crust of geological
heterogeneity and changing ray path orientations caused by strong seismic velocity gradients. Whether the raypaths or structure change
orientation in these situations, the waveform effects of particle motion, traveltime delays and shear wave splitting are a result of the same
cause: the relative angle of the incoming propagating wave with respect to the orientation of the material anisotropy. Christoffel velocity
equations for anisotropic media (e.g. Hearmon 1961) indicate that large variation in P- and S-wave velocities can occur as functions of this
relative angle (Fig. 1). As a result, calculations of anisotropic effects are not simple in areas of complex crystalline crust and in some cases may
only be solved numerically. Calculation of synthetic seismograms using finite-difference methods allows for full 3-D variability in severity
and orientation (tilt) of anisotropic material symmetries plus in composition, large-scale features and internal structures.

Material anisotropy may be produced in crystalline crustal rocks by composition, layering or deformational/metamorphic textures such
as schistocity or gneissic fabrics. These textures may be localized within shear zones and deformational fronts or may be penetrative to
form extensive subsurface regions of foliated rock such as the Haast schist terrane in New Zealand (Okaya et al. 1995). For these schists,
their foliation represents a planar arrangement of (micaceous) minerals. An associated lineation if present is the preferred linear alignment
of the minerals or striations that often indicates the dominant tectonic transport or shear direction. Brocher & Christensen (1990) observed
different refraction Pg velocities in orthogonal directions within the foliated Chugach schist terrane in southern Alaska. Tectonically aligned
orientation of similar or disparate rocks produce bulk anisotropy in the extensional ductile lower crust of the Basin and Range Province,
which is observed as differing Moho reflection two-way traveltimes in perpendicular profiles (Carbonell & Smithson 1991) and in Ps

converted phases (McNamara & Owens 1993). Pronounced shear wave splitting occurs in vertical seismic profile data collected at the 9 km
KTB drillhole in the central European Variscan belt as a result of the presence of strongly foliated amphibolites and gneisses (Rabbel &
Luschen 1996). Petrophysical measurements indicate that up to 15–20 per cent velocity anisotropy can be produced by these metamorphic and
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Figure 1. Seismic waves propagate in different directions through an anisotropic material. (a) Block of foliated rock with no tilt; material a–b–c axes are
coincident with geographical x–y–z axes. In this orientation the fast P velocity is aligned with lineation (a-axis), whereas the slowest P velocity is normal to
foliation (c-axis). Shear particle motion is fastest within the a–b plane and slower in all other directions. For transverse isotropy (hexagonal symmetry) the a
and b directions have the same behaviour. (b) Block with foliation dips at 60◦ and strikes 135◦ counter-clockwise from the x-axis. Note the tilted a–b–c axes
with respect to x–y–z. The bold dashed lines indicate horizontal planes through which propagating waves are shown in Fig. 6 while thin dashed lines indicate
vertical diagonal slices shown in Fig. 7; a star denotes the source point used in both figures. (c) P and SV/SH velocities as a function of the propagation angle as
measured from the normal to foliation (c-axis in a hexagonal symmetry). These velocity curves were calculated from hexagonal Christoffel equations (Hearmon
1961) using Haast schist velocities. Large angular variations in all three velocities indicate possible complexities in wave propagation behaviour when the
wave-material axes angle varies.

tectonic foliations (Fountain & Christensen 1989; Godfrey et al. 2000). Jones et al. (1996) and Godfrey et al. (2002) examine the effects of
propagation traveltime delays owing to crustal anisotropy when using isotropic-velocity algorithms for the analyses of active-source seismic
data.

A full solution of anisotropic wave propagation will account for heterogeneities in material properties (e.g. velocities and densities),
the degree of anisotropy (isotropy versus differing symmetries of anisotropy), and the orientation of the anisotropy (not necessarily aligned
to horizontal/vertical or to layer boundaries). Prior studies of anisotropic wave propagation account for heterogeneity in some but not all of
these material traits. Studies exist that use transversely isotropic material that have boundary dip but with untilted internal fabric (Tsingas
et al. 1990; Faria & Stoffa 1994a; Savage 1998) or have a uniformly tilted internal fabric, but horizontal to constant dipping boundaries
(Alkhalifah 1995; Levin & Park 1997, who review several papers in which tilted anisotropic material may affect the observed propagation
effects; Frederiksen & Bostock 2000). Propagation in untilted material is described by analytical solutions (Mensch & Rasolofosaon 1997)
and by numerical solutions (Keith & Crampin 1977; Payton 1983; Carcione 1990; Faria & Stoffa 1994a; Girardin & Farra 1998; Hung &
Forsyth 1998). Traveltime (non-waveform) solutions are provided by Faria & Stoffa (1994b) and Grechka & McMechan (1997), who allow
for dipping layers but untilted material; similarly, ray-tracing methods for seismograms are described by Daley & Hron (1979), Cerveny
& Firbas (1984), Gajewski & Pscencik (1987) and Grechka & McMechan (1996). A spectral method for general material anisotropy is
described by Tessmer (1995). Finite-difference methods that can allow for the greatest amount of heterogeneities are used for the 2-D
transverse isotropy case by Tsingas et al. (1990), Faria & Stoffa (1994a) and by Juhlin (1995) who provides a description of arbitrary
tilt in 2-D for P–SV seismograms. Igel et al. (1993) discuss issues associated with 3-D finite-difference implementation. Zhu & Dorman
(2000) use finite elements to compute in 2-D arbitrary tilt for three-component seismograms. In this study we examine material anisotropy
for arbitrarily oriented crustal material in order to compute in 3-D three-component anisotropic elastic wavefield seismograms using finite
differences.

E L A S T I C WAV E P RO PA G AT I O N I N T I LT E D A N I S O T RO P I C M E D I A

The full anisotropic elastic wave equation can be expressed as ρd2ui/dt2 = cijkld2uk/dxldxj, where ρ denotes density, u denotes displacement
(as a function of position x, y, z and time t) and cijkl is the elastic stiffness tensor. Symmetries that are available to define the stiffness tensors
for crystalline crustal rocks are summarized in Fig. 2. The higher ‘ordered’ orthorhombic, hexagonal, cubic and isotropic symmetries have
the same stiffness pattern but differ in the number of interrelated terms. To propagate waves within an anisotropic material possessing internal
tilt, the stiffness tensor within the elastic wave equation needs to be oriented via tensor rotation (Sands 1982; Nye 1985). The anisotropic form
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Figure 2. Patterns of stiffness tensors for crystal and material symmetries (adapted from Nye 1985). The tensor patterns are in reduced matrix notation and
are symmetric about the diagonal, hence only the upper right-hand side of each matrix is shown for clarity. Triclinic symmetry requires all 21 coefficients,
whereas hexagonal symmetry requires five independent terms to define its nine non-zero elements.

of stress–strain elasticity is thus σ = {McMT}ε and when written in reduced matrix notation is
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where σ and τ are normal and shear stresses, ε is strain, M and MT are the tensor rotation operator and its transpose, and the reduced subscripts
are 1 = xx , 2 = yy, 3 = zz, 4 = yz, 5 = xz and 6 = xy (Auld 1973; Nye 1985). To allow for heterogeneous geological dips and internal
foliation fabrics, each internal grid point within the finite-difference implementation requires its own stiffness tensor, which may be rotated
by its own degree of tilt. Fortunately, these tensor manipulations are simplified in reduced matrix notation to a matrix rotation as discussed
below.

As a matter of convention the symmetry axes of a foliated material is defined here as follows. The a–b axes are in the foliation plane so
that a is associated with exhibited lineation; as a result the c-axis is normal to foliation (Fig. 1). In terms of seismic velocities the fastest V P

direction is thus parallel to the a-axis and the slowest V P is parallel to the c-axis. When not tilted, by convention the symmetry axes a, b and
c are aligned with the geographical x, y and z axes, respectively (Fig. 1a). In this definition untilted foliation planes lie horizontal and the a–b
axes are interchangeable for hexagonal symmetry. When tilted, the a–b–c axes separate from the x–y–z axes by an amount specified by the
directional cosines.

Stiffness tensors of crustal crystalline rocks

Strongly foliated rocks such as gneisses and schists are orthorhombic or lower in symmetry. However, compilations of laboratory measurements
of many laminated or foliated rocks by Christensen (1965, 1966), Fountain & Christensen (1989) and Godfrey et al. (2000) reveal that orthogonal
measurements within the planes of foliation are similar (less than a few per cent) particularly when compared with the measurement normal to
the planes (several to >10 per cent). In these cases the approximation of hexagonal symmetry is valid. Additional anisotropic materials such
as shales, bedded strata or regularly cracked media are often strongly laminated or foliated; most seismic studies also define these materials
as hexagonal (Thomsen 1986; Cristescu 1989; Helbig 1993). The stiffness elements of this symmetry are calculated from five independent
P- and S-wave velocities as measured in the laboratory or in the field (Christensen & Crosson 1968; Cristescu 1989). Measurements diagonal
(45◦) to the principal symmetry axes are required for any symmetry that has more than three independent elements (Nye 1985; Thomsen
1986); the single diagonal measurement for hexagonal symmetry profoundly influences shear wave splitting behaviour (Okaya & Christensen
2002). These diagonal measurements are relatively difficult to perform and have seldom been made, making a full definition of tetragonal or
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Figure 3. Velocity–pressure curves for the Haast schist, New Zealand. Petrophysical measurements were conducted along principal axes (e.g. Fig. 1a) and
one diagonal direction at confining pressures of up to 1000 MPa. Degrees indicate orientation of wave relative to c-symmetry axis. VP90◦‖ and VP90◦T are both
in the plane of foliation and either parallel or perpendicular to lineation, respectively, and are nearly identical. V SH is propagation and particle motion within
the plane of foliation. VSV 0◦ propagates parallel to the symmetry axis with particle motion in the plane of foliation; VSV 90◦ is within the plane of foliation
with particle motion parallel to the symmetry axis. These V SV are similar. A hexagonal symmetry can be used to approximate this orthorhombic schist (stars).
Velocities at 600 MPa are used in the calculations of synthetic seismograms shown in subsequent figures.
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Figure 4. Bond transformation matrix in reduced matrix notation (Auld 1973). This operator is equivalent to a tensor rotation. Element αi j is the directional
cosine between a tilted symmetry axis i = a, b, c and a geographical axis j = x , y, z.

orthorhombic anisotropic behaviour rare (e.g. Christensen & Ramananantoandro 1971). The lower-ordered symmetries (triclinic, monoclinic
and trigonal) are even more rarely used as materials within studies of crustal wave propagation owing to the number of measurements required
(Fig. 2).

We illustrate an example of a stiffness tensor for crystalline crust that we will use in subsequent synthetic modelling. Davey et al. (1997)
identify a major schist terrane in the central South Island, New Zealand that is subhorizontal underneath a significant portion of the island but
is tectonically upturned to a near-vertical orientation at the adjacent Pacific/Indo-Australian plate boundary. Velocity–pressure curves were
obtained from samples of this ‘Haast’ schist for P- and S-wave propagation along the principal symmetry axes (Okaya et al. 1995; Godfrey
et al. 2000). These curves indicate up to 17 per cent P-wave and 18 per cent S-wave anisotropy (Fig. 3). Very similar are V P along the a and
b axes (VP90◦‖ and VP90◦T, respectively) and V SV normal and in the plane of foliation (VSV 0◦ and VSV 90◦ , respectively). Thus, we may define
a hexagonal stiffness tensor for this schist. At 600 MPa, which approximates mid-crustal levels, the Haast schist velocities are: V Pab = 6501
m s−1, V Pc = 5750 m s−1, VP45◦ = 5881ms−1, V Sab = 3931 m s−1 (propagation and particle motion in the foliation planes), V Sc = 3332 m
s−1 (propagation or particle motion normal to foliation and thus parallel to the c-axis), and density = 2718 kg m−3. The unrotated stiffness
coefficients (in GPa) are thus c11 = c22 = 114.87, c33 = 89.86, c44 = c55 = 30.18, c66 = 42.00, c12 = 30.87 and c13 = c23 = 23.86. Velocity
variation owing to the incoming propagation direction can be calculated using these stiffness values in the Christoffel equations (Hearmon
1961). Fig. 1(c) reveals that V P, V SV and V SH are all relatively slower when nearly normal to foliation (c-direction). V P and V SH are fast in the
foliation planes while V SV reaches a maximum at approximately 40◦. V P and V SH –V SV splitting behaviour varies widely in directions between
the c- and a–b axes, indicating possible complexities when seismic waves propagate through heterogeneous structure.

Modification of the stiffness tensor by tilt

The effect of tilt on a material can be thought of as decreasing the symmetrical ‘order’ of the material. This can be illustrated by examining
a material of hexagonal symmetry prior to and after stiffness rotation. This rotation is a matrix operation in reduced matrix notation using
the Bond transformation operator (Fig. 4), which uses directional cosines to relate the desired orientation to the unrotated coordinate frame
(Auld 1973; Jaeger & Cook 1976). In Fig. 5 an unrotated hexagonal symmetry is displayed where the magnitudes of the stiffness coefficients
are represented only as zero or filled values. The matrix is symmetrical about the diagonal so that for simplicity only the upper right-hand
face is displayed and discussed here. For this symmetry there are nine filled elements of which four are related to the other five (Fig. 2). A
rotation about the x-axis leaves only the coefficient c11 unchanged. The other eight original coefficients are modified and those that had been
equal are not necessarily equal after rotation. In addition, four new coefficients appear, which were originally zero-valued (Fig. 5). A similar
modification occurs if the original hexagonal symmetry is rotated about the y- or z-axis. Juhlin (1995) uses the x–z components of a rotation
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Figure 5. Effect of rotation on hexagonal symmetry. The pre-rotation pattern of stiffness elements are shown above the modification to the elements upon
rotation about each principal axis. The reduced notation matrices are symmetric about the diagonal and hence only the upper right-hand sides are shown.
Rotation about a principal axis modifies eight and adds four elements along the diagonal and in the upper right-hand side. This behaviour is also true for
orthorhombic symmetry. Rotation about the Y -axis yields a pattern similar to monoclinic-I symmetry (Fig. 2), although here the newly filled elements are not
independent.

about the y-axis to implement P–SV finite-difference 2-D modelling; Zhu & Dorman (2000) use the same rotation for 2-D finite-element
modelling of three-component seismograms.

A comparison of Figs 2 and 5 reveals that a rotation about the y-axis of a hexagonal symmetry produces a pattern similar to monoclinic
symmetry, although the number of independent coefficients still remains at five (not 13). An arbitrary tilt angle that is not along any of the
principal axes will expand the stiffness matrix so that all 21 elements are filled. As a result, any numerical implementation that calculates
anisotropic wave propagation in media with arbitrary tilt must allow for all 21 stiffness coefficients when needed. However, once this full
stiffness tensor is implemented, any order of anisotropic symmetry can be used prior to tilting (that is, not limited to transverse isotropy)
provided sufficient information such as petrophysical measurements exists in order to realistically define the appropriate values for the stiffness
elements.

Directional cosines for tensor rotation

The directional cosines in the rotation tensor of Fig. 4 relate the rotated symmetry axes a–b–c to the original geographical axes x–y–z and
may be defined in several ways. Any definition of directional cosines is acceptable that uses a valid set of measurable reference angles. A
description often used in the context of rotations during crystallographic measurements employs Euler angles, which are derived from a
sequence of rotations about individual symmetry axes:

αi j =

∣∣∣
∣
∣∣∣

cos φ cos χ cos ω − sin φ sin ω cos φ cos χ sin ω + sin φ cos ω − cos φ sin χ

− sin φ cos χ cos ω − cos φ sin ω − sin φ cos χ sin ω + cos φ cos ω sin φ sin χ

sin χ cos ω sin χ sin ω cos χ

∣∣∣
∣
∣∣∣
, (2)

where there is first a rotation ω about the z-axis, a rotation χ about the modified y-axis and then a rotation φ about the modified z-axis (e.g.
Bond 1976; Sands 1982).

The directional cosines may be alternatively expressed in geological measurements of foliation plane strike and dip and lineation trend
and plunge:

{αax , αay, αaz} = {cos t sin p, sin t sin p, cos p}
{αbx , αby, αbz} = {cos s cos d cos p − sin d sin t sin p, sin s cos d cos p + sin d cos t sin p, − cos d sin p(sin s sin t + cos s cos t)}
{αcx , αcy, αcz} = {− sin s cos d, cos s cos d, sin d}, (3a)

where field measurements are first modified so that strike s and lineation trend t are measured counter-clockwise from due east and the dip d
and plunge p are measured from the vertical (see the derivation in Appendix A). These directional cosines are useful for orienting orthorhombic
or lower symmetries. Since the hexagonal symmetry has no lineation and only needs the strike and dip of the foliation plane, the directional
cosines reduce to

{αax , αay, αaz} = {sin s sin d, − cos s sin d, cos d}
{αbx , αby, αbz} = {cos s, sin s, 0}
{αcx , αcy, αcz} = {− sin s cos d, cos s cos d, sin d}. (3b)
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Finite-difference implementation for waveform synthetics

3-D anisotropic full wavefield propagation can be implemented by inserting the tilted elastic stiffness tensor into the isotropic stress–velocity
finite-difference formulation as described by Virieux (1986) and Levander (1988). We modified Graves’ (1996) isotropic finite-difference
equations of Virieux (fourth order in space and second order in time using staggered grids) so that Lamé constants are replaced by the elastic
stiffness tensor. In our implementation, the full 21-element stiffness tensor is defined at each gridpoint when material tilt is present in the
earth model. However, when no tilt is requested, for computational efficiency we limit the number of elements to only those needed by the
maximum symmetry in the earth model (Fig. 2). The tilted tensor is calculated at each gridpoint only once, prior to the propagation time
steps. We also use the A1 absorbing boundary conditions of Clayton & Engquist (1977) and a damping zone on all sides where the width is
dependent on the source wavelength. Point and plane wave sources are defined as stress perturbations shaped by a minimum-phase source
waveform. For the following examples of anisotropic wave propagation in tilted media, model parametrization and calculation internal time
steps were selected to meet stability criteria as summarized by Graves (1996).

A N I S O T RO P I C P RO PA G AT I O N I N U N I F O R M F O L I AT I O N FA B R I C

In order to observe P- and S-wave behaviour caused by only tilt (rotation and dip) of an anisotropic material, we propagate an explosive source
within a block containing an inclined uniformly foliated material (Fig. 1b). For finite-difference simulation, the earth model is a cube of 2500 m
width using 15 m grid spacing. The material foliation is oriented with a northwest–southeast strike and a southwest dip of 60◦ (Fig. 1b). The
stiffness tensor used to define the block material is a hexagonal symmetry using Haast schist velocities at 600 MPa as defined above. A 5–
20 Hz explosive source is placed at the centre of the top face and is allowed to propagate into the cube using a time step of 0.001 s for stability.
The full three-component stress and velocity fields are calculated at each point in the earth model. This simulation required 1.85 Gbytes of
memory and a cumulative 4.53 CPU hours using an eight-node shared-memory SUN Fire 3800 computer with UltraSparc III processors.

The behaviour of the propagating wavefield is revealed when successive time steps are viewed along different slices of the earth model
(Fig. 1). Horizontal slices representing the top face and the x–y plane at 625 m depth are shown in Figs 6(a) and (b), respectively. For both depth
slices, the three components of the velocity field are shown at each point with both horizontal components rotated into radial and transverse
directions. At 100 and 200 ms in Fig. 6(a), the P wave propagates with an elliptical wave front in alignment with the fast and slow directions of
the foliation (northwest–southeast strike). Note that since the source is located in this top slice, the P-wave compressional motion is essentially
radial in direction. A small amount of vertical-component energy in the strike direction suggests the P-wave particle motion is responding to
the inclined tilt of the rock foliation. The propagating S waves appear in the transverse (relative ‘SH’) and vertical (‘SV ’) planes. Owing to
the steep dip, the S wave splits when propagating subparallel to the foliation strike (S1 and S2 at 350 ms in Fig. 6a).

Neither the P nor S wave reach 625 m depth at 100 ms (Fig. 6b). At 200 ms the P-wave elliptical wave front is visible but is distorted in
the northeast–southwest direction owing to oblique propagation with respect to the tilted material. The S1 and S2 shear waves show coupling
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Figure 6. Anisotropic wave propagation in a homogeneous cube that has been rotated so that its foliation strikes N45◦W and has SW dip of 60◦ (see Fig. 1b).
Cube side is 2500 m using 15 m grid spacing and has Haast schist velocities (Fig. 3). A 5–20 Hz explosive source is at centre of top face. Red is positive seismic
amplitude; blue is negative. Three components of motion are shown; the calculated horizontal x–y components are rotated into radial-transverse directions.
Propagation along (a) top face and (b) 1/4 cube length down from top. On the top face P wave is elongated in the fast foliation direction (see the radial component
at 200 ms). The S wave has split in the strike direction. At 625 m depth the P- and S-wave behaviour become complex owing to dipping foliation plus the
oblique downward directions of the propagating wave fronts.
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Figure 7. Cross-sections for the same cube as in Fig. 6 revealing wave propagation behaviour with depth. (a) A slice taken in dip direction (Fig. 1b). Foliation
dips at 60◦ towards the left; the fast P-wave direction is the same. The radial component reveals two S waves that are split in one direction. The transverse
component lacks a P wave. (b) The slice taken in the strike direction. P- and S-wave motions are more uniform in different directions within this plane. The P
wave is faster in the horizontal direction owing to a stronger component of in-the-dipping-foliation plane. The S wave is not split vertically but is beginning to
split in the pure horizontal direction.

and splitting along its elliptical wave front at 350 ms. We note that owing to 3-D propagation for these phases, the phase names SV and SH
do not always indicate true particle directionality.

Vertical slices through the material cube also reveal downward propagation behaviour. Wave propagation in slices oriented in the true
dip and strike directions (Fig. 1b) are shown in Fig. 7 for the same time steps as in Fig. 6. In exactly the true dip direction for this cube,
propagation is 2-D involving only material dip with no influence from strike. In this dip plane, the P wave propagates elliptically with its
elongation direction correlating with the material dip of 60◦ (Fig. 7a). The S wave splits when also propagating in the downdip direction;
however, unlike in Fig. 6(a), the S2 phase is faster in this direction.

Fig. 7(b) illustrates wave propagation in a depth slice oriented in the strike direction. Material orientation and velocity behaviour are
symmetric about the source point in the strike plane but have the added complexity that P- and S-wave particle motions are out of the strike
plane along the dipping foliation planes. The horizontally propagating S wave (S1, S2) clearly splits in the strike direction.

R E F R A C T I O N S / R E F L E C T I O N S F RO M T H E T I LT E D A N I S O T RO P I C L AY E R

The effect of material tilt on refraction/reflection propagation may be observed using a larger-scale earth model that has layers that will produce
both refracted and reflected phases. In order to observe propagation effects owing to only material tilt, we generate a series of explosive sources
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into a 150 km wide three-layer earth model wherein the top and bottom layers are isotropic and the middle anisotropic layer varies only by its
internal tilt.

The top layer of this earth model has a V P linear gradient between 4000 m s−1 at the surface and 5750 m s−1 at 10 km depth. The layer
is isotropic and is assumed to be a Poisson material (σ = 0.25) in order to define its V S gradient (2309–3320 m s−1). The density is also a
gradient between 2400 and 2700 kg m−3. The isotropic bottom layer has a V P gradient of 7500–8000 m s−1 from a depth of 20 km to the
bottom of the model. This layer is also a Poisson material and its density is uniform at 3300 kg m−3. The anisotropic middle layer at 10–
20 km depth is composed of foliated schist with Haast velocities (Fig. 3). For this example the 2-D finite-difference implementation of eq. (1)
is used to produce simulated seismograms. The earth model is 150 km wide and is padded to 150 km depth using a grid spacing of 35 m, an
explosive pulse of 4–10 Hz and an internal time step of 0.002 s. The large vertical size is used to minimize bottom reflections of horizontally
travelling refractions that can appear when using standard vertical-incidence reflection-absorbing boundary conditions. Each shot profile in
Fig. 8 required 1.42 Gbytes of memory and 126.36 cumulative CPU hours of computer resources.

In Fig. 8 refraction shot profiles are shown using reduced traveltime (v = 6.0 km s−1) for the cases when the middle layer tilt is 0◦ (no
tilt), 90◦ (vertical), −45◦, randomly oriented and coherently variable using an undulatory (antiform–synform) pattern. In the case where there
is no tilt, distinct refracted and reflected phases from the different layers are observed (Fig. 8a). The direct phase through the top layer (Pt)
shows the effect of the velocity gradient and merges into the refraction through the middle layer (Pm). The extra short branch in the triplication
between Pt and Pm is caused by the jump in the horizontal velocity (from 5750 to 6468 m s−1) even though the vertical velocity is the same
across this interface (5750 m s−1). Pm has responded to the horizontal velocity of the middle layer (6501 m s−1) as does the reflection (PmP) at
wider source–receiver offsets (e.g. asymptotic traveltimes). The bottom layer refraction (Pb) emerges at a crossover distance beyond 100 km.

The Pm refraction phase can be seen in Figs 8(b)–(e) to respond to the different material orientations within the middle layer. In Fig. 8(b)
the foliation is vertical so the refraction propagates horizontally using the ‘slow’ velocity normal to foliation. The Pm slope is positive in
reduced traveltime because the horizontal velocity of 5750 m s−1 is less than the reduced velocity. In Fig. 8(c) the foliation dips at −45◦

and the Pm phase appears with an apparent velocity faster than in Fig. 8(b) but slower than the reduction velocity. This is in agreement with
the VP45◦ value of 5881 m s−1 being marginally faster than that normal to foliation. In Fig. 8(d) the foliation dips are randomly oriented
on a per node basis so that the overall range of dips is uniformly distributed between 0 and ±90◦. The propagating waves encounter all
velocities between the slow and fast Haast velocities. The material tilt is fully heterogeneous on such a fine scale that the middle layer behaves
isotropically. Pm propagates at an average velocity of approximately 5960 m s−1; the average velocity is not the velocity at the average dip
(VP45◦ ). Finally, since geological features do not usually have constant dip, a middle layer of smoothly variable dip is examined. In this case
the tilt undulates sinusoidally between −45◦ to 45◦ to mimic a pair of 75 km wavelength antiforms and synforms (Fig. 8e). The refraction
through this undulatory material behaves accordingly—the Pm arrival has a net intermediate apparent velocity but exhibits local undulations
caused by its upward path encountering different foliation dips.

The PmP reflection produced at the bottom of the middle layer also responds to the tilt of the anisotropic material. In all five cases in
Fig. 8, this PmP exhibits hyperbolic curvature that is asymptotic to the horizontal velocity (associated Pm refractions). In the case of the
antiform/synforms (Fig. 8e), the undulating PmP phase has a second branch at far offsets that could mistakenly be interpreted as a separate
reflection from a deeper layer.

The Pb refraction propagates within the bottom layer in the same manner for all five cases and should exhibit the same apparent velocity.
However, its appearance in the shot gathers is affected by delays introduced as Pb encounters the middle layer during its near-vertical downward
or upward path. For case A in Fig. 8, the near-vertical direction is associated with the slow P-wave velocity direction, adding a delay to the
Pb phase. This is in contrast to cases B–D where faster velocities are associated with the near-vertical direction, creating smaller delays. In
the reduced traveltime displays in Fig. 8, these delays manifest themselves in the Pb crossover distance—a larger time delay increases the
traveltime of Pb, making it emerge from the Pm at a later time and hence larger offset.

The most severe example of Pb time delay is exhibited by the antiform/synform middle layer (Fig. 8e). In this case, the undulation of
the Pb arrival could be misinterpreted as being caused by lateral velocity variation in the bottom layer. However, the behaviour of PmP would
suggest that it is caused by lateral variations in the middle layer: if the Pb undulations were caused by the lower layer, the PmP reflection might
vary laterally in amplitude but would not undulate in traveltime.

L AT E R A L H E T E RO G E N E I T Y O F T I LT : A N I S O T RO P I C A N T I F O R M

A 3-D antiformal structure is used for the final example of how material tilt affects seismic wave propagation. A source at depth will illuminate
the structure with a range of ray path-material angles owing to both source-array geometry and material tilts associated with the antiform.
We create an antiform model by arching the foliation of a uniform material described by Haast schist velocities and density. The antiform
has dips ranging between ±64◦ in the x–z plane (Fig. 9). The earth block is constructed to be a cube of 30 km width with a node spacing of
100 m. A source is placed at depth so that only a one-way upward path through the antiform needs to be considered; a 1–5 Hz point source is
located at (7.5, 8.0 km) in the (x, z) plane on the front face (y = 0). Propagation is calculated using a time interval of 0.005 s. An H-shaped
surface array is located along the front and back edges (subarrays A and C, respectively) with a cross-bar subarray (B) connecting the two
edges. 11 three-component stations are distributed every 3 km along each subarray. The cross-bar subarray is subparallel to but not located
directly over the axis of the antiform. Rather, it is located at the up-dip projection of the foliation tilt that exists at the source location (57◦). As
a result, subarray B connects stations A7 and C7 (Fig. 9a). The horizontal x- and y-components in Fig. 9 are rotated into radial and transverse
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Figure 8. Effect of internal fabric tilt within a flat layer on refraction/reflection traveltimes. A three-layer model is used where the middle layer is uniformly
anisotropic and has a tilted internal fabric. Top and bottom layers are isotropic with vertical velocity gradients; see the text for model values. Wide-angle
refraction shots are simulated through this model; resulting shot profiles are displayed in reduced traveltime. Pt , Pm and Pb are the direct/refracted phases
through the top, middle and bottom layers, respectively. Reflections originate from the base of the top (PtP) and middle (PmP) layers. (a) The middle layer
fabric tilt is at 0◦ (subhorizontal). Pm travels in the ‘fast’ direction layer. (b) The fabric tilt at 90◦ (vertical). Pm travels at the ‘slow’ velocity. (c) The fabric tilt
at −45◦. Phases appear similar to the 90◦ case. (d) The fabric tilt is randomly oriented between 0◦ to ±90◦ on a per node basis. (e) The fabric tilt undulates
between −45◦ to 45◦ with a wavelength of 75 km. Pm exhibits an averaged apparent velocity through the layer but undulates because of the antiform-synform
tilt behaviour. PmP and Pb also undulate; this latter undulation could mistakenly be attributed to lateral velocity heterogeneity within the bottom layer.

components relative to the surface location of the source. This simulation required 11.81 Gbytes of memory and 175.52 cumulative CPU
hours.

As the seismic wave propagates through the antiform, its P and S waves can be observed to reach the surface and sweep across the surface
arrays towards the back of the earth block. In Fig. 9(b) the S wave has reached the surface by 2.5 s. By 4.5 s the P wave has nearly reached
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Figure 9. Wave propagation through a 3-D antiform. (a) Antiformal model where the anisotropic velocities are uniform and only the dip of the foliation has
variation. Dimensions of block are 30 × 30 × 30 km at 100 m spacing. Arrays A–C are used to collect synthetic data from a source located at (7.5, 8.0 km)
in the (x, z) plane on the front face (y = 0). An H-shaped array is defined on the top face. Subarray A is on top of the front face. Subarray B is located at the
up-dip projection of the tilt found at the source point and is not located along the axis of the antiform. Subarray C is on top of the back face (y = 30 km). (b)
Waveform propagation is along the top surface of the antiformal model. Red is positive seismic amplitude; blue is negative. Horizontal x- and y-components are
rotated into radial and transverse components relative to the surface location of the source. At 2.5 s the S wave has propagated from depth to reach the surface
and is now obliquely propagating in the y-direction. At 4.5 s the P wave has nearly reached the back of the model. The S wave begins to split. At 6.5 s the P
wave is gone and the S wave has split and is more advanced in the y-direction than in the x-direction of propagation. (c) Seismograms collected at the A–B–C
arrays. Each station has a triplet of seismograms representing the vertical, radial and transverse components. Partitioning of P- and S-wave energy among the
three components vary across the arrays in agreement with the source–receiver geometry and the paths through the antiform.

the back of the block with an elongated wave front geometry. At 6.5–8.5 s the S wave reaching the surface has split (S1, S2) in the y-direction
but has barely split in the pure x-direction.

For the seismograms collected by the A–C subarrays, partitioning of P- and S-wave energy into the vertical, radial and transverse
components vary in agreement with source-to-receiver azimuth and ray path emergence inclination (Fig. 9c). Two effects related to the
material arch are identified: the S wave does not have standard delay time relative to the P wave and the amount of shear wave splitting

C© 2003 RAS, GJI, 153, 344–358



354 D. A. Okaya and T. V. McEvilly

increases, but not uniformly away from the source. These effects can be explained with an examination of ray path directions through the
antiformal model. The P and S waves travel through different amounts of their respective ‘slow’ directions through the antiform. These
differences make for non-uniform arrival time behaviour, although they are consistent with the 3-D geometry and orientations of the material
anisotropy.

D I S C U S S I O N

Calibration of synthetics to Christoffel equations

The P- and S-wave behaviour in the pure true dip direction as illustrated in Fig. 7(a) can be better understood with the aid of Christoffel
equations (Hearmon 1961; Auld 1973). These equations provide P- and S-wave velocities at relative propagation angles, γ , oblique to material
symmetry axes. In the case of a surface source located in uniformly dipping material (Figs 6 and 7), this relative propagation angle is γ =
θ − θdip measured between the downgoing wave direction, θ , and the material tilt, θdip. The Christoffel equations for hexagonal symmetry
are thus:

qV 2
P (γ ) = (1/2ρ)

(
c11 sin2 γ + c33 cos2 γ + c44 + M1/2

)

qV 2
SV (γ ) = (1/2ρ)

(
c11 sin2 γ + c33 cos2 γ + c44 − M1/2

)

qV 2
SH (γ ) = (1/ρ)

(
c66 sin2 γ + c44 cos2 γ

)

M = [
(c11 − c44) sin2 γ − (c33 − c44) cos2 γ

]2 + (c13 + c44)2 sin2 2γ,

(4)

where stiffness coefficients are derived from petrophysical measurements

c11 = ρV 2
P90◦ , c33 = ρV 2

P0◦

c44 = ρV 2
SV 0◦

(= ρV 2
SH0◦ = ρV 2

SV 90◦
)

c12 = c11 − 2ρV 2
SH90◦

c13 = −c44 + [(
4ρ2V 4

P45◦
) − (

2ρV 2
P45◦

)
(c11 + c33 + 2c44) + (c11 + c44)(c33 + c44)

]1/2

c66 = [c11 − c12] /2 = ρV 2
SH90◦

where VP90◦ = Pab, VP0◦ = Pc, VSH90◦ = Sab and VSV 0◦ = Sc as illustrated in Fig. 3. The P- and S-wave velocities for all propagation angles
within the true dip plane of the uniform tilt block of Figs 6 and 7 are shown in Fig. 10. The overall behaviour of the velocities is similar to
that of an untilted hexagonal material (Fig. 1c) but is corrected for the 60◦ dip within the block. The velocities are labelled as quasi-waves
since pure vibration directions are obtained only along the material axes. qV P and qV SH exhibit 2γ variation while qV SV has 4γ variation.

This angular velocity variation explains the wave propagation behaviour seen in Fig. 7(a). The qV SH and qV SV curves in Fig. 10 are
correlative with events S1 and S2 in Fig. 7(a), respectively. For a dip of 60◦, a P wave propagating at −30◦ from vertical is parallel to the
foliation plane and will encounter the fast V P (‘1’ in Figs 7a and 10). From +30◦ to +90◦qV P is uniformly slow (2), accounting for the
near-circular wave front curvature at 2 in Fig. 7(a). The qV SH has its velocity maximum at −30◦(a′) and its minimum at +60◦(b′) to make
its wave front, S2 in Fig. 7(a), elongate similar to the P wave. The qV SV has one of its two velocity maxima at +15◦(c) and minima at −30◦

and +60◦(a and b, respectively) to form a wave front (S1) elongated in a direction different from the S2 wave. Maximum splitting of the two
S waves occurs at −30◦ (a–a′ in Figs 7a and 10). In addition, the S-wave velocity curves cross at d1 and d2 in Fig. 10, forming singularity
points where these waveforms meet in Fig. 7(a).

Fig. 7(b) illustrates wave propagation in a depth slice oriented in the strike direction. A similar analysis can be made to tie waveform
behaviour in the strike direction with quasi-velocities as functions of the wave propagation direction. The Christoffel equations for the pure-dip
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direction (eq. 4) can account for the foliation tilt by adjusting the relative propagation angle γ . However, these equations are not sufficient for
calculation in the strike or any other plane because the material is tilted in 3-D and resulting P and S particle motions can be out of plane. A
more complete set of Christoffel equations must be derived, which allow the propagation angle to be described as a vector quantity (azimuth
and inclination, for example) or which uses a rotated stiffness tensor.

Computational impact

The employment of the full 21-element stiffness tensor in the elastic stress–strain equation (eq. 1) adds significantly to the computer memory
requirements of the wave propagation code. We illustrate this point via comparison with the isotropic version of the same code, which uses
only Lamé constants. The anisotropic 2-D example (Fig. 8) required 78 per cent additional memory and the 3-D examples (Figs 6, 7 and 9)
required 2.2 times the memory that was needed to compute the same but isotropic cases. This increase in memory is directly attributed to the
expanded stiffness tensors. The additional number of calculations in eq. (1) increased the 3-D anisotropic CPU runtime by 50 per cent. For
the 2-D example, the anisotropic CPU usage increased by 10 per cent over its isotropic equivalent; this relatively small increase is explained
by the 2-D form of eq. (1) having similar numbers of calculations when expressed using elastic stiffness elements or Lamé constants.

Geological relevance

The geological causes of crustal anisotropy include regional fractures and cracks, isotropic heterogeneity or layering and material composition
and textural properties. In addition, shear or metamorphic foliations in fault zones or structural terranes serve as proxies for intracrustal
deformation in a manner analogous to the lattice-preferred orientation of olivine produced by mantle shear. For real geological features within
the crust, complex heterogeneous patterns exist in structure, composition, internal texture and dip. Material tilt as defined by rotated stiffness
tensors can provide to these modelled features the characteristics of lateral variation, dipping boundaries and internal bedding or foliation that
are not necessarily subparallel to contacts.

The above examples of synthetic anisotropic wave propagation suggest that the effects of material tilt on propagation arrival times
and waveform shapes can be significant for seismic waves propagating within the crust. These synthetic examples are simple with uniform
velocities so that only geometrical patterns of material tilt cause 2-D or 3-D effects of anisotropic behaviour. As is illustrated in Figs 7(a) and
10, the orientation of maximum shear wave splitting may no longer be in the horizontal or vertical directions owing to bulk material tilt. The
anisotropic antiform in Fig. 9 indicates that 3-D structure relative to source–receiver geometries can produce systematic changes in observed
shear wave splitting. Geological outcrops indicate that structures and material tilts change on many spatial scales. If these changes are very
rapid relative to the path of the seismic wave, shear wave splitting effects may represent the average of the encountered material (Fig. 8d;
Okaya & Christensen 2002) or may result in complex waveforms (Fig. 9).

While the examples presented here involve tilted hexagonal symmetries, the requirement of the full stiffness tensor for arbitrary tilt
allows, prior to rotation, the use of orthorhombic or lower-ordered symmetries if they can be realistically described. The ability to produce
anisotropic signatures within synthetic seismograms using realistic earth models provides a method by which interpretations may be calibrated
with observed seismic data and will aid in the subsurface mapping of anisotropic terranes.

C O N C L U S I O N S

The effect of tilted anisotropic material on seismic wave propagation is determined by the relative angle between material orientation and ray
path direction. For elastic wave propagation, materials can be characterized by elastic stiffness tensors of differing levels of symmetry that
define the severity of anisotropy. Material tilt in any orientation may be produced by modification of its stiffness tensor that can be simplified to a
matrix rotation when the reduced matrix notation is used. Since stiffness tensors have diagonal symmetry in reduced tensor form, nine elements
are originally filled for hexagonal or orthorhombic symmetry based on five or nine independent coefficients, respectively. Tilt rotation will fill
additional elements; rotation into an arbitrary orientation can fill all 21 reduced tensor elements. The numerical implementation of anisotropic
wave propagation with tilted media thus requires a full tensor definition of stress–strain elasticity. Examples of synthetic seismograms indicate
that tilted materials provide additional traveltime and waveform effects, which, for crustal propagation, can mistakenly be attributed to other
regions of the crust or mantle.
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A P P E N D I X A : D I R E C T I O N A L C O S I N E S F O R A T I LT E D F O L I AT I O N

The orientation of a tilted foliation can be expressed as the directional cosines between the symmetry axes of the bulk material and the
geographical coordinate frame. These directional cosines may be obtained from the position of the material symmetry axes, a–b–c, using
geological measurements of foliation plane strike and dip and lineation trend and plunge relative to x–y–z as shown in Fig. A1.

The material axes are oriented as follows. The a-axis is aligned with the lineation vector.

a = {ax ay az} = L. (A1a)

The c-axis is normal to the foliation and hence can be described by the cross product of the strike and dip vectors:

c = {cx cy cz} = D × S. (A1b)

The cross product of c into a yields b:

b = {bx by bz} = c × a (A1c)

With no rotation or tilt the a–b–c axes are aligned with x–y–z, respectively. The strike, dip and lineation vectors are obtained from field
measurements strike, sf , dip, df , trend, t f , and plunge, pf . These field measurements, which are commonly measured as azimuth clockwise
from due north or dip from the horizontal, are converted to angles based on the unit sphere (azimuth counter-clockwise from x (east) and
dip/plunge from the vertical (inclination): s = 90◦ − sf , t = 90◦ − t f , d = 90◦ + df and p = 90◦ + pf . The measurement vectors are:

S = {sx sy0} = {cos s, sin s, 0}
D = {dx dy dz} = {cos(s − π/2) sin d, sin(s − π/2) sin d, cos d}
L = {lx ly lz} = {cos t sin p, sin t sin p, cos p}, (A2)

where the horizontal component of dip is perpendicular to the strike in accordance with the right-hand strike/dip rule (factor of −π/2).
Substitution of the measurement vectors and trigonometric identifies into eq. (A1) yield:

a = {cos t sin p, sin t sin p, cos p}
c = {dysz − dzsy, dzsx − dx sz, sx dy − sydx }

= {− sin s cos d, cos s cos d, sin d}, (A3)

then

b = {cyaz − czay, czax − cx az, cx ay − cyax }
= {cos s cos d cos p − sin d sin t sin p, sin s cos d cos p + sin d cos t sin p, − cos d sin p(sin s sin t + cos s cos t)}.

The components of a, b, c are the directional cosines relating symmetry axes a–b–c to x–y–z as required within the Bond transformation
matrix of Fig. 4.

x

y
z

a

b
c

S

D

b

a=L

c=DxS

(a)

(b)

Figure A1. Coordinate axes for orthorhombic foliated dipping block. (a) x–y–z is geographical coordinate axes; a–b–c is material axes. (b) S–D are strike
and dip of tilted foliation. L is lineation vector (plunge and trend). a–b–c can be derived from strike, dip and lineation. Hexagonal foliation has a = b and no
lineation.
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No lineation exists for a hexagonal symmetry. Material tilt is defined solely by strike and dip of the foliation. Since behaviour within the
planes of foliation are uniform for this symmetry, we may define the tilted a–b–c axes as follows. The tilted a-axis can be aligned with the dip
vector and the b-axis with the strike vector:

a = {ax ay az} = D (A4a)

b = {bx by bz} = S. (A4b)

a and b are orthogonal and within the plane of foliation caused by the definition of strike and dip. The tilted c-axis is normal to the foliation
and hence is the cross product of the strike and dip vectors:

c = {cx cy cz} = D × S. (A4c)

Using eq. (A2) and trigonometric identities, the directional cosines for hexagonal symmetry reduce to:

a = {sin s sin d, − cos s sin d, cos d}
b = {cos s, sin s, 0}
c = {− sin s cos d, cos s cos d, sin d}. (A5)

C© 2003 RAS, GJI, 153, 344–358


