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S U M M A R Y
Recently, Purcell has discussed the influence of gravity on load-induced perturbations of com-
pressible, viscoelastic plane-Earth models, where the contributions arising from initial stress
and internal buoyancy have been distinguished in the equation of motion. According to his
results, the consideration of initial stress is mandatory, whereas that of internal buoyancy has
only a minor influence on the solution. We re-examine his study using a different approach.
In particular, we present analytical solutions for a homogeneous half-space and discuss the
associated relaxation spectra. We show that the solution to the problem involves singularities
and branch cuts in the complex s-plane in addition to the singularities caused by roots of the
determinant function. Furthermore, Rayleigh–Taylor instabilities arising from internal buoy-
ancy cannot be completely balanced by initial stress. Also, the stability margin introduced
by Love for an elastic continuum cannot be ignored when applying the solution. Finally, we
show that the relaxation spectra can be directly related to the spectral response of a homo-
geneous, compressible, viscoelastic sphere as studied in recent papers by Vermeersen and
Hanyk.
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1 I N T RO D U C T I O N

The assumption of small perturbations of the Earth’s body is widely used in modelling of geodynamic processes such as seismic waves, post-
seismic deformations, glacial-isostatic adjustment or mountain loading. For the latter examples, the quasi-static solutions of the incremental
field equations for a radially stratified, gravitating viscoelastic sphere can be represented in the Laplace domain by a discrete spectrum of
eigenfunctions or relaxation modes (Peltier 1974, 1976; Wu & Peltier 1982). This representation is analogous to the representation of seismic
waves by the discrete spectrum of free oscillations for an elastic sphere, where the acceleration of particles is considered (Alterman et al.
1959). A discussion of the analogy between the quasi-static and the dynamic problem has recently been given by Tromp & Mitrovica (1999a).
Wolf (1985a) transferred the modal approach to a vertically stratified half-space. The principal characteristics of the relaxation modes of the
plane-Earth model were found to be comparable to those of the spherical model.

Recently, the influence of compressibility on the deformations of a viscoelastic Earth has been considered more intensively and the
mathematical problems arising for a spherical reference shape have been discussed: in general, compressibility can be separated into material
compressibility and internal buoyancy. The former implies that the elastic bulk modulus in the constitutive equation is finite, while the latter
refers to the dilatation of the material that causes internal buoyancy (see term III in eq. 1 below). Although this separation cannot be done
physically (as both terms will vanish when dilatation is turned off), this is designed for removing instabilities associated with internal buoyancy
while keeping compressibility in the material property. If incompressible perturbations are assumed, the solution to the quasi-static viscoelastic
problem is represented by a discrete and finite spectrum, where the number of modes depends on the number of layers (Han & Wahr 1995;
Vermeersen et al. 1996a; Wu & Ni 1996) and on the type of rheology, e.g. whether it is Maxwell or Burgers viscoelasticity (Rümpker &
Wolf 1996; Wolf 1997). If compressible perturbations of a spherical model are considered, the number of modes is no longer finite. Han &
Wahr (1995) showed the existence of a denumerably infinite set of dilatation modes, the relaxation times of which are inside a finite interval.
Vermeersen et al. (1996b) gave analytical expressions for these modes, which were later corrected by Hanyk et al. (1999).

A corresponding discussion for a plane-Earth model has been lacking so far. Wolf (1985b) noticed that a representation by discrete
modes is no longer possible in this case. Therefore, he used a polynomial approximation of the formula for the eigenvalues. Purcell (1998)
circumvented the problem arising from a modal approach and used a numerical scheme for the inverse Laplace transformation. In analogy, for

C© 2003 RAS 569



570 V. Klemann, P. Wu and D. Wolf

the dynamic problem, continuous spectra appear for acoustic waves in an infinite fluid (e.g. Wilcox 1984) and for surface waves in an elastic
half-space (Maupin 1996).

Another problem related to compressibility arises from the assumption of homogeneous density in the reference state. Thus, a compressible
viscoelastic perturbation becomes singular in the inviscid limit if initial stress is neglected (Cathles 1975; Wolf 1991b; Wu 1992). Also,
if internal buoyancy is considered, Rayleigh–Taylor instabilities appear (Plag & Jüttner 1995). Even at the elastic limit, stability is no
longer ensured in the presence of gravity if the elastic restoring forces are below a characteristic stability margin (Jeans 1903; Love 1908;
Wieczerkowski 1999). Wolf (1985b) avoided this problem by neglecting the internal-buoyancy term in the field equations for a homogeneous,
compressible viscoelastic half-space. Another way to circumvent this problem is to prescribe the density and bulk modulus as functions of
depth using the Williamson–Adams equation (Bullen 1975, p. 67), which describes the density increase as a result of the initial stress, and to
assume locally incompressible perturbations for the local incremental density (Wolf 1997). From these assumptions, solutions were derived for
a viscous sphere by Li & Yuen (1987) and Wu & Yuen (1991), for a viscoelastic half-space by Wolf & Kaufmann (2000) and for a viscoelastic
sphere by Martinec et al. (2001) and Wolf & Li (2002). For viscoelasticity, it was shown that the relaxation modes correspond to those for
incompressible perturbations and that instabilities do not arise.

Similar to the re-examination of perturbations of a homogeneous, compressible viscoelastic sphere by Vermeersen & Mitrovica (2000),
here we revisit the problem for a homogenous, compressible half-space recently discussed by Purcell (1998). Because Purcell chose a numerical
scheme for the inverse Laplace transformation, he could not study the modal behaviour of the solution. In contrast, using an analytical approach,
we are in the position to discuss the stability margin, the relaxation modes and the Rayleigh–Taylor instabilities, which all characterize the
physical behaviour of viscoelastic plane-Earth models. Strictly, the Rayleigh–Taylor instability is a fingering instability of an interface between
two fluids of different density (Sharp 1984), in the case of the Earth, it is also used, if the density gradient with depth is smaller than the
adiabatic one (Plag & Jüttner 1995). The physical cause of elastic instability and the stability margin was further discussed by Rayleigh (1906)
and Love (1911). In order to obtain the solution in the time domain, the contour of integration in the inverse Laplace transformation must be
distorted to include the contributions of branch cuts. One of the objectives of this paper is to document the existence of such non-analyticities
and to evaluate their effects on the incremental gravity and the vertical and horizontal displacements in the wavenumber and time domains.
Another objective is to understand the energy balance associated with viscoelastic instabilities.

2 F I E L D E Q UAT I O N S

The incremental momentum equation for quasi-static perturbations of a homogeneous, viscoelastic gravitating continuum is

∇ · t(δ)︸ ︷︷ ︸
I

+ ∇(u · ∇p(0))︸ ︷︷ ︸
II

− ρ(0)g(0)∇ · u︸ ︷︷ ︸
III

+ ρ(0)g(�)︸ ︷︷ ︸
IV

= 0, (1)

where t(δ) is the material incremental Cauchy stress, u is the displacement, p(0) is the reference pressure, ρ(0) is the reference volume-mass
density, g(0) = g(0) ez is the reference gravity, with being ez directed vertically downwards and g(�) is the local incremental gravity. We use
the Lagrangian representation, which distinguishes between the reference value of a field quantity, f (0)(X), its local increment, f (�)(X, t),
describing the change at the reference position X, and its material increment, f (δ)(X, t), describing the change of the material point at the
current position r(X, t) = X + u (X, t) (Wolf 1991a). The material incremental Cauchy stress can be expressed by

t(δ)(t) =
[
κ − 2

3
m(0)

]
1∇ · u(t) + 2m(0)ε(t) + 2

∫ t

0

[
ε(t − t ′) − 1

3
1∇ · u(t − t ′)

]
dt ′ m(t ′) dt ′, (2)

which is the incremental constitutive equation for linear viscoelasticity, where t is the current time, t′ is the excitation time, ε is the infinitesimal
strain, ε := 1

2 (∇u + ∇uT), κ is the elastic bulk modulus and m(t) is the shear-relaxation function. For a Maxwell fluid, it is given by

m(t) = µEe−t/τ with τ := η

µE
, (3)

where µE is the shear modulus, τ is the Maxwell time and η is the dynamic viscosity. The local incremental gravity is related to the local
incremental potential, φ(�), by

g(�) := ∇φ(�). (4)

The incremental potential equation is

∇2φ(�) = 4πγρ(0)∇ · u (5)

where γ is the gravitational constant.
In eq. (1), we distinguish the following terms.

(I) The viscoelastic force can be decomposed according to three time intervals: (a) the instantaneous elastic response governed by the
elastic bulk modulus, κ , and the shear modulus, µE, (b) the relaxation of shear forces on the timescale of the Maxwell time, τ , and (c) the
linear creep of a Newtonian-viscous fluid controlled by the dynamic viscosity, η.

(II) The advective force is related to the displacement of particles with respect to the initial stress field.
(III) The buoyancy force is related to local density perturbations caused by dilatation.
(IV) The gravitational force is related to local gravity perturbations and couples the momentum eq. (1) with the potential eq. (5).
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In the following, we neglect term IV and, thus, the coupling of eq. (1) and eq. (5). To distinguish the influence of the individual terms I–III
on the behaviour of the solution, we consider four simplifications.

I = 0 (approximation C0): this represents the classical Boussinesq problem without gravitational forces (e.g. Jeffreys 1959, p. 27; Farrell
1972; Cathles 1975, p. 57). Since there are no restoring forces at the inviscid limit, the approximation is of interest only to the elastic
case.
I + II = 0 (approximation C1): this allows the initial stress to be a restoring force, which also applies at the inviscid limit.
I + II + III = 0 (approximation C2): this also includes internal buoyancy, which counteracts the initial stress.
I + II = 0 and lim κ → ∞ (approximation IC): this represents the incompressible limit of approximations C1 and C2.

Applying the Laplace transformation:

f̃ (s) :=
∫ ∞

0
f (t)e−st dt, (6)

the momentum eq. (1) is

∇ · t̃(δ)︸ ︷︷ ︸
I

+ ∇
[
ũ · ∇p(0)

]︸ ︷︷ ︸
II

− ρ(0)g(0)∇ · ũ︸ ︷︷ ︸
III

= 0, (7)

where we already have neglected term IV, and the constitutive eq. (2) formally reduces to Hooke’s law:

t̃(s) =
[
κ − 2

3
µ̃(s)

]
∇ · ũ(s)1 + 2µ̃ε̃(s) (8)

with the relaxation modulus for Maxwell viscoelasticity:

µ̃(s) := sm̃(s) = µE

1 + (sτ )−1
. (9)

Assuming the material parameters to be homogeneously distributed, a combination of eqs (7) and (8) yields

µ̃∇2ũ + (
κ + 1

3 µ̃
)
∇∇ · ũ︸ ︷︷ ︸

I

+ ρ(0)g(0)∇(ũ · ez)︸ ︷︷ ︸
II

− ρ(0)g(0)ez∇ · ũ︸ ︷︷ ︸
III

= 0. (10)

For axial symmetry and cylindrical coordinates, we can recast the problem into a homogeneous, linear system of four first-order differential
equations:

d

dz
Ỹ(k, z, s) = A(k, s)Ỹ(k, z, s) (11)

with the solution vector, Ỹ = [−Ũ , W̃ , −R̃, T̃ ]T, in terms of the Hankel-transformed horizontal and vertical displacements and the Hankel-
transformed horizontal and vertical components of normal traction t̃·ez , respectively, the Hankel wavenumber k and the downward coordinate z
(Singh 1970). In the following, when referring to field quantities, Hankel transformation is always implied. The coefficient matrix, A, depends
on the approximation of the momentum equation considered:

A :=




0 −k
1

µ̃
0

λ̃k

λ̃ + 2µ̃
0 0

1

λ̃ + 2µ̃

4µ̃(λ̃ + µ̃)k2

λ̃ + 2µ̃
−δIIρ

(0)g(0)k 0 − λ̃k

λ̃ + 2µ̃

− (δIIλ̃ + δIII2µ̃)ρ(0)g(0)k

λ̃ + 2µ̃
0 k − (δII − δIII)ρ(0)g(0)

λ̃ + 2µ̃




, (12)

where λ̃ := κ − 2/3µ̃ and δII and δIII are the switches for initial stress and internal buoyancy, respectively. Their values are one if the
corresponding term is considered and zero otherwise (e.g. Purcell 1998). For approximation IC, λ̃ → ∞ must be applied.

From matrix A, the eigenvalues and eigenvectors for the four approximations are obtained using the conventional approach. The results
are summarized in Appendix A. Inspection of eq. (A22) shows that, even for the elastic case, the eigenvalues m2 and m4 of approximation C2
become complex if k is small. As discussed in Section 3, this results in a stability margin, which was noted by Love (1908). For the viscoelastic
case (when λ̃ and µ̃ are functions of the Laplace-transform variable s), eqs (A12) and (A22) show that the eigenvalues of approximations C1
and C2 involve square roots. Thus, branch cuts and branch points exist and the path of integration on the complex plane must be distorted
when implementing the inverse Laplace transformation to obtain the solution in the time domain. That is discussed in more detail in Section
4. From the eigenvectors, the fundamental matrix and the solution vector can be constructed. The latter is given by

Ỹ(z) = A3L3em3z + A4L4em4z, (13)

where L 3,4 are the third and fourth columns of the fundamental matrix, L, calculated from the fundamental system, AL − Lm = 0, given in
Appendix A for the different approximations and m is the Jordan normal form containing the eigenvalues mi. The third and fourth column
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with m3,4 ∈ {mi| Re mi < 0} are chosen to fulfil the regularity condition for z → ∞ that all increments must vanish. The real parts of m1,2

are positive and, thus, violate the regularity condition. The factors A3,4 are calculated from the boundary conditions. If we assume a surface
load as excitation, [R̃, T̃ ](z = 0) = [0, −g(0)�̃], we obtain

A3,4 = − g(0)�̃

det M
[−L34, L33], (14)

where �̃ is the Hankel-transformed surface-mass density and

M =
(

L33 L34

L43 L44

)
. (15)

Of interest is also the local incremental gravity, which corresponds approximately to the free-air gravity anomaly. Since it does not
enter into the momentum equation, it can be calculated directly from the potential equation. We write eqs (4) and (5) as an inhomogeneous
first-order system of differential equations:

∂zZ(z) = BZ(z) + F(z) (16)

with

B =
(

0 1
k2 0

)
, Z =

(
�̃

G̃

)
, F =

(
0

4πγρ(0) D̃

)
, (17)

where �̃ and G̃ represent the Hankel-transformed local incremental potential and gravity, respectively, and D̃ = ∂z W̃ − kŨ is the Hankel-
transformed dilatation. The formal solution to eq. (17):

Z(z) = eB(z−z0)Z(z0) +
∫ z

z0

eB(z−z′)F(z′) dz′ (18)

is calculated using the propagator-matrix method (e.g. Gantmacher 1986 , p. 143). After consideration of regularity and some manipulations,
we arrive at(

�̃(z1)
G̃(z1)

)
=

(
1/k

1

)
2πγ

[
�̃ − ρ(0)W̃ (z1) + ρ(0) D

]
, (19)

where

D̄ := A3

m3 − k

L43 − 2µ̃kL13

λ̃ + 2µ̃
+ A4

m4 − k

L44 − 2µ̃kL14

λ̃ + 2µ̃
(20)

considers the contribution caused by dilatation. From eqs (13), (14), (19) and (20) and the explicit form of the fundamental matrices and
eigenvalues, we can then derive closed-form representations of the solution vector for the different approximations (Appendix A).

3 E L A S T I C H A L F - S PA C E

In this section, we study the effects of internal buoyancy and initial stress on the displacement, incremental gravity and energy for an elastic
half-space. Of particular interest is the physical interpretation of instabilities, as revealed in the eigenvalues for approximation C2. We use
energy potentials to study unstable equilibrium states. The formulae for the displacement and incremental gravity of the four approximations
are given in Appendix A, the energy contributions are derived in Appendix C. For convenience, we introduce the normalized wavenumber,
n := ka, where a is the Earth’s radius, so that n corresponds to the Legendre degree for spherical geometry. Setting � = ρ(0) in the expressions
of Appendix A, we also normalize the displacements with respect to the vertical surface displacement for an incompressible fluid at the
inviscid limit. For the elastic case, the constitutive equation is given by Hooke’s law. We may thus neglect the tildes in the equations and
replace the relaxation modulus by the shear modulus. Table 1 presents the parameters chosen for the following calculations. Examining the
displacements of the four approximations (Fig. 1) the most important feature is the vanishing of the horizontal displacement, U , at the surface
for the incompressible approximation IC (Fig. 1a). This results from eqs (A7), (A17) and (A26), which show that U ∝ 1 − 2ν (e.g. Farrell
1972), where the Poisson ratio ν = 1

2 and λ → ∞ for approximation IC. The positive values of U for the other approximations result from
the definition of the solution vector, Y = [ − U , W , −R, T ]. Thus, positive values result in a displacement towards the origin.

For the vertical displacement, W (Fig. 1b), we have W ∝ 2(1 − ν) according to eqs (A8), (A18) and (A27). This results in systematically
smaller displacements for approximation IC than for the compressible approximations where ν < 1

2 . For small wavenumbers, the compressible
approximations C1 and C2 differ from approximation C0 because of the differences in how gravity is considered (Figs 1b and c). Furthermore,
comparing eqs (A8) and (A18), we see that, for the vertical displacement, the initial stress due to ρ(0)g(0) reduces the displacement, while the
additional terms in eq. (A27) due to internal buoyancy increase it.

Table 1. Parameter values for homogeneous plane-Earth model.

ρ(0) (kg m−3) κ (GPa) µE (GPa) η (Pa s)

3380 124.7 67.0 1021
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Figure 1. Displacement and incremental gravity at the elastic limit for approximations C0, C1, C2 and IC as functions of normalized wavenumber, n. (a)
shows the horizontal surface displacement, nU , which is zero for approximation IC, (b) shows the vertical (downward) surface displacement, W , (c) the local
incremental gravity, G(�), and (d) the material incremental gravity, G(δ). In (c) and (d) the contribution of the load is subtracted. The displacement is normalized
with respect to the downward displacement in the hydrostatic equilibrium, �/ρ(0), the gravity with respect to the gravity associated with the surface load,
2πγ�.

A complication appears for approximation C2 and n > 3, where the vertical displacement becomes greater than 1. This means that the
displacement is greater than the value at the inviscid limit, where equilibrium applies. For n smaller than a critical wavenumber, ncrit, the
eigenvalues m2,4 given in (A22) are imaginary. Thus, according to eq. (13), the displacements oscillate harmonically with depth and thus
violate the regularity condition. Love (1911) called this change of behaviour the stability margin. Setting ε = 1 in eq. (A21), the stability
margin is

ncrit = ρ(0)g(0)a√
µE(κ + 4

3 µE)
. (21)

For the parameters in Table 1, ncrit = 1.7 and, therefore, an unstable solution exist for smaller values. However, such small values are far
beyond the validity of the half-space approximation for the Earth. Figs 1(a) and (b) also demonstrate that the effects of internal buoyancy and
initial stress decrease with increasing wavenumber. Consequently, only material compressibility remains significant at short wavelengths.

For the local incremental gravity, G(�), we observe in Fig. 1(c) that, besides the influence of gravity for small wavenumbers, the behaviour
is very similar for all four approximations. This means that decreasing gravity due to downward displacement is compensated by increasing
gravity due to compression. In Fig. 1(d), the material incremental gravity, G(δ), is plotted, which represents the perturbation at the displaced
surface. This quantity can be derived from the solution, considering in a first approximation an advective increment that describes the change of
gravity caused by the shift in the reference field: G(δ) = G(�) + ∂ z g(0)W . Of course the gradient has to be prescribed, because the gravitational
potential cannot be calculated self-consistently for a half-space. Since the advective contributions dominate, the incompressible limit now
differs from the compressible approximations.

Another interesting feature appears if we analyse the energy terms contributing to the deformation (Tromp & Mitrovica 1999b; Klemann
& Wolf 1999). For this, we consider the energy equation

Eσ + Eκ + Eµ + Eρ = 0 (22)
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Figure 2. Energy potentials Eκ , Eµ and Eρ at the elastic limit for approximations C0, C1, C2 and IC as functions of normalized wavenumber, n, and normalized
to the excitation potential, Eσ .

where Eσ is the excitation energy associated with the loading of the surface, Eκ is the bulk energy, Eµ is the shear energy and Eρ is the
gravitational energy (see Appendix C for their explicit expressions). Fig. 2 shows the energy contributions for the different approximations
calculated from eqs (C5)–(C11), with the displacements as functions of depth inserted. For approximation C0 (Fig. 2a) and approximation IC
(Fig. 2d), the behaviour is obvious: in the first case, we obtain Eκ/Eµ = (1 − ν − 2ν2)/(1 − ν + ν2) and Eρ is irrelevant. Also, from 0 < ν ≤ 1

2

(e.g. Landau & Lifschitz 1989, p. 16), it follows that Eµ ≥ 2Eκ . In the second case we obtain Eρ/Eµ = ρ(0)g(0)a/(2nµE), which confirms
the vanishing influence of gravity for increasing n. For approximations C1 and C2, the behaviour is more complicated and an analytical
representation of the energy ratios is not illuminating. For n → ∞, the influence of gravity vanishes and approximations C1 and C2 behave as
C0. For smaller n and approximation C1 (Fig. 2b), we find a similar increase of Eρ as for approximation IC. However, for a further decrease
in n, Eρ reaches a maximum and then decreases, whereas the contribution of Eκ becomes dominant. This means that the influence of the
divergence of the displacement in Eκ dominates that of the displacement gradient in Eρ .
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For approximation C2 (Fig. 2c), two almost compensating contributions to Eρ , those due to initial stress and internal buoyancy, must be
considered. Since the internal-buoyancy energy is negative, Eρ is almost negligible, becomes negative for n < 5 and diverges for n → ncrit

when the internal buoyancy becomes dominant. At this limit, the contributions Eκ and Eµ diverge to +∞, which corresponds to the divergent
displacements in Figs 1(a) and (b). A second feature of this model is that the internal energy, Eκ + Eµ + Eρ , is not equal to −Eσ . For n >

2, it is slightly greater than the excitation energy and, for n < 2 and n → ncrit, it tends to −∞. This behaviour results from the fact that the
displacements governed by eq. (10) correspond to disturbances of an unstable reference state.

4 V I S C O E L A S T I C H A L F - S PA C E

The viscoelastic field equations, which describe the rheological behaviour of the half-space, are solved in the Laplace domain. In order to
predict the temporal behaviour of the different approximations, we implement the inverse Laplace transformation using the residue theorem
(Wu 1978; Peltier 1985). This allows us to replace the Bromwich path of integration by the sum of the residues calculated from the non-analytic
regions of the solution in the complex s-plane. If there are only simple and isolated poles, si, the solution is represented by the relaxation
modes, and the solution for a Heaviside excitation, h(t), is

Y(t) ∗ h(t) = YE +
∑

i

Res

[
Ỹ(s)

1

s

(
est − 1

)]
i

= YE +
∑

i

YV
i

(
1 − esi t

)
(23)

where Y E is the elastic amplitude, YV
i := −Res[Ỹ(s)/s]i is the ith viscous amplitude and −1/si is the corresponding relaxation time. We

calculate the amplitudes using the Heaviside theorem:

Res
[
Ỹ(si )

]
= Res

[
g(si )

h(si )

]
= g(s)

∂sh(s)

∣∣∣∣
s=si

, (24)

where the components of Ỹ can be represented by the fraction of two analytic functions, g(s) and h(s), with h(s) having simple roots at si (e.g.
Arfken 1985, p. 400). Considering (14), si are the roots of det M and the expression ‘normal modes’ is motivated (Peltier 1976). However, this
is only valid for approximation IC. Since the spectral behaviour of this approximation has already been discussed (e.g. Wolf 1997), we only
summarize its main features. For approximation IC, we have one relaxation mode M with the relaxation time τ [1 + 2nµE/(ρ(0)g(0)a)]. The
horizontal surface displacement is zero. For the vertical displacement, the amplitude at the inviscid limit is one and the amplitude of mode M
is just the difference between the inviscid amplitude and the elastic amplitude, see eq. (23). According to eq. (19) and because D̄ = 0, the
local incremental gravity is proportional to the vertical displacement.

As mentioned in Section 2, approximation C0 cannot be used in the case of Maxwell viscoelasticity, because no restoring forces are present
at the inviscid limit. For approximations C1 and C2, we identify square-root terms in the expressions (A12) and (A22) for the eigenvalues,
which imply branch points and cut lines as continuous non-analytic regions in the complex s-plane, as discussed in Appendix B. Of course the
square-root terms also appear in the corresponding det M, eqs (A13) and (A23). These regions coincide with s values, for which the square
roots in the expressions (A12) and (A22) for the eigenvalues are imaginary. For approximation C1, the non-analytic behaviour is shown in
Fig. 3(a), where we distinguish the branch points sB1,2, which are complex conjugate, sB3 and the connecting branch cuts C1,2. For n → ∞, sB1,2

converge to sB3 , see eq. (B1) and Fig. 3(b).
In addition to the non-analyticities arising from the eigenvalues and eigenvectors, there are simple poles in 1/ det M, which give rise

to the modes M and CP. Note that mode CP was called mode T by Wolf (1985b), describing the transition from the elastic response to the
viscous response (Cathles 1975, p. 57). The latter is described by mode M. The relaxation times of these modes are plotted in Fig. 4(a) and the
displacement and incremental gravity are shown in Figs 4(b)–(d). The dashed lines reflect contributions from the real part of the numerical
integration along the contour around the branch points sB1,2 and sB3 shown in Fig. 3(a). We call this region continuous mode D, in accordance
with the results for a homogeneous, compressible sphere by Vermeersen et al. (1996b) (Section 5). As for approximation IC, the amplitude
of mode M dominates the vertical displacement (Fig. 4c) and, together with those of modes CP, D and the elastic amplitude, E, sum up to
the inviscid amplitude, � = F. However, unlike the incompressible case, the horizontal amplitudes of the modes are no longer zero (Fig. 4b).
Since D �= 0 in (19), the local incremental gravity does not vanish at the inviscid limit (Fig. 4d).
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Figure 3. (a) Branch cuts and branch points of
√

1 + ε(s)2 for approximation C1 in the complex s-plane and (b) real parts of branch points as functions of
normalized wavenumber, n.
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1 − ε(s) for approximation C2 in the complex s-plane and (b) real parts of branch points as functions of
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Next, we consider approximation C2. Fig. 5(a) shows two branch cuts,C>0 andC<0, appearing for this approximation and the corresponding
pairs of branch points, sB1,4 and sB2,3. Fig. 5(b) shows that, for n → ∞, pairs of branch points converge: s1 → s4 and s2 → s3. The relaxation-time
spectrum (Fig. 6a) shows the relaxation modes M and CP. The branch cut C<0 ⊂ R is restricted to a narrow region in the vicinity of mode CP.
Because, according to eqs (B3) and (B7), sB3 is identical for approximations C1 and C2, we also call this branch cut continuous mode D. In
contrast, sB1,2 for approximation C1 and sB2 for approximation C2 differ, see eqs (B1) and (B5).

The branch cut C>0 ⊂ R extends from sB4 = 0 to sB1 > 0, see eqs (B5)–(B8). Fig. 6(a) shows its upper bound as 1/sB1 . Its lower bound
would be at infinite times in this representation, so that C>0 fills the region above 1/sB1 . Because of the destabilizing character of C>0, we call
this branch cut the continuous mode RT. It corresponds with the Rayleigh–Taylor modes found by Plag & Jüttner (1995) for a compressible
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sphere (Section 5). For the chosen parametrization (Table 1) and for n < 3, another root in det M appears as a growth mode RT0. For increasing
wavenumber, this pole moves towards sB1 . For n > 3, it becomes numerically indistinguishable from sB1 (Fig. 7). Here, we have plotted W̃ as
a function of the Laplace variable, s, in order to show the divergent behaviour of the displacement at the poles. For negative values of s, we
notice that the amplitudes on the branch cut C<0 remain finite, although the function is non-analytic.

The amplitude spectrum (Figs 6b–d) for approximation C2 shows several pathological features. In comparison with approximation C1,
the vertical amplitude of mode M does not decrease for small wavenumbers and the horizontal amplitude is zero at the surface. Mode CP
behaves similarly to that of approximation C1, the continuous mode D has a small positive amplitude. For the local incremental gravity, the sum

C© 2003 RAS, GJI, 153, 569–585



578 V. Klemann, P. Wu and D. Wolf

E

Approximation C0

E M

Approximation C1

CP D E M CP

Approximation C2

D RT E

Approximation IC

M

0

200

400

600

800

1000

D
ep

th
 (

km
)

1.7e-06n=20 0

200

400

600

800

1000

D
ep

th
 (

km
)

1.8e-06 1.6e-06 9.4e-07 2.7e-06 1.8e-06 1.8e-06 1.1e-06 1.6e-06 1.8e-06 1.6e-07 1.7e-07
0

200

400

600

800

1000

D
ep

th
 (

km
)

1.7e-06n=20 0

200

400

600

800

1000

D
ep

th
 (

km
)

1.8e-06 1.6e-06 9.4e-07 2.7e-06 1.8e-06 1.8e-06 1.1e-06 1.6e-06 1.8e-06 1.6e-07 1.7e-07
0

200

400

600

800

1000

D
ep

th
 (

km
)

1.7e-06n=20 0

200

400

600

800

1000

D
ep

th
 (

km
)

1.8e-06 1.6e-06 9.4e-07 2.7e-06 1.8e-06 1.8e-06 1.1e-06 1.6e-06 1.8e-06 1.6e-07 1.7e-07

0

20

40

60

80

100

D
ep

th
 (

km
)

1.7e-05n=200 0

20

40

60

80

100

D
ep

th
 (

km
)

1.7e-05 1.8e-05 9.6e-06 2.6e-05 1.7e-05 1.8e-05 9.7e-06 1.6e-05 1.8e-05 1.7e-06 1.9e-06
0

20

40

60

80

100

D
ep

th
 (

km
)

1.7e-05n=200 0

20

40

60

80

100

D
ep

th
 (

km
)

1.7e-05 1.8e-05 9.6e-06 2.6e-05 1.7e-05 1.8e-05 9.7e-06 1.6e-05 1.8e-05 1.7e-06 1.9e-06
0

20

40

60

80

100

D
ep

th
 (

km
)

1.7e-05n=200 0

20

40

60

80

100

D
ep

th
 (

km
)

1.7e-05 1.8e-05 9.6e-06 2.6e-05 1.7e-05 1.8e-05 9.7e-06 1.6e-05 1.8e-05 1.7e-06 1.9e-06

Normalized potential density

-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
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of all amplitudes, �, is negative. This means that the mass deficit produced by the vertical displacement is larger than needed for hydrostatic
equilibrium. As can be shown from the residue theorem for this approximation, the sum of the elastic amplitude and the amplitudes of the
relaxation modes must be equal to that of the growth modes (Hanyk et al. 1999). Furthermore, because of sB4 = 0, the function is non-analytic
at s = 0 and, therefore, the inviscid amplitude does not exist. The destabilizing behaviour at n → ncrit exists for all discussed field quantities.

We interpret the physical meaning of these modes by discussing the potential densities (e.g. Tromp & Mitrovica 1999b; Klemann & Wolf
1999), which are given by eqs (C8)–(C10). Fig. 8 shows the potential densities for the contributions of Eκ , Eµ and Eρ as functions of depth for
wavenumbers n = 20 and 200 and for the elastic and viscous amplitudes. Whereas, for all approximations, mode M is dominated by Eµ and
Eρ and, therefore, represents shear relaxation arising from gravity, mode CP is dominated by Eµ and Eκ , and, thus, represents shear relaxation
caused by compression. The continuous mode D behaves similarly to CP, but has a larger depth penetration. For this mode and approximation
C2, the signs of Eµ and Eκ are opposite to those for mode CP and for modes D, CP of approximation C1. The continuous growth mode RT
shows only small values for compression and shear, but dominant contributions for gravity. Furthermore, the different contributions to mode
RT do not cancel if we integrate them with respect to depth, which is in contrast to the behaviour of the relaxation modes. This is as expected
for a Rayleigh–Taylor instability driven by an unstable density gradient.

To study the instability in the time domain, we consider a Heaviside excitation of the displacement. Fig. 9 shows the evolution of the
horizontal and vertical surface displacements for wavenumbers n = 2, 20 and 200, respectively. The vertical displacement relaxes on timescales
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Table 2. Parameter values for homogeneous plane-Earth model in corre-
spondence with Hanyk et al. (1999).

ρ(0) (kg m−3) κ (GPa) µE (GPa) η (Pa s)

5517 449.8 145.2 1021

governed by the dominant mode M. At the inviscid limit, the displacements for approximations C1 and IC are equal to one and correspond
to hydrostatic equilibrium. For approximation C2, after relaxation of the contribution due to mode M, the displacement is slightly larger than
one. Furthermore, for n ≤ 2, the elastic displacement becomes singular. For 2 ≤ n ≤ 20, stress relaxation continues to support instability.
For n ≥ 20, a period of transient equilibrium develops, the duration of which increases with increasing wavenumber. For small loads and
small loading times, the instability is therefore not observed. This explains why Purcell (1998) did not find any instabilities for approximation
C2. The differences in the horizontal displacements are more significant (Fig. 9a). As mentioned, the horizontal displacement is zero for
approximation IC. Because of the rather small amplitudes of modes CP, D and M for approximation C1, the inviscid amplitude differs only
slightly from the elastic amplitude. For approximation C2, the Rayleigh–Taylor instability governs the evolution of instability.

5 R E L AT I O N T O S P H E R I C A L S O L U T I O N S

To compare our results with those of Vermeersen et al. (1996b) and Hanyk et al. (1999) for a homogeneous, viscoelastic self-gravitating
sphere where all terms are considered in eq. (1), we use a parametrization of the half-space equal to that used by these authors (Table 2). As
shown below, the continuous modes found for approximations C1 and C2 are directly related to the discrete relaxation modes D discussed by
Vermeersen et al. (1996b) and the growth modes RT found by Hanyk et al. (1999) for a homogeneous, viscoelastic self-gravitating sphere.
Fig. 10 shows the relative positions of the modes for approximation C2 and the modes for the spherical solution (Hanyk et al. 1999). The
relaxation modes D appear in a narrow band on the negative s-axis with a fundamental mode D0 corresponding to mode CP. The overtones,
Dm, are related to spherical Bessel functions defining the depth dependency, and are given by (Hanyk et al. 1999, eq. 2):

sDm
n = − 1

τ

�m
n κ − 1

�m
n (κ + 4

3 µE) − 1
, �m

n := [(2m + n − 1)π ]2

ρ(0)g(0)a
. (25)

For m → ∞, the overtones converge to sD
∞ := −1/τ [κ/(κ + 4

3 µE)]+, which is equal to sB3 for approximations C1 and C2, see eqs (B3) and
(B7). For n → ∞, sDm

n converge ∝ n2 to sD
∞ and, similarly, Re{sB1,2} for approximation C1 and sB2 for approximation C2 converge ∝ n2 to sB3 ,

see eqs (B2) and (B5).
The growth modes RT for spherical geometry are also related to spherical Bessel functions with the approximation

sRTm
n = n(n + 1)

κη

(
1

�′m
n

)2

, �′m
n := [(2m + n)π ]2

4ρ(0)g(0)a
, (26)

which holds for n, m sufficiently large (Hanyk et al. 1999, eq. 1). Fig. 11 shows the growth time of mode RT1 together with the behaviour
of sB1 for approximation C2. In eq. (26), the upper bound of the modes RTm is the fundamental mode RT1 with sn

RT1 > 0. Because we have
neglected term IV in approximation C2, the fundamental mode RT1 and the upper branch cut sB1 should not coincide. The limit of sRTm

n for
m → ∞ is 0 and corresponds to sB4 = 0, which represents the case ε → ∞ in eq. (A22). For n → ∞, sRTm

n converges ∝n2 → 0. This
corresponds to the behaviour of sB1 , which, for n → ∞, converges ∝ n2 → 0 according to eq. (B5). An interesting feature is the influence of
shear relaxation on mode RT. Considering eqs (3), (B5) and (B6),

sB1 = 2κ

η

[
�

(
1 +

√
1 + 16

3
�−1

)
− 2κ

µE

]−1

, � :=
[

κn

ρ(0)g(0)a

]2

(27)

we observe that the influence of µE is only significant for small n. Defining sB∗
1 by neglecting the term −2κ/µE in eq. (27), a difference

with sB1 only appears in the vicinity of the stability margin, ncrit, given in eq. (21), where the shear relaxation dominates sB1 . This is shown in
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Figure 10. Positions of modes on an unscaled s-axis for the spherical model by Hanyk et al. (1999) and of modes for approximation C2.
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Fig. 11, where we have plotted t crit := τ ln (µE/µcrit). This is the time when the shear-relaxation function m(t) reaches the lower bound µcrit

for a stable elastic continuum. According to eq. (21), we have

µcrit = 3

8
κ

(√
1 + 16

3
�−1 − 1

)
. (28)

We therefore conclude that the behaviour of the branch cut C>0 is mainly determined by the viscous flow of the Rayleigh–Taylor instability
and, in the vicinity of the stability margin, by additional shear relaxation.

6 D I S C U S S I O N

We have shown that the analogy between the solutions for load-induced perturbations of compressible, viscoelastic, spherical and plane-Earth
models with respect to conventional relaxation modes can be extended to non-conventional modes, so that the discrete modes D and RT of
spherical Earth models correspond to continuous modes of plane-Earth models. Unlike the approach in Vermeersen et al. (1996b), Hanyk
et al. (1999) and Vermeersen & Mitrovica (2000), where only the roots of the determinant function along the real s-axis are studied, our
half-space problem involves singularities and branch cuts in the complex s-plane. (As was demonstrated for approximation C1, the existence
of a branch cut off the real s-axis actually gave rise to the relaxation mode D.) Mode D is a consequence of the assumption of homogeneous,
compressible regions and describes a readjustment due to elastic compression and viscoelastic shear relaxation. For approximation C1, the
vertical displacement associated with mode D is directed upward. However, this is overcompensated by mode CP, for which the displacement is
directed downward. In contrast, mode RT only appears if internal buoyancy is included. This mode is the driving mechanism for the instability
arising for approximation C2. Mode RT is governed by the gravity potential, Eρ ; the influence of viscoelastic shear relaxation, Eµ, and of
elastic compression, Eκ , is negligible. Also, the energy balance shows disequilibrium for approximation C2, whereas, for approximation C1,
it is closed. In contrast to Purcell (1998), who did not find instabilities, we have analysed the instability of approximation C2 in detail. For
wavenumbers near 100, the instability develops after approximately 106a. Therefore, we advise not to use approximation C2. If approximation
C1 is used, the horizontal displacement and the local incremental gravity do not vanish at the inviscid limit, as expected from the behaviour
of an inviscid fluid. At the elastic limit, both compressible approximations are questionable only for very small wavenumbers. However, for
long-wavelength perturbations, the curvature of the Earth must be considered, i.e. plane-Earth models are no longer valid regardless of the
chosen approximation. For very large wavenumbers, the absolute differences between the compressible approximations tend to zero, and,
thus, the influence of gravity becomes negligible. Compressibility is mandatory when modelling the horizontal displacements and produces
an offset with respect to incompressibility in the vertical displacement ∝ 1

2 − ν. For the local incremental gravity, the additional mass deficit
due to the offset in the vertical displacement is nearly compensated by the density increase due to compression.

Consequently, a homogeneous reference state should not be used for compressible viscoelastic perturbations, whereas for elastic pertur-
bations, this assumption is valid if limited to excitations of small wavelengths.
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A P P E N D I X A : S O L U T I O N O F T H E F U N DA M E N TA L S Y S T E M

In the following, the solutions of the fundamental system (11) for the approximations considered are given.
Approximation C0:

L(z) =




1 2
δ

k
+ z −1 2

δ − 1

k
− z

1 k−1 + z 1 k−1 + z

2kµ̃ 2µ̃(1 + δ + kz) 2kµ̃ 2µ̃(1 − δ + kz)

2kµ̃ 2µ̃(δ + kz) −2kµ̃ 2µ̃(δ − 2 − kz)


 (A1)
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with

δ := λ̃ + 2µ̃

λ̃ + µ̃
(A2)

and the twofold eigenvalues

m1 = k, m2 = −k. (A3)

Using eq. (13) in eqs (14) and (15) for the displacement and eqs (19) and (20) for the local incremental gravity, we find at the surface

Ũ = 1

2kµ̃

µ̃

λ̃ + µ̃
g(0)�̃, (A4)

W̃ = 1

2kµ̃

λ̃ + 2µ̃

λ̃ + µ̃
g(0)�̃ (A5)

G̃ = 2πγ

(
1 − ρ(0)g(0)

2kµ̃

)
�̃ (A6)

and, for the elastic limit,

U E = 1 − 2ν

2µEk
g(0)�, (A7)

W E = 1 − ν

µEk
g(0)�, (A8)

GE = 2πγ

(
1 − ρ(0)g(0)

2kµE

)
�. (A9)

Approximation C1:

L =




1 + 2δ m2/k + 2ε −1 + 2δ m4/k + 2ε

1 1 1 1

2µ̃k(1 + δ) 2µ̃k 2µ̃k(1 − δ) 2µ̃k

2µ̃k − 2λ̃kδ 2µ̃m2 − 2λ̃kε −2µ̃k − 2λ̃kδ 2µ̃m4 − 2λ̃kε


 (A10)

with

δ = ρ(0)g(0)

2k(λ̃ + µ̃)
, ε = ρ(0)g(0)

2k(λ̃ + 2µ̃)
(A11)

and the simple eigenvalues

m1 = k, m2 = k(
√

1 + ε2 − ε), m3 = −k, m4 = −k(
√

1 + ε2 + ε). (A12)

at the surface, the displacement and local incremental gravity are

det M = (2µ̃k)2

[
1 + ε

(
ρ(0)g(0)

2kµ̃
− µ̃

λ̃ + µ̃

)
−

√
1 + ε2 (1 − δ)

]
, (A13)

Ũ = 2µ̃k

det M

[
δ −

(
1 + ε −

√
1 + ε2

)
(1 − δ)

]
g(0)�̃, (A14)

W̃ = 2µ̃k

det M
δg(0)�̃, (A15)

G̃ = 2πγ

[
1 − 2µ̃k

det M

2ρ(0)g(0)ε(1 − δ)

1 + ε + √
1 + ε2

]
�̃ (A16)

and, for the elastic limit with ε � 1 and δ � 1,

U E � 1 − 2ν

2µEk + ρ(0)g(0)
g(0)�, (A17)

W E � 2(1 − ν)

2µEk + ρ(0)g(0)
g(0)�, (A18)

GE � 2πγ

[
1 − (1 − δ)ρ(0)g(0)

2µEk + ρ(0)g(0)

]
�. (A19)
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Approximation C2:

L =




γ + ε γ
m1

k
− δ kµ̃

[
(2γ + ε)

m1

k
− δ

]
kµ̃ (2γ + ε) − ρ(0)g(0) m1

k

γ − ε γ
m2

k
− δ kµ̃

[
(2γ − ε)

m2

k
− δ

]
kµ̃ (2γ − ε) − ρ(0)g(0) m2

k

γ + ε −γ
m1

k
− δ kµ̃

[
− (2γ + ε)

m1

k
− δ

]
kµ̃ (2γ + ε) + ρ(0)g(0) m1

k

γ − ε −γ
m2

k
− δ kµ̃

[
− (2γ − ε)

m2

k
− δ

]
kµ̃ (2γ − ε) + ρ(0)g(0) m2

k




T

(A20)

in its transposed form with

γ := λ̃ + µ̃

λ̃ + 2µ̃
, δ := ρ(0)g(0)

k(λ̃ + 2µ̃)
, ε := ρ(0)g(0)

k
√

µ̃(λ̃ + 2µ̃)
(A21)

and the simple eigenvalues

m1 = k
√

1 + ε, m2 = k
√

1 − ε, m3 = −k
√

1 + ε, m4 = −k
√

1 − ε. (A22)

At the surface, the displacement is given by

det M = −2 (kµ̃)2

[
(2γ 2 − ε2)(

√
1 + ε − √

1 − ε) − ε

(
δ − ρ(0)g(0)

kµ̃

√
1 − ε2

)]
, (A23)

Ũ = kµ̃g(0)�̃

det M

[
(2γ 2 − ε2)(

√
1 + ε − √

1 − ε) − γ ε(
√

1 + ε + √
1 − ε) − 2εδ

]
, (A24)

W̃ = −kµ̃g(0)�̃

det M

[
γ δ(

√
1 + ε − √

1 − ε) + εδ(
√

1 + ε + √
1 − ε) + 2γ ε

√
1 − ε2

]
. (A25)

We do not show the expression for the local incremental gravity because of its length. For the elastic limit and ε � 1 and δ � 1, we obtain

U E � 1 − 2ν + 4(1 − ν)2δ

2µEk + 2(1 − ν)ρ(0)g(0)
g(0)�, (A26)

W E � 2(1 − ν) + (5 − ν)γ −1δ

2µEk + 2(1 − ν)ρ(0)g(0)
g(0)�, (A27)

GE � 2πγ

[
1 − ρ(0)g(0)

2µEk + 2(1 − ν)ρ(0)g(0)

]
�. (A28)

Approximation IC:

L(z) =




1 z −1 −z

1 −1

k
+ z 1

1

k
+ z

2kµ̃ 2kµ̃z 2kµ̃ 2kµ̃z

2kµ̃ (1 − ε) −2kµ̃ (1 − ε)

(
1

k
− z

)
−2kµ̃ (1 + ε) −2kµ̃ (1 + ε)

(
1

k
+ z

)




(A29)

with

ε := ρ(0)g(0)

2kµ̃
(A30)

and the twofold eigenvalues

m1 = k, m2 = −k. (A31)

At the surface, the displacement and local incremental gravity are

Ũ = 0, (A32)

W̃ = 1

2kµ̃ + ρ(0)g(0)
g(0)�̃, (A33)

G̃ = 2πγ
2kµ̃

2kµ̃ + ρ(0)g(0)
�̃ (A34)

and, for the elastic limit,

U E = 0, (A35)
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W E = 1

2kµE + ρ(0)g(0)
g(0)�, (A36)

GE = 2πγ

(
1 − ρ(0)g(0)

2kµE + ρ(0)g(0)

)
�. (A37)

A P P E N D I X B : N O N - A N A LY T I C I T Y O F A P P RO X I M AT I O N S C 1 A N D C 2

As non-analytic function,
√

z appears in the solutions for approximations C1 and C2.
√

z has branch points at z = 0 and z = ∞ and
a branch cut, which is usually defined as the line z < 0 where

√
z is purely imaginary and non-analytic with a phase change of π . To

understand its influence on the solutions we mainly focus on the eigenvalues, which appear linearly also in the fundamental systems, L. For the
eigenvalues of approximation C1 given in eq. (A12), we note that z = 1 + ε2 is now a complex function of the Laplace variable, s. Rewriting√

1 + ε2 = √
1 + εi

√
1 − εi the branch points are ε = ±i and the branch cuts extend from the branch points to infinity along ε = ±α i where

1 < α < ∞. Inserting (9) into (11) and solving for s we can summarize the analytic behaviour of
√

1 + ε2 by

s(α) = − 1

τ

(
1 + 4

3

µE

κ ∓ ρ(0)g(0)

2kαi

)−1

=




sB1,2 for α = 1
C1,2 for α > 1
sB3 for α = ∞
analytic for α < 1 or Im{α} �= 0.

(B1)

In particular, we find

Re
{
sB1,2

} = − 1

τ

�κ + 1

�
(
κ + 4

3 µE
) + 1

, � :=
[

2k

ρ(0)g(0)

]2 (
κ + 4

3 µE
)

(B2)

and

sB3 = − 1

τ

(
κ

κ + 4
3 µE

)
. (B3)

The branch cuts are located on a circular arc with radius 2µE/(3τ )/(κ + 4/3µE) and centre −[1 + κ/(κ + 4/3µE)]/(2τ ) which is independent
of wavenumber, k (Fig. 3). The circle cuts the real axis at the points sB3 and −1/τ . The point −1/τ is only reached for limk→0 sB1,2. Because the
non-analyticity coincides with m2,4 ∈ I, where I denotes the set of imaginary numbers, a real linear combination of the eigenvectors given
in (13) is a harmonic function of depth and, thus, the non-analytic behaviour coincides with a violation of the regularity condition requiring
that all perturbations vanish for z → ∞.

For the eigenvalues of approximation C2, we must distinguish the cases where ε is non-analytic according to the square-root
√

µ̃(λ̃ + 2µ̃)
in eq. (A21) and where the eigenvalues are non-analytic according to the square-root

√
1 ± ε in eq. (A22). In the first case, the square-root

has a branch cut for µ̃(λ̃ + 2µ̃) < 0. Hence ε ∈ I and, therefore, the pairs m1,2 and m3,4 are complex conjugate. From these, only the pair
m3,4 with negative real parts is of interest. Because A is real, L 3,4 are also complex conjugate. Considering this behaviour in eqs (13) and (14)
for � ∈ R, we obtain the solution vector

Ỹ = −g(0)�̃
Re(L33L3em3z)

Re(L33 L43)
, (B4)

which is a real analytic function that satisfies the regularity condition for z → ∞.
In the second case,

√
1 − ε is non-analytic for ε > 1. This results in m2,4 ∈ I, so that, as for approximation C1, the solution violates

the regularity condition. (We need not consider
√

1 + ε, because, according to eq. (A21), ε is a square-root function, that is the real part of ε

must be ≥ 0.) Inserting eq. (9) into eq. (A21) and solving ε(s) = α > 1 for s, we summarize the behaviour of the solutions:

s(α) = 1

τ

[
µE

2κ
�

(
1 ±

√
1 + 16

3
�−1

)
− 1

]−1

=




sB1,2 for α = 1
C>0, C<0 for α > 1
sB4,3 for α → ∞
analytic for α < 1 or Im{α} �= 0,

(B5)

where

� =
[

κkα

ρ(0)g(0)

]2

. (B6)

The first subscript denotes the solution for the plus sign and the second for the minus sign. In particular, we find

sB3 = − 1

τ

κ

κ + 4
3 µE

, sB4 = 0. (B7)

With s(α) monotonic and s(α) ∈ R on α ∈ (1, ∞), the cut lines are (see Fig. 5a)

C<0:= {
s ∈ R | sB2 ≤ s ≤ sB3

}
,

C>0:= {
s ∈ R | sB4 ≤ s ≤ sB1

}
.

(B8)

The regions of non-analyticity of the solution are excluded numerically by an appropriate integration path.
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A P P E N D I X C : E N E RG Y P O T E N T I A L S

The energy contributions to the deformation can be calculated directly from (10) using the usual energy functional
∫

V
1
2 (Lu, u∗) dv(0) (e.g.

Backus & Gilbert 1961), where L is the differential operator associated with eq. (10). Separating the individual contributions due to excitation,
bulk, shear and gravity, we obtain in index notation, where summation over equal indices is implied,

Eσ := −1

2

∫
∂ I X+

g(0)σ̃ δi3ũi da(0), (C1)

Eκ :=
∫
X+

κ

2
(ε̃kk)2 dv(0), (C2)

Eµ :=
∫
X+

µ̃ε̃di jεdi j dv(0), (C3)

Eρ :=




−
∫
X+

ρ(0)g(0)

2
δ j3ũ j,i ũi dv(0) for approximations C1 and IC

−
∫
X+

ρ(0)g(0)

2
(δ j3ũ j,i ũi − δ j3ũ j ũi,i ) dv(0) for approximation C2,

(C4)

where, for Eσ , the integral extends over the outer surface, ∂ IX+, and, for the other contributions, over the viscoelastic half-space, X+.
Considering a spectral load and appropriate normalization, we express the potentials as integrals over depth-dependent potential densities:

Eκ =
∫ ∞

0
Eκ (z) dz, (C5)

Eµ =
∫ ∞

0
Eµ(z) dz, (C6)

Eρ =
∫ ∞

0
Eρ(z) dz (C7)

with

Eκ (z) = κ

2
( ˙̃W − 2kŨ )2, (C8)

Eµ(z) = µ̃

[
(kŨ )2 + ˙̃W

2 + ( ˙̃U + kW̃ )2 − 1

3
( ˙̃W − 2kŨ )2

]
, (C9)

Eρ(z) = −ρ(0)g(0)

2

{
kŨ W̃ + ˙̃W W̃ for approximations C1 and IC
2kŨ W̃ for approximation C2

(C10)

and dots for ∂/∂z (for details see Klemann & Wolf 1999; Tromp & Mitrovica 1999b). The potential of the load,

Eσ = −1

2
g(0)�̃W̃ (z1), (C11)

represents the energy input due to surface loading. For an elastic half-space, eqs (C8)–(C10) represent the energy densities, whereas, for a
viscoelastic half-space, they represent potential densities associated with the amplitudes of the individual relaxation and growth modes.
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