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S U M M A R Y
We present the results of a comprehensive numerical study of 3-D acoustic wave propagation
in weakly heterogeneous random media. Finite-frequency traveltimes are measured by cross-
correlation of a large suite of synthetic seismograms with the analytical pulse shape representing
the response of the background homogeneous medium. The resulting ‘ground-truth’ traveltimes
are systematically compared with the predictions of linearized ray theory and 3-D Born–Fréchet
(banana–doughnut) kernel theory. Ray-theoretical traveltimes can deviate markedly from the
measured cross-correlation traveltimes whenever the characteristic scalelength of the 3-D
heterogeneity is shorter than half of the maximum Fresnel zone width along the ray path, i.e.
whenever a <∼ 0.5(λL)1/2, where a is the heterogeneity correlation distance, λ is the dominant
wavelength of the probing wave, and L is the propagation distance. Banana–doughnut theory
has a considerably larger range of validity, at least down to a ≈ 0.1(λL)1/2 in sufficiently
weakly heterogeneous media, because it accounts explicitly for diffractive wave front healing
and other finite-frequency wave propagation effects.

Key words: body waves, inhomogeneous media, ray theory, tomography, traveltime, wave
propagation.

1 I N T RO D U C T I O N

The traveltimes of P, PP, PcP, . . . and S, SS, ScS, . . . body waves
continue to provide our most important constraint upon the seismic
3-D structure of the Earth’s lower mantle. Most global traveltime
tomographic analyses are based upon linearized geometrical ray
theory (Inoue et al. 1990; Su & Dziewonski 1992, 1997; Pulliam
et al. 1993; Grand 1994; Masters et al. 1996, 2000; Grand et al.
1997; Van der Hilst et al. 1997; Vasco & Johnson 1998; Boschi
& Dziewonski 2000). In this approximation, the measured travel-
time shift of a teleseismic body wave depends only upon the 3-D
seismic slowness variations along the spherical Earth, source-to-
receiver ray. Cross-correlation traveltime shifts of finite-frequency
seismic pulses are affected by wave front healing effects that are ig-
nored in geometrical ray theory; in addition, finite-frequency waves
are sensitive to 3-D seismic slowness variations off the unperturbed
ray. Both of these non-geometrical diffraction phenomena are ac-
counted for by the 3-D Born–Fréchet sensitivity kernels, which were
originally developed for use in global terrestrial traveltime tomog-
raphy by Marquering et al. (1999), Dahlen et al. (2000), Hung et al.
(2000) and Zhao et al. (2000). Solar physicists have recently in-
troduced analogous 3-D Fréchet sensitivity kernels, for application
to so-called time–distance helioseismology (Birch & Kosovichev
2000; Jensen et al. 2000, 2001; Kosovichev et al. 2000).
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In this paper, we conduct a comprehensive numerical investiga-
tion of the validity of both linearized ray theory and 3-D Born–
Fréchet kernel theory in weakly heterogeneous random media. We
use a pseudospectral method to solve the 3-D acoustic wave equation
in a suite of Gaussian and exponentially correlated random media,
characterized by their root-mean-square slowness variation and their
correlation scalelength. Finite-frequency traveltime shifts are mea-
sured at a variety of source–receiver distances, by cross-correlation
of the numerically computed synthetic seismograms with the cor-
responding analytical response of the background homogeneous
medium. This study extends the analyses of Nolet & Dahlen (2000)
and Hung et al. (2001), who investigated the wave front healing
effects downstream of an isolated, slow or fast, spherically sym-
metric slowness anomaly using the parabolic approximation and
the pseudospectral method, respectively. In a statistically homoge-
neous random medium, the diffractive healing of wave front corru-
gations produced by near-source slowness anomalies is continually
being augmented by new corrugations produced by more distant
anomalies, as the wave propagates away from the source. Because
of this, a ray-theoretical skeptic might argue that conclusions based
upon the study of a ‘lonely bowling ball’ are not pertinent to seis-
mic wave propagation in the Earth’s mantle. Spetzler & Snieder’s
(2001b) study of picked traveltimes of plane waves in 2-D random
media shows that, for their case, Rytov scattering theory predicts
traveltimes more accurately than ray theory. Similarly, we use our
‘ground-truth’ numerical results to place empirical constraints upon
the validity of both linearized ray theory and 3-D Born–Fréchet ker-
nel theory in spatially extended 3-D random heterogeneous media.
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2 3 - D N U M E R I C A L
WAV E P RO PA G AT I O N

In global seismic tomography, a measured traveltime delay or resid-
ual δT is defined to be the difference between the observed arrival
time of a wave and the theoretical arrival time in a spherically sym-
metric reference earth model such as PREM (Dziewonski & Ander-
son 1981):

δT = Tobs − Trem. (1)

In this paper, we do not consider elastic wave propagation in a back-
ground spherical earth model with superimposed 3-D heterogene-
ity. Rather, in the interest of computational expediency, we restrict
attention to acoustic wave propagation in weakly heterogeneous
Cartesian media. The traveltime delays that we investigate are differ-
ences between the arrival time of an acoustic wave in a random 3-D
heterogeneous medium and in a background homogeneous medium:

δT = Thet − Thom. (2)

The fundamental physics of finite-frequency wave front healing and
diffraction is the same for acoustic as for elastic waves; for this rea-
son, our conclusions regarding the domains of validity of linearized
ray theory and 3-D Born–Fréchet kernel theory should be directly
applicable to turning P and S waves in the Earth’s mantle.

2.1 The ‘mantle in a box’

Most of our numerical computations are performed in a cube
7650 km on a side; the acoustic model parameters and independent
variables are discretized on a 3-D grid, consisting of N 3 = 256 ×
256 × 256 points, spaced a distance �x = 30 km apart. For a few
long-distance runs, we extended one dimension of the cube out to
a distance of 19 170 km; the resulting grid then consists of 256 ×
256 × 640 points. The homogeneous density and background slow-
ness are ρ = 1000 kg m3 and σ = 125 µs m−1, respectively; the
corresponding background wave speed is c = σ−1 = 8 km s−1.
The density ρ is kept constant in all of our computations, and we
investigate the effect of 3-D random slowness perturbations,

σ → σ + δσ (x). (3)

The fluctuations δσ (x) are considered to be single realizations drawn
from an ensemble of 3-D random fields, having zero mean,

〈δσ (x)〉 = 0, (4)

and a specified autocorrelation function of the form

〈δσ (x) δσ (x′)〉 = σ 2 R(r ), where r = ‖x − x′‖. (5)

The dimensionless quantity R(r) is a function only of the distance
r = x − x′ between any two points x and x′, by virtue of the assumed
statistical heterogeneity and isotropy of the medium.

The power spectrum �(k) of the 3-D heterogeneity is related to
the autocorrelation function R(r) by a modified sine transform:

R(r ) =
√

2

π

1

r

∫ ∞

0
k�(k) sin kr dk, (6)

�(k) =
√

2

π

1

k

∫ ∞

0
r R(r ) sin kr dr, (7)

where we have symmetrized the factors of 2/π in the corresponding
relations of Tatarskii (1961, Section 1.3) and Sato & Fehler (1997,
Section 2.2.2). The total fractional variance,

ε2 = 1

σ 2
〈δσ 2(x)〉, (8)

of the 3-D slowness heterogeneity is given by

ε2 = R(0) =
√

2

π

∫ ∞

0
k2�(k) dk. (9)

The quantity (2/π)1/2k2�(k) is the contribution to the variance ε2

from the spatial wavenumbers between k and k + dk. We shall
henceforth characterize the strength of the heterogeneity in terms
of the fractional root-mean-square variation, ε = √

R(0).
All of the models that we consider have either Gaussian or expo-

nential autocorrelation functions, of the form

R(r ) =
{

ε2 exp(−r 2/a2) Gaussian

ε2 exp(−r/a) exponential.
(10)

The correlation distance a can in both cases be thought of as the char-
acteristic length-scale of the 3-D heterogeneity. The power spectra
corresponding to eq. (10) are
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(11)

To give an idea of how ε relates to the actual distribution of fractional
model perturbations, we note that 98 per cent of the perturbations
fall between ±2.4ε in every medium in our study.

Perspective views of both a Gaussian and an exponential ‘man-
tle in a box’ heterogeneity model are shown in Fig. 1. These and
other realizations were constructed by first prescribing the complex
Fourier amplitudes in 3-D wavenumber space, and then using the in-
verse fast Fourier transformation to find δσ (x) in the spatial domain
(Frankel & Clayton 1986). The absolute magnitudes of the Fourier
coefficients are constrained to be consistent with eq. (11), whereas
the phases are chosen to be uniformly distributed random deviates
in the interval [0, 2π ]. The values of the slowness perturbation at the
N 3 grid points are rescaled after transformation to guarantee that

1

N 3

∑
N 3

∑
grid

∑
points

δσ 2(x) = σ 2ε2. (12)

This numerical enforcement of eq. (8) accounts for the fact that the
discrete Fourier transform on the 3-D grid ignores wavenumbers k
greater than the Nyquist value kN = π/�x .

The fractional variances k2�(k) of a Gaussian and an exponential
medium are compared in Fig. 2. The heterogeneity of a Gaussian
medium is strongly peaked in the vicinity of the maximum, ka = 2.
The characteristic spacing between adjacent slow or fast (red or blue)
anomalies is, as a result, πa. Roughly speaking, we may say that a
is the size of a typical slow or fast Gaussian ‘blob’. An exponential
medium exhibits a peak at a lower wavenumber, ka = 1; however,
its most distinguishing feature is the long tail of high-wavenumber
structure. The presence of this short-scale granularity is evident in
the 7650 × 7650 × 7650 km3 exponential realization depicted in
Fig. 1.
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Figure 1. Realizations of a 7650 × 7650 × 7650 km3 Gaussian (top) and an
exponential (bottom) 3-D random medium, with a correlation distance a =
600 km, shown by the scale bar. Red through green colours denote slow
regions, where δσ (x) > 0, whereas blue colours denote fast regions, where
δσ (x) < 0. The random Fourier phases prior to filtration and transformation
are identical, so that the overall placement of the slow and fast anomalies is
the same. It is evident that an exponential medium has considerably more
small-scale granularity than its Gaussian counterpart.
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Figure 2. Fractional contributions (2/π )1/2ε−2k2�(k) to the total variance
of a Gaussian and an exponential random medium. The ordinate is the di-
mensionless wavenumber ka. The total area under both curves is unity, in
accordance with eq. (9).

2.2 Pseudo-spectral method

The equations of motion governing acoustic wave propagation in a
3-D medium having a constant density ρ and a variable slowness σ +
δσ (x) are (Morse & Ingard 1968, Sections 6.2 and 7.1)

∂t u(x, t) = −ρ−1∇ p(x, t), (13)

∂t p(x, t) = −ρ[σ + δσ (x)]−2[∇ · u(x, t) − m(t)δ(x − s)]. (14)

The unknowns are the fluid velocity u(x, t) and the associated in-
cremental pressure variation p(x, t). The waves in eqs (13) and (14)
are presumed to be excited by a point source situated at the point s.
The quantity δ(x − s) is the Dirac delta function, and m(t), which
we shall refer to as the source time function, is the rate of change of
the volume of an infinitesimally small spherical bubble at the source
(Lighthill 1978, Section 1.11).

We integrate eqs (13) and (14) numerically using a parallelized
pseudospectral method developed by Hung & Forsyth (1998). In this
technique, the three Cartesian components of the fluid velocity u(x,
t) and the pressure p(x, t) are represented as discrete 3-D Fourier
expansions, allowing the spatial derivatives ∇ · u(x, t) and ∇ p(x,
t) to be computed exactly at every time step by multiplication in
the wavenumber domain. Numerical dispersion is thereby reduced
in comparison with finite-difference methods, which require a local
approximation to the spatial derivatives. The temporal derivatives
still need to be approximated; we make use of a fourth-order Runge–
Kutta scheme to evolve u(x, t) and p(x, t) in time. The numerical
stability of such a scheme is ensured, for models with weak hetero-
geneity, ε � 1, as long as the time step �t satisfies the von Neumann
condition (Kosloff & Baysal 1982; Kosloff et al. 1984)

�t ≤ 2σ�x√
3π

≈ 1.4 s. (15)

We utilize a significantly shorter time step, �t = 0.25 s, in or-
der to improve the numerical accuracy. Fourier wraparound effects
and unwanted reflections from the boundaries of the 3-D compu-
tational grid are reduced but not completely eliminated by imple-
menting a simple absorbing boundary scheme described by Cerjan
et al. (1985). The relatively ineffective suppression of grazing-angle
reflections is the principal shortcoming of our numerical solution
procedure.

2.3 The source

A finite-frequency explosive source is placed near one edge of each
7650 × 7650 × 7650 km3 cube to initiate acoustic wave propagation.
The source time function is taken to be a Gaussian pulse, of the form

m(t) = exp

[
−2π2

(
t

τ
− 1

2

)2
]
, (16)

where there is an understood pre-exponential factor of unity with
the proper dimensions of volume over time. The resulting pres-
sure response at a receiver location s in a homogeneous medium,
δσ (x) = 0, is (Morse & Ingard 1968, Section 7.1)

p(r, t) = ρṁ(t − σ L)

4π L

= −πρ

Lτ

(
t − σ L

τ
− 1

2

)
exp

[
−2π2

(
t − σ L

τ
− 1

2

)2
]
,

(17)

where the dot denotes differentiation with respect to time t and L =
‖r − s‖ is the straight-ray source-to-receiver distance. The factor
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Table 1. Model and source parameters used in the 3-D numerical
computations.

Parameter Symbol Value

Uniform density ρ 1000 kg m−3

Background slowness σ 125 µs m−1

Background velocity c 8 km s−1

Characteristic period τ 25 s
Characteristic wavelength λ 200 km
Time step �t 0.25 s
Grid spacing �x 30 km
Grid points per wavelength λ/�x 6.7

L−1 represents the expected geometrical attenuation in a homoge-
neous 3-D medium. Visually, the response (17) is a two-sided pulse,
with a visible onset at t ≈ σ L , and with a characteristic period τ . In
all of the computations presented here, the period is that of a typical
teleseismic shear wave, τ = 25 s. The corresponding characteristic
wavelength of the waves is λ= τ/σ= 200 km. Propagation beyond
a distance of L ≈ 30λ is difficult to achieve in a 7650 × 7650 ×
7650 km3 cube without placing the source s and the receivers r too
close to the boundaries; for this reason, we undertook a few long-
distance runs, out to a distance L = 85λ, in an elongated 7650 ×
7650 × 19 170 km3 box. A summary of our adopted model and
source parameters is shown in Table 1. The number of grid points
per wavelength is λ/�x = 6.7, which is more than adequate for an
accurate representation of the waves.

2.4 Scaling and timing considerations

Acoustic wave propagation within the random 3-D media studied
here is completely characterized by three dimensionless parameters:

(1) the root-mean-square slowness variation, ε;
(2) the ratio of the heterogeneity scalelength to the wavelength,

a/λ; and
(3) the ratio of the propagation distance to the wavelength, L/λ.

Our objective is to conduct a comprehensive study of the finite-
frequency traveltimes of waves in this 3-D parameter space. To this
end, we performed a total of 32 256 × 256 × 256 computational
runs, using four different values of the heterogeneity strength (ε =
0.01, 0.02, 0.03, 0.04) and four different values of the scalelength
(a = 0.75λ, 1.5λ, 2.25λ, 3λ), for both Gaussian and exponential
media. Each such 7650 × 7650 × 7650 km3 acoustic simulation
requires approximately 50 h of computation time on a cluster of
16 Pentium II processors. Three long-distance runs, out to a distance
of L = 85λ, have also been completed to date, all in Gaussian
media, with ε = 0.01 and a = 0.75λ, 3λ, 12λ. Each of these 256 ×
256 × 640 computations churns away for approximately 2 weeks
on the same 16-processor cluster.

2.5 Snapshots

Fig. 3 shows a time-lapse sequence of 2-D slices through the nu-
merically computed 3-D pressure field p(x, t) within an ε = 0.03,
a = 3λ, Gaussian medium. The amplitudes p(x, t) at each 125 s
interval have been corrected for L−1 geometrical spreading in a
background homogeneous medium, to enable the various snapshots
of the expanding wave to be compared. At short times, t = 125–
250 s after ‘detonation’ of the source, the wave front is very nearly

0 km

7650 km

0 km 7650 

250 s

375 s

500 s

625 s

750 s

875 s

125 s

Caustic Encounter

Figure 3. Cross-sectional view of the quasi-spherical wave fronts radiated
by a point source (green star) in a 3-D Gaussian medium with ε = 0.03 and
a = 3λ. The positions of the expanding wave at 125 s intervals are shown.
Blue colours denote regions of compression, where p(x, t) > 0, whereas red
colours denote regions of dilatation, where p(x, t) < 0. The amplitudes have
been corrected for L−1 geometrical spreading in a background homogeneous
medium, and the codas trailing the ballistic wave fronts by more than 100 s
have been muted, in order to produce this superimposed time-lapse display.
The reduced amplitudes near the edges of the 7650 × 7650 × 7650 km3

cube are caused by the absorbing layers, which have been used to suppress
boundary reflections. The diffractive tail signature of a caustic encounter is
indicated on the plot.

spherical. However, as time goes on, the spreading wave front de-
velops traveltime corrugations, and associated regions of high and
low amplitude, as a result of focusing and defocusing by the 3-D
heterogeneities. In this particular example, we are able to track the
passage of the finite-frequency wave front through a ray-theoretical
caustic, as demonstrated by the divot of negative curvature and en-
hanced amplitude p(x, t) that appears on the ballistic wave front just
to the right of the vertical at a time t = 500 s. The wave front at
this time has just passed through a slow anomaly, δσ (x) > 0, which
acts as a lens to focus the wave energy, and which gives rise to a
traveltime delay. Later, at t = 625–750 s, there are weak diffrac-
tions in the coda behind the divot. These diffracted waves are the
finite-frequency manifestation of the back branch of a cusp caustic
triplication.

In Fig. 4 we show a number of snapshots of p(x, t), all at the same
instant, t = 750 s, but in differing Gaussian and exponential 3-D me-
dia, with both very weak (ε = 0.01) and moderately weak (ε = 0.03)
heterogeneity, and with both short (a = 0.75λ) and moderately long
(a = 3λ) scalelengths, as indicated. In the top four plots, Figs 4(a)–
(d), there is a significant coda in the wake of the ballistic wave front,
as a result of backscattering off the short-scale (a = 0.75λ) struc-
ture. In general, the coda fluctuations have longer wavelengths and
lower frequencies than the ballistic wave front. This is a result of
the preferential backscattering of low-frequency waves and forward
scattering of high-frequency waves in a short-scale medium (Morse
& Ingard 1968, Section 8.2). It is also noteworthy that the coda
in an exponential medium is enriched in short-wavelength, high-
frequency energy relative to that in a Gaussian medium with the
same ε and a/λ, as the individual anomalies can be of much smaller
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Figure 4. Cross-sectional snapshots of the pressure field p(x, t) generated by a point source (green star) in a variety of 3-D media. Gaussian media are plotted
on the left, and exponential media on the right. The heterogeneity strengths ε and dimensionless scalelengths a/λ are given in the lower right-hand corner of
each plot. Every snapshot is depicted at the same time, t = 750 s, after the waves have propagated a distance L ≈ 30λ. The random Fourier phases in each plot
are identical, so that every 3-D medium can be regarded as a filtered and/or scaled version of every other. Blue colours denote regions of compression where
p(x, t) > 0, whereas red colours denote regions of dilatation, where p(x, t) < 0.

scale isotropically scattering the whole frequency band of the inci-
dent wave. The strong backscattering off the persistent small-scale
structure in an exponential medium is most clearly seen in the lowest
four plots, Figs 4(e)–(g), which compare the pressure responses p(x,
t) of a number of media with a = 3λ. In the Gaussian media on the
left, the response is dominated by the traveltime corrugations of the
ballistic wave front, with trailing diffractions owing to triplications
following caustic passages in the case of the stronger (ε = 0.03)
heterogeneity. In the exponential media on the right, the divots and
protuberances on the leading edge of the wave front are very nearly
the same; however, there is a more pronounced coda of incoherent
backscattered waves.

The strength of the heterogeneity also has an obvious effect upon
both the magnitude of the ballistic wave front corrugations and the
amplitude of the coda. Comparing the two Gaussian a = 3λ simu-
lations, Figs 4(e)–(g), for example, we see that the traveltime cor-
rugations accrued upon propagation through an ε = 0.03 medium
are approximately three times more pronounced than those accrued
upon propagation through an ε = 0.01 medium. This is consistent
with a linear dependence of the traveltime anomaly δT = T het −
T hom upon the slowness perturbation δσ (x), as predicted by the lin-
earized traveltime theories that we shall summarize in Section 3. The
corrugations in the ballistic wave front are clearly visible in all of the
ε = 0.03 simulations; however, they are most pronounced in the case
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of a Gaussian a = 3λ medium, Fig. 4(g), with the longest-scale het-
erogeneity. Smaller-scale heterogeneity gives rise to smaller-scale
divots and protuberances in the wave front, and these are constantly
being healed by diffractive processes.

Finally, we should acknowledge that the imperfections of our
simple absorbing boundary condition are clearly visible in our snap-
shots. Since our boundary ‘sponge’ layer is tuned to absorb wave
energy arriving at near-normal incidence angles, the largest spurious
reflections are off the edge walls of the cube, where the incidence is
most glancing. There is also a clear ‘echo’ (most evident in Fig. 4e)
trailing the ballistic wave front, owing to a near-source reflection off
the bottom of the cube. Note that the colour scale in Fig. 4 has been
heavily saturated to accentuate the coda; in fact, the amplitude of
the unwanted reflections is always at least ten times smaller than the
amplitude of the ballistic wave front. Furthermore, causality con-
siderations dictated by our placement of the source well away from
the bottom of the cube guarantee that, except very near the edges
of the cube, the reflections always arrive well after the first-arriving
pulse.

2.6 Cross-correlation traveltimes

In each ‘mantle in a box’ simulation, we record the response p(r, t)
at an ‘umbrella’ array of receivers r, situated at various fixed dis-
tances L = ‖r − s‖ from the source. The finite-frequency traveltime
residual δT = T het − T hom of the first-arriving pulse is measured
by cross-correlation with the corresponding response of an infinite
homogeneous medium:∫ t2

t1

phom(r, t − δT )phet(r, t) dt = maximum, (18)

where phom(r, t) is given by the explicit analytical formula (17) and
phet(r, t) is the result of numerically solving eqs (13) and (14). With
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Figure 5. Synthetic pressure-response seismograms in a Gaussian (left) and an exponential (right) medium, with a heterogeneity strength ε = 0.01 and a
correlation scalelength a = 0.75λ. The receivers r are situated along a straight line, at varying distances L = 7.5λ, 15λ, 22.5λ, 30λ (top to bottom) from
the source s. Solid lines depict the numerically computed heterogeneous-medium seismograms phet(r, t); dashed lines depict the corresponding unshifted
homogeneous-medium seismograms phom(r, t). The measured cross-correlation traveltime shift δT is indicated in each case.

our sign convention, a positive residual, δT > 0, corresponds to a
synthetic traveltime delay. We measure δT by least-squares fitting
a quadratic to the discretized autocorrelation function (18) in the
vicinity of its maximum. The precision of the resulting measure-
ment is well below the �t = 0.25 s sampling rate. In all cases, we
situate the receivers r far enough from the edges of the cube so
that we can be confident that the first 30–40 s of phet(r, t), subse-
quent to its onset at t ≈ σ L , is a ‘ground-truth’ representation of
the response of an infinite 3-D medium with the stipulated random
properties. The ∼25 s duration of phom(r, t) then guarantees that
our cross-correlation traveltime measurements δT are uncorrupted
by spurious reflections from the imperfectly absorbing boundaries.

Comparison of the synthetic seismograms phet(r, t) at various
source–receiver distances L and in various media reveals interest-
ing wave propagation phenomena. In Fig. 5 we show the responses
phet(r, t) of an ε = 0.01, a = 0.75λ Gaussian and exponential
medium, at various distances L = 7.5λ, 15λ, 22.5λ, 30λ, along
a straight line passing through the source s. The similarity of the
Gaussian and exponential seismograms reflects the fact that the same
random phases were used to generate the two media (see Fig. 1).
As the propagation distance L = ‖r − s‖ increases, the waveforms
become more distorted, and low-amplitude oscillations start to ap-
pear in the coda; in addition, the magnitude of the cross-correlation
traveltime shift δT increases with increasing distance L in both
media.

In Fig. 6 we compare phet(r, t) at a fixed receiver r situated at a
distance L = 30λ from the source s, in both Gaussian and exponen-
tial media, with ε = 0.01 and a variety of correlation scalelengths
a = 0.75λ, 1.5λ, 2.25λ, 3λ. There is a clear tendency for the travel-
time shift δT to increase as the heterogeneity scale a increases; this
can be attributed to the increased importance of wave front healing
effects in the smaller-scale media. Comparing the Gaussian and ex-
ponential media, we see that the coda is generally more prominent
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Figure 6. Synthetic pressure-response seismograms at a fixed receiver r, in a Gaussian (left) and an exponential (right) medium, with a heterogeneity strength
ε = 0.01, and varying scalelengths, ranging from a = 0.75λ (top) to a = 3λ (bottom). The source–receiver distance is L = ‖r − s‖ = 30λ. Solid lines depict the
numerically computed heterogeneous-medium seismograms phet(r, t); dashed lines depict the corresponding unshifted homogeneous-medium seismograms
phom(r, t). The measured cross-correlation traveltime shift δT is indicated in each case.

in the latter; this is caused by the persistent short-scale structure in
the tail of the exponential spectrum.

Synthetic seismograms from one of the long-distance runs, in a
Gaussian medium with ε = 0.01 and a = 3λ, are shown in Fig. 7.
Even in a medium with such a long correlation distance, a signifi-
cant amount of scattered or multipathed energy starts to creep into
the coda at long distances, beyond L ≈ 64λ. In these four exam-
ples, however, this later-arriving energy is sufficiently unobtrusive
that it does not interfere with the cross-correlation traveltime-shift
measurement of the first-arriving pulse.

2.7 Winnowing the data set

Multipathed arrivals are not always as easily neglected as in Fig. 7.
Prior to comparison with the theoretical traveltime predictions
that we describe in the next section, we winnowed the data set
of measured traveltime shifts δT , to eliminate synthetic seismo-
grams phet(r, t) that appear to be significantly contaminated by
later-arriving energy. Our rejection criterion was modelled after
the quality-control criteria commonly employed in global cross-
correlation traveltime measurement programs, such as that con-
ducted by researchers at the Scripps Institution of Oceanography
(Masters et al. 1996). Six examples of rejected seismograms are
shown in Fig. 8; in all cases, the solid curves represent the nu-
merically computed response phet(r, t), whereas the dashed curves
represent the homogeneous-medium pulse phom(r, t − δT ), after
it has been shifted to maximize the cross-correlation. In the top
four examples (Figs 8a–d ), the heterogeneous-medium waveforms
phet(r, t) are visibly broadened relative to phom(r, t − δT ); as a re-
sult, the time shifts δT which maximize the cross-correlation (18)
fail to align the initial upswings of the two pulses. These four ex-
amples are illustrative of the stringency of our rejection criterion;

500 510 520 530 540 550 560 570 580 590 600500 510 520 530 540 550 560 570 580 590 600

1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 11301030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130

1560 1570 1580 1590 1600 1610 1620 1630 1640 1650 16601560 1570 1580 1590 1600 1610 1620 1630 1640 1650 1660
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time (s)
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L = 42λ

L = 64λ

L = 85λ

δT = –2.26 s

δT = –3.07 s

δT = –1.09 s

δT = –0.09 s

Figure 7. Synthetic pressure-response seismograms in a Gaussian random
medium, with a (weak) heterogeneity strength ε = 0.01 and a (long) cor-
relation scalelength a = 3λ. The receivers r are situated along a straight
line, at varying distances L = 21λ, 42λ, 64λ, 85λ (top to bottom) from the
source s. Solid lines depict the heterogeneous-medium waveforms phet(r,
t); dashed lines depict the corresponding unshifted homogeneous-medium
waveforms phom(r, t). The acoustic wave equation (13) and (14) were nu-
merically integrated in an elongated 7650 × 7650 × 19 170 km3 box, in
order to synthesize these long-distance seismograms.
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Figure 8. Solid lines in (a)–(f) show examples of seismograms phet(r, t)
rejected on the basis that the measured traveltime shift δT is overly influenced
by multipathed energy arriving late in the cross-correlation time window
t1 ≤ t ≤ t2. Dashed lines show the ill-fitting, shifted reference seismograms
phom(r, t − δT ), for comparison.

the rejected data set also includes waveforms phet(r, t) that are far
more misshapen as a result of caustic triplications, such as the latter
two examples shown in Figs 8(e) and (f).

Histograms showing the percentage of rejected seismograms in
both Gaussian and exponential media are shown in Fig. 9. The hor-
izontal axes are the heterogeneity strength ε and the ratio of the
scalelength a to the propagation distance L. The curved lines on the
base of each cube are contours of the composite quantity ε2/3(L/a).
This particular combination of dimensionless parameters is chosen,
in accordance with the ray-theoretical analysis of caustic forma-
tion in random media by Kulkarny & White (1982) and Spetzler &
Snieder (2001a). The latter authors showed that the most probable
location of the first caustic in a Gaussian random medium is at a
distance

L = 1.12ε−2/3a (19)

away from the source. It is evident that, for Gaussian media, there is
a close relationship between our percentage of rejected seismograms
and this critical parameter, which is denoted by the dashed contour.
The value of ε2/3(L/a) was not monitored during our interactive
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Figure 9. 2-D histograms showing the percentage of rejected seismograms
phet(r, t) as a function of 0.01 ≤ ε ≤ 0.04 and 0 ≤ a/L ≤ 0.4, in both
Gaussian (top) and exponential (bottom) random media. The curved solid
contours on the base of each cube are isolines of the dimensionless parameter
ε2/3(L/a), increasing in equal steps of 0.25 away from the lowest plotted
value ε2/3(L/a) = 0.25 in the lower right-hand corner. The first two of
these contours are labelled in each plot. The dashed blue contour in the top
plot denotes the critical value ε2/3(L/a) = 1.12, corresponding to the most
probable location of the first caustic in a Gaussian random medium (Spetzler
& Snieder 2001a).

rejection process; nevertheless, very few Gaussian-medium seis-
mograms were rejected for values ε2/3(L/a) < 1.12, and there is a
systematic increase in the percentage of rejections as this parameter
increases. This suggests strongly that the principal factor governing
whether a cross-correlation traveltime measurement is considered
‘acceptable’ on the basis of the similarity between phet(r, t) and
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phom(r, t − δT ) is whether or not the associated waves have passed
through a caustic. We are unaware of a theoretical relation analogous
to eq. (19) for an exponentially correlated random medium; however,
it appears from Fig. 9 that the percentage of rejected seismograms
is organized by the same dimensionless parameter, ε2/3(L/a), with
the critical value for the appearance of the first caustics being even
less than ε2/3(L/a) = 1.12.

3 T H E O R E T I C A L T R AV E LT I M E S

The principal objective of this paper is to compare our ‘ground-truth’
cross-correlation traveltime measurements with the predictions of
linearized geometrical ray theory and 3-D Born–Fréchet kernel the-
ory. We present a brief review of these two competing theories in
the present section.

3.1 Ray theory

The basis of essentially all seismic traveltime tomography at the
present time is linearized ray theory. In this commonly employed
approximation, a measured traveltime shift is represented as a 1-D
line integral along the geometrical ray in the background medium:

δT =
∫

ray
δσ (x) d�, (20)

where d� is the differential arclength along the reference ray.
In the case of the homogeneous background media investigated here,
the integration in eq. (20) is along the straight-line path between the
source and receiver:

x(�) = s + (�/L)(r − s), 0 ≤ � ≤ L . (21)

The linearized ray-theoretical relation (20) is strictly an infinite-
frequency approximation, i.e. its validity is limited to the regime
λ� a, in which the wavelength is much shorter than the scalelength
of the 3-D heterogeneity. If the heterogeneity is strong, ε �� 1 and/or
the dimensionless propagation distance is long, L � λ, the actual
geometrical ray path can deviate substantially from the background-
medium, straight-line path, eq. (21). Fermat’s principle guarantees
that the result (20) is valid to first order in ε; however, second-order
expressions that account explicitly for the ray path tortuosity have
also been developed (see, e.g., Snieder & Sambridge 1992). Most
global traveltime inversions continue to be based upon the linearized
relation (20), so we shall confine our comparisons to this case.

3.2 Banana–doughnut kernels

Traveltimes measured by whole-pulse cross-correlation can be
significantly influenced by wave front healing and other finite-
frequency diffraction and scattering effects; a theoretical approach
that is more sophisticated than infinite-frequency ray theory is re-
quired to account properly for these phenomena. Recognizing that
a finite-frequency wave is able to ‘feel’ the slowness heterogeneity
δσ (x) off the infinitesimally thin source-to-receiver ray, it is logi-
cal to replace eq. (20) by the most general linear traveltime-shift
inverse-problem formulation:

δT =
∫ ∫ ∫

⊕
K (x) δσ (x) d3x, (22)

where the integration is carried out over the whole Earth, denoted
by ⊕. The quantity K(x) in eq. (22) is the Fréchet kernel for a cross-
correlation traveltime shift measurement. Dahlen et al. (2000) and
Zhao et al. (2000) have used the Born approximation to derive an

explicit expression for this 3-D sensitivity kernel. In the case of a
homogeneous background medium under consideration here, the
kernel reduces to

K (x) = σ

2π

( ‖r − s‖
‖x − r‖‖x − s‖

)

×
∫ ∞

0 ω3 |ṁ(ω)|2 sin [ω�T (x)] dω∫ ∞
0 ω2 |ṁ(ω)|2 dω

, (23)

where ω is the angular frequency, ṁ(ω) is the Fourier transform of
the unperturbed pulse shape ṁ(t), and

�T (x) = σ (‖x − r‖ + ‖x − s‖ − ‖r − s‖). (24)

Here s and r are the positions of the source and receiver, as before,
and x can be regarded as the location of a ‘point scatterer’ δσ (x),
as illustrated in the upper portion of Fig. 10. The quantity �T (x),
defined in eq. (24), is the extra time required for a background-
medium wave to take the detour path from the source s through the
scatterer x and on to the receiver r, rather than proceeding directly
along the straight-line path, eq. (21). The presence of the power
spectrum |ṁ(ω)|2 in eq. (23) serves as a reminder that K(x) is the
Fréchet kernel of a finite-frequency traveltime shift δT measured by
cross-correlation of the two pulses phet(r, t) and phom(r, t). For the
Gaussian synthetic source time function (16) used in our numerical
computations, the background-pulse spectrum is given by

|ṁ(ω)|2 = (ω2τ 2/2π ) exp(−ω2τ 2/4π2). (25)

The detour time �T (x) vanishes for any scatterer x situated on
the straight line (21) connecting the source s and the receiver r;
for this reason, the sensitivity K(x) of a finite-frequency traveltime
measurement is identically zero everywhere along the background
geometrical ray. In fact, the non-zero sensitivity is spread out over

Figure 10. Top: the Born approximation accounts for waves that interact
once and only once with the 3-D slowness perturbation δσ (x) situated at
every point x of the heterogeneous medium. Interference between these
singly scattered waves and the wave that propagates directly from the source
s to the receiver r gives rise to the traveltime shift δT . Bottom: scattering
points x with the same detour time �T (x) = σ (‖x − r‖ + ‖x − s‖ −
‖r − s‖) lie on the surface of an ellipsoid of revolution with major axis ∼L
and minor axis ∼(λL)1/2. The quantity q is the perpendicular distance of x
from the straight source–receiver ray, whereas l and L − l are the distances
of the perpendicular projection point from the source s and the receiver r,
respectively.
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Figure 11. Cross-sections through the traveltime sensitivity kernel K(x) in
a background homogeneous medium. The locations of the source s and the
receiver r are indicated by the star and the inverted triangle, respectively.
The inset plot in lower right-hand corner shows a path-perpendicular cross-
section halfway between the source and receiver, as indicated by the black
line. Red–orange colours denote regions of positive sensitivity, K (x) > 0,
in which a slow anomaly, δσ (x) > 0, leads to a traveltime delay, δT >

0; blue–green colours denote regions of negative sensitivity, K (x) < 0, in
which a slow anomaly, δσ (x) > 0, leads to a traveltime advance, δT < 0;
yellow colours denote regions of negligible sensitivity. The characteristic
wavelength of the wave is λ= 200 km, as in our numerical simulations, and
the propagation distance is L = ‖r − s‖ = 5000 km.

an ellipsoidal annulus surrounding the straight source–receiver ray,
as shown in Fig. 11. The first Fresnel zone consists of all red–orange
points x satisfying �T (x) ≤ τ/2 (Born & Wolf 1970, Section 8.2).
The traveltime sensitivity is maximal and positive, K (x) > 0, in the
outer regions of this zone, and it is weak but negative, K (x) < 0,
in the second Fresnel zone, defined by τ/2 ≤ �T (x) ≤ τ . At more
distant points, in the third Fresnel zone and beyond, the sensitivity
is negligible, K (x) ≈ 0.

In a ray-plane cross-section, the traveltime sensitivity kernel of
a turning ray in a spherically symmetric background Earth model
resembles a banana, whereas in a cross-section perpendicular to
the ray, it resembles a doughnut. For this reason, 3-D Born–Fréchet
traveltime kernels have been given the whimsical monicker banana–
doughnut kernels (Marquering et al. 1999; Dahlen et al. 2000; Hung
et al. 2000, 2001). In the case of an infinite homogeneous back-
ground medium, eqs (23) and (24) can be considered to be the
exact Fréchet kernel; this is true in any situation in which the ex-
act unperturbed response—in the present case eq. (17)—is used as
the zeroth-order basis of the Born approximation (Boerner & West
1989).

4 VA L I D I T Y O F R AY A N D
B A N A N A – D O U G H N U T T H E O RY

Whether any linearized relation can accurately describe cross-
correlation traveltime shift measurements δT over the full range

of medium and propagation-distance parameters ε, a/λ and L/λ is
obviously another matter. Determining the empirical range of va-
lidity of eqs (20), (23) and (24) is the principal objective of our
‘ground-truth’ numerical experiments.

4.1 Heuristic expectations

For propagation distances that are much greater than the wavelength,
L �λ, the first Fresnel zone in a homogeneous medium is comprised
of all the points x = (q, �) satisfying

q <∼
√

λ�(L − �)

L
, (26)

where 0 ≤ � ≤ L and 0 ≤ q � L are the distance along and the
perpendicular distance from the source–receiver ray, as illustrated
in the lower portion of Fig. 10. Eq. (26) is an ellipsoid of revolution
about the source–receiver ray, with a major axis of length L and a
minor axis of length (λL)1/2. Plots of these first-Fresnel-zone el-
lipsoids, for propagation distances L = 7.5λ, 15λ, 22.5λ, 30λ are
shown superimposed upon 2-D cross-sections of Gaussian random
media with scalelengths a = 0.75λ, 1.5λ, 2.25λ, 3λ in Fig. 12.
The critical parameter governing the validity of ray theory (20) is
the ratio of the medium scalelength a to the maximum width of
the Fresnel zone, (λL)1/2 (Tatarskii 1961; Kravtsov & Orlov 1990).
In the limiting case of a large-scale medium, a � (λL)1/2, the cross-
path variation of the slowness variation δσ (x) can be disregarded in
the 3-D integral (22). In that case, banana–doughnut theory reduces
analytically to ray theory (Dahlen et al. 2000; Dahlen & Baig 2002).
In the opposite limit of a short-scale medium, ray theory loses its
validity because it is possible for a small slow or fast anomaly δσ (x)
to ‘hide’ within the doughnut hole of reduced sensitivity K(x). In-
deed, it is the presence of the hole that enables the 3-D Fréchet
sensitivity kernel, eqs (23) and (24), to account for diffractive wave
front healing, as discussed by Hung et al. (2000, 2001). Perusal of
Fig. 12 suggests that the critical dimension of a slowness anomaly
δσ (x) that is ‘just’ able to ‘hide’ effectively is

a ≈ a constant of the order of unity × (λL)1/2. (27)

As we shall show, this heuristic expectation is consistent with our
numerical simulations; the empirical value of the constant in the
criterion (27) is found to be ∼0.5. We shall refer to the dimensionless
ratio of the correlation length to the Fresnel zone width, a/(λL)1/2,
as the doughnut-hole parameter in what follows.

4.2 Scatterplot comparisons

Figs 13–16 show a direct comparison of the measured cross-
correlation traveltime shifts in a variety of Gaussian random media
and at a variety of source–receiver distances with the predictions (20)
and (22)–(24) of linearized ray theory and 3-D banana–doughnut
theory. The vertical axis in each case is the ‘ground-truth’ travel-
time measurement, whereas the horizontal axis is the theoretical
prediction. If the theory of which the validity is being tested were
perfect, all of the dots would lie along the 1:1 short-dashed diago-
nal line. The long-dashed grey line is the result of a least-squares
best fit to the synthetic data in every regime. In Figs 13 and 14 we
compare the traveltime shifts δT at a fixed source–receiver distance
L = ‖r − s‖ = 22.5λ, in random Gaussian media with different
scalelengths, a = 0.75λ, 1.5λ, 2.25λ, 3λ, whereas in Figs 15 and 16
we compare δT at various propagation distances L = 21λ, 42λ, 64λ,
85λ in a Gaussian medium with a fixed (short) correlation distance
a = 0.75λ. The heterogeneity strength is ε = 0.01 in all cases.
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Figure 12. 2-D cross-sections through Gaussian random media with scalelengths a = 0.75λ (upper left), a = 1.5λ (upper right), a = 2.25λ (lower left) and
a = 3λ (lower right). Red–orange colours denote slow regions, where σ (x) > 0, whereas blue–green colours denote fast regions where σ (x) < 0. Superimposed
ellipses show the first Fresnel zones of waves with dimensionless propagation distances L = 7.5λ, 15λ, 22.5λ, 30λ (top to bottom in each plot). Black dots
denote the source s and the receiver r. The maximum width of each Fresnel zone is (λL)1/2.

Two features of these scatterplots are especially noteworthy: (1)
particularly for short scalelengths at a fixed propagation distance
and at long propagation distances for a fixed correlation length, the
ray theoretical slope of the best-fitting straight line is significantly
less than unity and (2) banana–doughnut theory (Figs 14 and 16) is
markedly superior to ray theory (Figs 13 and 15) for all scalelengths
and propagation distances considered here. The reduction in slope
at small values of a/λ and L/λ in Figs 13 and 15 is indicative of
the effect of diffractive wave front healing: the measured absolute
traveltime shift |δT | is less than the ray-theoretical prediction, eq.
(20), because ray theory is based upon the premise that a wave front
‘remembers’ every small-scale anomaly δσ (x) that it passes through
en route from the source s to the receiver r, whereas actual finite-
frequency waves ‘forget’. The improvement in the ray-theoretical

prediction (20) as either a/λ increases at fixed L/λ (Fig. 13) or
L/λ decreases at fixed a/λ (Fig. 15) is an expected consequence
of the heuristic considerations discussed in Section 4.1. Banana–
doughnut theory, eq. (22), does a substantially better job of predict-
ing the ‘ground-truth’ traveltime measurements δT at all dimen-
sionless scalelengths a/λ and propagation distances L/λ, because
it accounts for finite-frequency off-ray sensitivity and wave front
healing, whereas ray theory, eq. (20), does not.

Closer inspection of Figs 13–16 reveals two features that are
beyond the scope of the present investigation. First, there is a clear
tendency for the y-intercept of the best-fitting straight lines in the
two banana–doughnut comparisons, Figs 14 and 16, to lie below the
1:1 line through the origin. This is a finite-frequency manifestation
of the so-called ‘fast-path’ or ‘velocity-shift’ phenomenon, which
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Figure 13. Scatterplot comparison of the measured cross-correlation trav-
eltime shift (vertical axis) with the corresponding ray-theoretical predic-
tion (horizontal axis) in Gaussian random media with a fixed heterogeneity
strength ε = 0.01 and various correlation scalelengths a = 0.75λ (upper
left), a = 1.5λ (upper right), a = 2.25λ (lower left) and a = 3λ (lower right).
The receivers r are situated on an ‘umbrella’ at a distance L = 22.5λ from
the source s. A least-squares criterion has been used to find the best-fitting
line (grey, long dashed) in every medium. The tendency for the best-fitting
slopes to be less than one is indicative of diffractive wave front healing.
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Figure 14. Same as Fig. 13, except that in this case the measured cross-
correlation traveltime shifts (vertical axis) are compared against the predic-
tions of banana–doughnut theory (horizontal axis) rather than against ray
theory. Because the 3-D traveltime Fréchet kernels, eqs (23) and (24), ac-
count for off-ray sensitivity and diffractive wave front healing effects, they
are in much better agreement with the ‘ground-truth’ measurements, partic-
ularly in media with slight (ε = 0.01) short-scale heterogeneity.
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Figure 15. Scatterplot comparison of the measured cross-correlation trav-
eltime shift (vertical axis) with the corresponding ray-theoretical predic-
tion (horizontal axis) in Gaussian random media with a fixed heterogeneity
strength ε = 0.01 and a (short) correlation scalelength a = 0.75λ. The re-
ceivers r are deployed in a suite of ‘umbrella’ arrays, at various distances
L = 21λ (upper left), L = 42λ (upper right), L = 64λ (lower left) and L =
85λ (lower right) from the source s. The scatter about the 1:1 line increases,
and the slope of the best-fitting line (grey, long dashed) decreases, as the
propagation distance L = ‖r − s‖ increases.
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Figure 16. Same as in Fig. 15, except that in this case the measured cross-
correlation traveltime shifts (vertical axis) are compared against the predic-
tions of banana–doughnut theory (horizontal axis) rather than against ray
theory. It is evident that the 3-D traveltime Fréchet kernels (23)–(24) offer
a significant improvement over linearized ray theory (20), in a weakly het-
erogeneous (ε = 0.01), small-scale (a = 0.75λ) medium, even at the longest
propagation distances considered in this study.
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has been extensively investigated in the ray-theoretical limit. In that
limit, the ‘velocity shift’ is a second-order effect associated with the
tendency for the actual ray path to seek out the fastest possible route
between the source s and the receiver r (Wielandt 1987; Müller et al.
1992; Nolet & Moser 1993; Roth et al. 1993; Boyse & Keller 1995;
Shapiro et al. 1996). Secondly, we note that in both Figs 15 and
16, there is very little increase in the ‘ground-truth’ mean-square
traveltime shift 〈δT 2〉 with increasing propagation distance L. This
observation is inconsistent with the well-known linear dependence
of the traveltime variance 〈δT 2〉 upon the propagation distance L in
the ray-theoretical limit (Chernov 1960, Section 7; Boyse & Keller
1995; Iooss et al. 2000):

〈δT 2〉 =
{√

π〈δσ 2〉aL Gaussian

2〈δσ 2〉aL exponential.
(28)

However, such a long-distance saturation of the traveltime variance
has been predicted, on the basis of the Rytov approximation, for
monochromatic, quasi-plane wave propagation in a 2-D Gaussian
medium (Samuelides 1998). We shall present a more systematic
analysis of the finite-frequency ‘velocity shift’ and traveltime vari-
ance in a 3-D random medium in a forthcoming paper.

4.3 Scatterplot slopes

As noted above, the slope of a ‘ground truth’ versus ray theory
scatterplot is a measure of the importance of diffractive wave front
healing. In Figs 17 and 18, we plot the best-fitting slopes in every ε,
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Figure 17. Best-fitting scatterplot slope versus the doughnut-hole param-
eter a/(λL)1/2, for the full suite of Gaussian media considered in this study.
Ray-theoretical and banana–doughnut slopes are plotted in the left and right
columns, respectively. Heterogeneity strength varies from ε = 0.01 (top) to
ε = 0.04 (bottom). If the theoretical prediction (20) or (22) were exact, the
best-fitting slope would be unity (dashed line). The error bars in each ε, a/λ,
L/λ regime represents two standard deviations.
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Figure 18. Same as in Fig. 17, except for exponential rather than Gaussian
media. There are fewer data points at small values of the doughnut-hole
parameter a/(λL)1/2, because we did not perform any long-distance expo-
nential runs. Each error bar again represents two standard deviations.

a/λ, L/λ regime versus the dimensionless doughnut-hole parameter
a/(λL)1/2, which we expect to be the principal determinant of the
degree of wave front healing. Fig. 17 shows the data for the Gaussian
media, with the ray-theoretical slopes plotted on the left and the
banana–doughnut slopes plotted on the right; Fig. 18 shows the data
for the exponential media in an identical format. Every measured
traveltime shift δT in every one of our 3-D numerical simulations is
represented in these two summary plots. The ray-theoretical slopes
begin to deviate markedly from unity for values of the correlation
length that are shorter than

a ≈ 0.5(λL)1/2. (29)

Protuberances and divots on the expanding wave front with char-
acteristic scalelengths that are significantly less than this experi-
ence rapid wave front healing, because the causative heterogeneities
δσ (x) are able to ‘hide’ within the low-sensitivity doughnut hole. In
exponentially correlated media (Fig. 18) there is significant diffrac-
tive healing even at longer scalelengths, a ≈ (λL)1/2, as a result of
the persistent tail of high-wavenumber structure in their power spec-
tra. The 3-D Fréchet kernels K(x) account for wave front healing
and other finite-frequency diffraction effects, correct to first order
in weakly heterogeneous (ε � 1) media; as a result, the banana–
doughnut scatterplot slopes are indistinguishable from unity down
to scalelengths as short as

a ≈ 0.1(λL)1/2. (30)

The empirical limiting values, eqs (29) and (30), pertain to both
Gaussian and exponentially 3-D random media, for all values of the
root-mean-square heterogeneity strength considered here, 0.01 ≤
ε ≤ 0.04. There is a general tendency for the error bars in Figs 17 and
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18 to increase as the doughnut-hole parameter a/(λL)1/2 decreases;
this reflects the increase in scatter about the best-fitting correlation
lines, which is, in turn, a manifestation of the increasing importance
of multiple scattering.

4.4 Variance reduction

The acid test of any theoretical prediction is how well it fits the
data. As an empirical measure of the ‘goodness’ of ray theory,
eq. (20), and banana–doughnut theory, eqs (22)–(24), we consider
the percentage variance reduction,

variance reduction =
[

1 −
∑

(δT − δT̂ )2∑
δT 2

]

×100 per cent, (31)

where the sum is over all of the data in a given ε, a/λ, L/λ regime,
and where the quantities δT and δT̂ are the measured and theoretical
traveltime shifts, respectively. A variance reduction of 100 per cent
indicates that the theory is in perfect agreement with the ‘ground-
truth’ cross-correlation measurements (i.e. the points in the associ-
ated scatterplot would all lie exactly upon the 1:1 line). In Figs 19 and
20, we plot the percentage variance reduction (31) in each of the in-
vestigated parameter regimes against the doughnut-hole parameter
a/(λL)1/2. The now familiar signature of diffractive wave front heal-
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Figure 19. Percentage variance reduction (31) versus the banana–doughnut
parameter a/(λL)1/2, for the majority of the Gaussian media considered in
this study. Ray-theoretical and banana–doughnut variance reductions are
plotted in the left and right columns, respectively. Heterogeneity strength
varies from ε = 0.01 (top) to ε = 0.04 (bottom). Error bars (two standard
deviations) have been obtained by bootstrapping, as described by Press et al.
(1992, Section 15.6). A few a/(λL)1/2 ≈ 0.1 regimes, for which the ray-
theoretical variance reduction falls well below −25 per cent, have not been
plotted.
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Figure 20. Same as Fig. 19, except for exponential rather than Gaussian
media. Bootstrap error bars represent two standard deviations. The error
bars in both Figs 19 and 20 increase with decreasing a/(λL)1/2, owing to
the increasing importance of multiple scattering in these small-scale, long-
propagation-distance regimes.

ing is readily apparent: below a scalelength a ≈ 0.5(λL)1/2, the abil-
ity of ray theory, eq. (20), to fit the ‘ground-truth’ data begins to de-
teriorate rapidly. In a few instances, the variance reduction even falls
below zero; the ‘prediction’ that the medium is completely homoge-
neous, δT̂ = 0, is superior to the ray-theoretical prediction in such
regimes! Banana–doughnut theory, eqs (22)–(24), achieves a vari-
ance reduction very near 100 per cent in weakly heterogeneous (ε =
0.01–0.02) Gaussian and exponential media. As the heterogeneity
strength increases, so does the misfit; nevertheless, the variance re-
duction of banana–doughnut theory is generally greater than 75 per
cent, and it is clearly superior to ray theory in both Gaussian and
exponential media in all ε, a/λL/λ regimes. The improvement is
most pronounced for media with smaller correlation scalelengths,
in the range 0.1(λL)1/2 <∼ a <∼ 0.5(λL)1/2.

The principal reason for the decline in the banana–doughnut vari-
ance reduction with increasing heterogeneity strength ε is the ten-
dency for the data to fall systematically below the 1:1 scatterplot
line. This tendency, as we have noted, is a finite-frequency manifes-
tation of the so-called ‘velocity shift’ phenomenon (Wielandt 1987;
Müller et al. 1992; Nolet & Moser 1993; Roth et al. 1993; Boyse &
Keller 1995; Shapiro et al. 1996). Inasmuch as this is a second-order
effect, it cannot be accounted for by any linearized theory. Physical
considerations suggest that it might be possible to improve the vari-
ance reduction in Figs 19 and 20 by introducing some sort of ‘bent’
banana–doughnut kernel K(x), which has zero sensitivity along a
smoothed version of the actual geometrical ray, rather than along the
unperturbed straight-line source–receiver path. The investigation of
any such iterative inversion scheme is, however, beyond the scope
of this paper.
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5 C O N C L U S I O N

In summary, we have shown that wave front healing and other finite-
frequency diffraction effects exert a significant influence upon cross-
correlation traveltimes in both Gaussian and exponential random
media, wherever the correlation scalelength a of the 3-D hetero-
geneity is smaller than half the maximum width of the first source-
to-receiver Fresnel zone, i.e. whenever a <∼ 0.5(λL)1/2, where λis the
characteristic wavelength of the waves and L is the propagation dis-
tance. Born banana–doughnut theory accounts for finite-frequency
wave front healing by virtue of the presence of a low-sensitivity
hole within the 3-D Fréchet kernel K(x), so it remains valid down to
substantially smaller scalelengths, at least a ≈ 0.1(λL)1/2. Roughly
speaking, we can conclude, on the basis of our ‘ground-truth’ nu-
merical comparisons that 3-D banana–doughnut theory enables a
factor-of-5 improvement in the resolving power of a finite-frequency
traveltime inversion. The wavelength of a teleseismic long-period
shear wave is λ≈ 150 km, and the along-ray propagation distance of
waves that turn in the Earth’s lower mantle is L = 8000 ± 1500 km.
The ray-theoretical resolution limit a ≈ 0.5(λL)1/2 ≈ 550 ± 50 km
of such teleseismic shear waves is comparable to the dimensions
of the smallest-scale anomalies in contemporary shear wave tomo-
graphic models (Grand 1994; Masters et al. 1996, 2000; Grand
et al. 1997; Su & Dziewonski 1997). Accurate reconstruction of
smaller-scale mantle shear wave heterogeneities, with dimensions
less than 550 ± 50 km, will require the use of 3-D Fréchet sen-
sitivity kernels. The answers to many fundamental geodynamical
questions lie in this presently inaccessible scale range. In practice,
of course, imperfect geographical coverage limits our ability to re-
solve 3-D mantle structure as much as wave front healing and other
neglected finite-frequency effects do. Nevertheless, it is relatively
straightforward to account for these wave propagation effects using
3-D banana–doughnut kernels, so there is no reason not to do so.
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