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Inversion of shallow-seismic wavefields: I. Wavefield transformation
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S U M M A R Y
I calculate Fourier–Bessel expansion coefficients for recorded shallow-seismic wavefields us-
ing a discrete approximation to the Bessel transformation. This is the first stage of a full-
wavefield inversion. The transform is a complete representation of the data, recorded waveforms
can be reconstructed from the expansion coefficients obtained. In a second stage (described in
a companion paper) I infer a 1-D model of the subsurface from these transforms and P-wave
arrival times by fitting them with their synthetic counterpart. The whole procedure avoids deal-
ing with dispersion in terms of normal modes, but exploits the full signal-content, including
the dispersion of higher modes, leaky modes and their true amplitudes. It is robust even in the
absence of a priori information. I successfully apply it to the near field of the source. And it is
more efficient than direct inversion of seismograms. I have developed this new approach be-
cause the inversion of shallow-seismic Rayleigh waves suffers from the interference of multiple
modes that are present in the majority of our field data sets. Since even the fundamental-mode
signal cannot be isolated in the time domain, conventional phase-difference techniques are not
applicable.

The potential to reconstruct the full waveform from the transform is confirmed by two field-
data examples, which are recorded with 10 Hz geophones at effective intervals of about 1 m
and spreads of less than 70 m length and are excited by a hammer source. Their transforms
are discussed in detail, regarding aliasing and resolution. They reveal typical properties of
shallow surface waves that are at variance with assumptions inherent to conventional inversion
techniques: multiple modes contribute to the wavefield and overtones may dominate over
the fundamental mode. The total wavefield may bear the signature of inverse or anomalous
dispersion, although the excited modes have regular and normal dispersion. The resolution at
long wavelengths (and thus the penetration depth of the survey) is limited by the length of the
profile rather than by the signal-to-noise ratio at low frequencies.

Finally, this approach is compared with conventional techniques of dispersion analysis. This
illustrates the advantage of conserving the full wavefield in contrast to the reduction to one
dispersion curve.

Key words: dispersion analysis, near-field, phase-slowness, Rayleigh waves, shallow seismics,
wavefield transformation.

1 I N T RO D U C T I O N

Shallow-seismic surface waves are an attractive means of investi-
gating the mechanical properties of the subsurface in terms of shear
wave velocity. Rayleigh waves are easy to excite and record with
standard field equipment such as a sledge-hammer and vertical-
component geophones. They have large amplitudes and thus an ex-
cellent signal-to-noise ratio. The geometry of propagation may be

∗Now at: Black Forest Observatory (BFO), Heubach 206, D-77709 Wolfach,
Germany.

interpreted in two horizontal dimensions, while depth information
is obtained from their frequency-dependent phase velocity. In con-
trast, body-wave experiments that are also able to resolve shear wave
velocity are more difficult to perform in the field.

1.1 Previous studies

Early studies that specifically address shallow seismic surface waves
(in the decametre range) are from the 1930s, when groups at
Göttingen University and Berlin worked on civil engineering ap-
plications (Köhler 1935; Köhler & Ramspeck 1936). In the 1950s
their work was carried on at Munich (Förtsch 1953; Korschunow
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1955; Giese 1957). Bornmann (1959) published a review detail-
ing the knowledge of that time. The processing of dispersed wave
trains as well as the forward calculation of dispersion relations for
stratified media was still difficult then due to the lack of electronic
computing equipment. For this reason the authors did not focus on
dispersion curves alone. They also discussed amplitude damping,
local resonances and spatial interference of modes. And they pre-
ferred tunable harmonic vibrators as field sources.

Studies over these years remained mainly at the level of rather
qualitative discussions (Howell 1949; Dobrin et al. 1954; Press &
Dobrin 1956). However, Evison (1956) had already published a com-
parison between field data and synthetic waveforms.

From the 1960s onwards the academic interest of seismologists
shifted to the interpretation of teleseismic surface wave data to in-
fer upper-mantle structure. However, at that time the first papers on
shallow surface wave techniques were published by Jones (1958,
1962), an author from a civil engineering background. There was a
boom of geotechnical publications in the 1980s triggered by Stokoe
& Nazarian (1983) and Nazarian (1984). They invented what they
called the spectral analysis of surface waves (SASW) method. This
technique is based on phase spectra evaluated in the field. The phase
differences between two receivers are interpreted in terms of a fun-
damental normal-mode dispersion curve. Among these studies are
many applications to the investigation of pavements. As will be
demonstrated below, these must now be suspected of being dis-
turbed by higher modes. Gucunski & Woods (1991) and Tokimatsu
et al. (1992) first mentioned complications due to higher modes and
proposed an explanation of the experimentally derived dispersion
curves by an effective dispersion curve calculated under considera-
tion of the influence of higher modes.

At the beginning of the 1990s some seismologists returned to
study shallow surface waves. Gabriels et al. (1987) were the first
to pick higher-mode dispersion curves from a wavefield spec-
trum. Xia et al. (1999) applied a conventional dispersion analy-
sis to derive 1-D structure. Others utilized fundamental Rayleigh
(Schneider & Dresen 1994; Dombrowski 1996; Misiek 1996) or
Love (von Hartmann 1997) modes to infer lateral heterogeneity.
Schalkwijk (1996) tried to extract shallow surface waves scattered
at an underground void from seismic traces but reported complica-
tions with higher modes. Roth et al. (1998) observed and interpreted
guided waves of large amplitude in shallow reflection data. Bohlen
et al. (1999) and Klein et al. (2000) studied dispersed Scholte waves
in marine shallow-seismic records.

Most of these shallow-seismic studies adopt their methodology
from teleseismic studies. They calculate one phase-velocity disper-
sion curve from phase differences between two receivers in the data
set and fit this with the fundamental normal-mode dispersion curve
predicted by a hypothetical Earth model. Only a few of them recog-
nize the importance of higher modes or even exploit their informa-
tion content. There are a few more recent conference abstracts that
mention the potential of shallow-seismic higher modes (Park et al.
1999; Beaty & Schmitt 2000; Xia et al. 2000). The full content of
higher modes was exploited by Forbriger (2001) by an inversion of
wavefield spectra. This method is presented below. Compared with
teleseismic conditions, it benefits from the possibility of deploying
geophones at almost any position in shallow-seismic investigations.

1.2 The concept of this study

Nine shallow-seismic field records out of 13 that I investigated show
distinct higher modes. In all cases they interfere in the time domain

and in some cases are even inseparable in the wavefield spectrum. In
those cases, the observed dispersion cannot be interpreted in terms
of dispersion relations of individual normal modes. On the other
hand, an attempt to model the recorded waveforms by synthetic
seismograms, which would be the direct inversion approach, fails
due to the lack of a priori reference models for shallow-seismic sites
and due to the severe non-linearity of the problem.

For these reasons I propose a two-stage inversion. In the first
stage, which is described in this paper, a wavefield spectrum for the
observed data set is calculated. The complex spectral amplitudes
permit a reconstruction of the full waveform when used as Fourier–
Bessel expansion coefficients – a procedure that may appear trivial
but is not. Solving the theoretical problem of seismic wave propa-
gation in 1-D media with common methods such as the reflectivity
method (Fuchs 1968; Müller 1985) involves the calculation of syn-
thetic Fourier–Bessel expansion coefficients. In a second stage we
use such a method to fit the empirical coefficients using theoretical
predictions in an iterative least-squares inversion. The latter is the
subject of a companion paper (Forbriger 2003, this issue, referred
to hereafter as Paper II).

As substantiated below, this two-stage spectral approach has the
advantage of being less non-linear than waveform inversion and has
the potential to reduce computation times by a factor of ten com-
pared with waveform inversion. Although individual modes may be
recognized in the wavefield spectrum of many data sets, their iden-
tification is not required for the inversion. Higher modes and leaky
modes contribute to the result as well.

In the first part of this paper, I will review and slightly modify
the slant-stack analysis as described by McMechan & Yedlin (1981)
and used by Gabriels et al. (1987). This will be helpful in discussing
aliasing and resolution properties common to all wavefield spectra.
However, the slant-stack spectrum cannot be used to reproduce the
waveforms in the representation of a wavefield as excited by a cylin-
drically symmetric point source. In the second part I will therefore
describe a modified Fourier–Bessel transform that produces valid
Fourier–Bessel expansion coefficients of the recorded wavefield.
Finally, this approach will be compared with the results of a con-
ventional dispersion analysis.

1.3 Example data sets

Two data sets will be used below to illustrate the data processing
developed in this paper. They represent two typical classes of sub-
surface structure. A shot gather of the Bietigheim data set is shown
in Fig. 1 and one of the Berkheim data set in Fig. 2. The traces
are scaled dependent on offset to allow a comparison of amplitudes
and are displayed on a reduced timescale to avoid overlap of neigh-
bouring traces. Both data sets were recorded with 10 Hz vertical
geophones. The wavefield was excited with a hammer. The data sets
were combined from several single shots to enhance the receiver
density. Shot gathers were scaled to compensate for differences in
excitation amplitude.

The Bietigheim data set was recorded on a site with approximately
15 m of loess, loam and gravel overlying solid dolomite (Upper
Muschelkalk). The subdivisions of the unconsolidated sediments
are not apparent from the seismic data – no sharp discontinuities are
present in the soil layer. The site was therefore regarded as a field
approximation to one layer above a half-space. However, inversion
exhibits a pronounced velocity gradient in the soil (Paper II).

The Berkheim data set was recorded on a hard pitch with black
top pavement. The soil below the hard surface is made ground,
consisting mainly of loam (Bessing, municipality Esslingen,
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Inversion of shallow-seismic wavefields: I 721

Figure 1. Bietigheim data set: raw seismogram gather. The traces are scaled with an offset-dependent factor rκ and are displayed on a reduced timescale
t red = t − r/vred. The large-amplitude signal in the centre of the wavefield constitutes the first overtone of normal modes. The fundamental mode has smaller
amplitudes and makes up the tail of the dispersed wave train.

private communication, 1999). The seismic interpretation (Paper II)
suggests that in about 5.5 m depth a hard layer is met. This agrees
with the geological situation: in that depth a Jurassic sandstone (Lias
α) may be expected. The uppermost parts of the medium show a dis-
tinct velocity inversion from the fast asphalt layer to the underlying
slow soil. Consequently, the seismic waveforms show the signature
of inverse dispersion: the high-frequency surface waves arrive ear-
lier than the low-frequency ones, in contrast with the case of Fig. 1.
However, as dispersion analysis shows (Fig. 10, see Section 6.2),
each of the normal modes is excited in its group-slowness minimum.
The characteristic of the wave train is due to the superposition of
several normal modes.

2 S L A N T S TA C K

McMechan & Yedlin (1981) describe a wavefield transformation
assuming plane waves. They calculate a τ , p transform (a slant
stack) of the wavefield with a subsequent Fourier transformation
(p =phase slowness, τ = delay time). This yields an f , p spectrum of
the wavefield (f = frequency). The surface waves become apparent
in the spectrum due to their large spectral coefficients.

This method was used by several authors (Gabriels et al. 1987;
Bohlen et al. 1999; Park et al. 1999; Klein et al. 2000; Beaty &

Schmitt 2000; Xia et al. 2000) to perform the dispersion analysis
of data sets that contain higher modes. I will outline this method
in a slightly modified formulation and use it to explain common
properties of wavefield spectra, such as aliasing and resolution.

We start from a set of N seismic waveforms u(t, rl) recorded at
source–receiver offsets r l. The slant stack of these seismograms is
calculated using

U (τ, p) =
N∑

l=1

u(prl + τ, rl ). (1)

Eq. (1) shifts all traces by the phase traveltime pr l. The signal com-
ponent that travels with the phase slowness p will dominate in the
sum due to constructive interference. U (τ , p) can therefore be re-
garded as the waveform of this component.

If the seismic signal u(t, rl) is written as a Fourier integral

u(t, rl ) =
∫ +∞

−∞
ũ(ω, rl )e

−iωt dω

2π
(2)

the slant stack, eq. (1), becomes

U (τ, p) =
N∑

l=1

∫ +∞

−∞
ũ(ω, rl )e

−iωprl e−iωτ dω

2π
. (3)
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Figure 2. The Berkheim data set: raw seismogram gather. The traces are scaled with an offset-dependent factor rκ and are displayed on a reduced timescale
t red = t − r/vred. The surface waves show the signature of inverse dispersion, i.e. high frequencies arriving first at the receivers. This is due to a velocity
inversion (velocity decreasing with increasing depth) in the uppermost parts of the subsurface. In this case it cannot be explained by an inversely dispersed
fundamental mode. Instead it is the result of the interference of several modes.

From eq. (3) we obtain the Fourier coefficients

Ũ (ω, p) =
N∑

l=1

ũ(ω, rl )e
−iωprl (4)

of U (τ , p).
The amplitudes of recorded wavefields are decreasing with in-

creasing r due to geometrical spreading, scattering and dissipative
losses. Hence the contribution of terms for small r l will dominate
the stack. To gain full resolution it is best to normalize the signal
energy to the offset dependence of plane waves in elastic media,
which is∫ +∞

0
u2(t, r ) dt = constant. (5)

In the following I will call

GSLS(ω, p) =
N∑

l=1

fl ũ(ω, rl )e
−iωprl , (6)

a dispersion analysis by the slant stack, where f l are appropriate
factors to scale the seismograms to match eq. (5).

Substantial components of the seismic wavefield that travel with
phase slowness p at an angular frequency ω will produce an ampli-
tude maximum of GSLS at (ω, p). The dispersion relation p(ω) of

the surface waves will become apparent from these maxima. How-
ever, we may not address all of them as normal modes in the sense
of elastic wave theory. Leaky modes (i.e. guided waves) and even
body waves may also contribute maxima to GSLS(ω, p).

2.1 Noise

Seismic noise has the form of waves travelling with an unpredictable
propagation direction across the geophone spread. Assuming that its
sources are close to the surface, the noise signal will predominantly
be surface waves. In a linear spread they will be observed with an
apparent phase slowness that is smaller than their structural phase
slowness p(ω) when their propagation direction is not parallel to the
geophone line. The number of modes contributing to this systematic
effect and thus the resulting magnitude of seismic noise increases
with decreasing slowness p in GSLS(ω, p). Therefore, body waves
with small amplitude and phase slowness are most poorly resolved,
although they are present in GSLS(ω, p) in principle. Laterally scat-
tered surface waves, appearing with small apparent slowness and
large amplitudes in the geophone line, can often be suppressed with
a time-domain taper because they appear in the coda of the direct
surface waves.
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Inversion of shallow-seismic wavefields: I 723

2.2 Aliasing, resolution and side-lobes

As for any spectral analysis of data represented by a finite number
of samples, the slant-stack dispersion analysis suffers from alias-
ing, limited resolution and side-lobes. This becomes obvious when
analysing an impulsive plane wave

ũpw(ω, rl ) = exp(iωpwaverl ) (7)

travelling with phase slowness pwave and sampled equidistantly at
r l = l�r . Analysing eq. (7) with eq. (6) and f l = 1 we obtain

GSLS(ω, p) =
N∑

l=1

exp[iω(pwave − p)l�r ]. (8)

2.2.1 Aliasing

The amplitude of GSLS for a test signal with pwave = 8 s km−1 is
shown in Fig. 3. It has identical maxima at slowness values

p = pwave + n
2π

ω�r
(9)

where n is an integer. There the terms in the sum have all the same
phase (i.e. are all real and equal to unity).

The maximum with n = 0 is the main maximum at the wavefield
slowness p = pwave. All others must be regarded as aliased because

0

−2

−1

1

Figure 3. Slant-stack analysis of the test wavefield given in eq. (7) with pwave = 8 s km−1, �r = 3 m and N = 12. The maxima marked by arrows are
numbered according to n in eq. (9). The main maximum at 8 s km−1 has n = 0. All others are aliased. Side-lobes, as defined by eq. (13), are visible between
the pronounced maxima. Aliasing appears first at 40 Hz, where the hyperbola defined by eq. (10) intersects the main maximum with pwave = 8 s km−1. The
hatched area gives a measure of the theoretical width �p of the main maximum due to a limited spread length L = N�r = 36 m. Slowness resolution is strongly
frequency dependent, becomes quickly worse at low frequencies and can only be improved by extending the geophone spread, as can be seen from eq. (12).

they are sampling-dependent (i.e. dependent on �r). The smallest
angular frequency at which aliasing can be found first in the interval
0 ≤ p ≤ 2pwave is

ω(pwave) = 2π

�r pwave
. (10)

This hyperbola, which defines the aliasing limit in the (ω, p) plane,
is also shown in Fig. 3. Aliasing appears first at 40 Hz where the
hyperbola intersects the main maximum with pwave = 8 s km−1.

2.2.2 Resolution

The amplitude of GSLS is smallest (white strips in Fig. 3) at

p = pwave + n
2π

ωN�r
, (11)

where the terms in the sum eq. (8) compensate each other because
their phase varies from 0 to 2π when n is an integer and n 	= 0, ±N ,
±2N , . . . .

The half-width of the main maximum can be found from eq. (11).
The half distance between the neighbouring minima is

�p = 2π

ωL
(12)
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724 T. Forbriger

where L = N�r is the length of the geophone line. Thus eq. (12)
gives a frequency-dependent limit for the resolution of the phase
slowness value. It is independent of pwave. Thus the relative reso-
lution at a given frequency is worse for a smaller slowness of the
wavefield.

The value of �p is visualized by the hatched area in Fig. 3. It is
strongly frequency-dependent and the resolution deteriorates rapidly
at low frequencies. Since the dispersion at lower frequencies (i.e.
large wavelength) bears the information concerning deeper material
properties this is an effective limit to the investigation depth. It can
only be influenced by the length L of the geophone spread. This,
however, in practice is limited by the shallow-seismic site situation.
The laterally undisturbed area in most cases is not larger than some
tens to hundred metres. While the signal-to-noise ratio may still
be good at frequencies between 5 and 10 Hz, the poor resolution
due to a spread length of less than 100 m in most cases limits the
investigation depth to about 10–20 m.

Note that eq. (12) expresses a fundamental property of phase-
slowness measurements. It also applies to conventional techniques
that use phase differences between Fourier coefficients at two re-
ceivers and to refraction studies. However, there it may not become

Figure 4. The Bietigheim data set: slant-stack dispersion analysis. The corresponding seismograms are shown in Fig. 1. A 10 per cent cosine taper was applied
at large offsets to reduce side-lobes. The plot is scaled with a frequency-dependent factor to remove the influence of the amplitude spectrum of the source. The
resolution is limited due to the geophone spread length L = 66 m. The minimum half-width of the maximum as a function of frequency (eq. 12) equals the
width of the hatched area. Aliasing is avoided by a dense effective geophone interval of �r = 1 m in the combined data set. Two modes are distinguishable.
They have an almost linear p(ω) relationship above 20 Hz. In that frequency range the higher mode (with smaller phase slowness) clearly dominates.

apparent since normally resolution is not investigated when using
these techniques. The apparent precision of such methods results
only from the assumption of observing a single undisturbed mode
or arrival.

2.2.3 Side-lobes

Side-lobes of the main maximum are found at

p = pwave ±
(

n + 1

2

)
2π

ωN�r
, (13)

where n is a positive integer and n 	= 0. They may be reduced in
amplitude by a smooth offset-domain taper. They are strongest in
Fig. 3 because no taper was applied.

2.3 Examples

In Fig. 4 the amplitudes of the coefficients GSLS(ω, p) are shown
for the Bietigheim data set. We can clearly distinguish two modes of
dispersive surface waves. They have an almost linear p(ω) relation
above 20 Hz, which is due to a pronounced variation of seismic
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Inversion of shallow-seismic wavefields: I 725

Figure 5. The Berkheim data set: slant-stack dispersion analysis. At least four modes are distinguishable that contribute to the wavefield. Each of the modes is
dispersed normally (i.e. the phase slowness is increasing with increasing frequency). The combination of all modes leads to an apparently anomalous dispersion
in the slant stack (i.e. the phase slowness decreases with increasing frequency). Points where dispersion curves of different modes come close to each other are
called ‘osculation points’. The fundamental mode and the first overtone have an osculation point at 40 Hz and 4.3 s km−1. To lower frequencies the higher-mode
phase slowness is decreasing rapidly, while the phase slowness of the fundamental mode increases for frequencies larger than 50 Hz. This may be established
from the result of the full inversion. However, both semi-branches are not excited in the vertical component of the wavefield at the surface. The hyperbola in
the plot is the aliasing limit given in eq. (10) for �r = 2 m, which is the largest single-shot geophone interval.

velocities with depth (Paper II). The largest part of the frequency
band is dominated by the higher mode with smaller phase slowness.
This is in contradiction to the common assumption that the main
contribution to shallow-seismic surface waves comes from the fun-
damental normal mode.

The amplitudes of GSLS(ω, p) calculated from the Berkheim data
set are shown in Fig. 5. At least four modes can be clearly distin-
guished in the spectrum. Each mode has normal dispersion. How-
ever, the whole wavefield shows the signature of anomalous disper-
sion due to the combination of several normal modes.

The terms ‘normal’, ‘anomalous’, ‘regular’ and ‘inverse’ disper-
sion are coined to characterize the dispersion relation of one normal
mode in a given frequency band. These terms may be misleading
when characterizing a total wavefield, because normal modes cannot
be distinguished before inversion. With a higher noise level it would
be impossible to tell different modes apart in Fig. 5. The analysed
data set would clearly show a character of anomalous dispersion in
the slant-stack dispersion analysis and a character of inverse disper-
sion in the spectrogram (Fig. 10, see Section 6.2).

All figures showing wavefield spectra are scaled with a frequency-
dependent factor to remove the influence of the source spectrum.
Although the spectral amplitudes decrease quickly below 10 Hz,
wavefields recorded with geophone spreads of more than 100 m
length may show an excellent signal-to-noise ratio down to 5 Hz.
In the case of Bietigheim and Berkheim the low-frequency limit is
a result of the small spread length rather than the source spectrum
and the receiver characteristics.

3 L I M I TAT I O N O F N O R M A L - M O D E
I N T E R P R E TAT I O N

Following the conventional method of inverting shallow-seismic
surface waves, we would pick a dispersion curve following the am-
plitude maximum of the spectrum GSLS(ω, p). Subsequently, we
would fit this curve using the dispersion relation of the fundamental
mode calculated from a hypothetical Earth model. In the same way
we could also process higher modes, as was done by Gabriels et al.
(1987).
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726 T. Forbriger

Experience with several shallow-seismic data sets shows that
problems are very likely to arise in the first step, picking the disper-
sion curve(s). In shallow-seismic data sets the observed dispersion
cannot as easily be associated with the fundamental mode defined by
elastic wave theory as in teleseismic records. The extreme material
properties and contrasts in the shallow regime produce wavefields
with dominating higher modes (as in the Bietigheim data set Fig. 4)
and osculation points of dispersion curves (as in the Berkheim data
set, Fig. 5). Also guided waves (i.e. leaky modes) may contribute
with large amplitudes.

Osculation points are well known in the literature (Okal 1978;
Kennett 1983, Section 11.4.1; Buchen & Ben-Hador 1996, Fig. 3b;
Nolet & Dorman 1996, Fig. 3a; Dahlen & Tromp 1998, Section
11.6.2). Although their nature is seldom discussed, they are known
to introduce extra complications to root-finding in the calculation
of normal-mode dispersion curves (Woodhouse 1988). Sezawa &
Kanai (1935) probably contributed the first discussion of an oscu-
lation point.

The modes in the Berkheim data set (Fig. 5) can only be distin-
guished due to excellent lateral homogeneity of the site. In similar
data sets that contain more noise, the modes smear out and grow
together in the spectrum at osculation points. Then it may be im-
possible to distinguish different modes in the slant stack. Only a full
inversion of these data sets shows that several normal modes are
definitely needed to explain the observed wavefield (Paper II).

In the case of Bietigheim (Fig. 4) we might misinterpret the higher
(and stronger) mode as being the fundamental mode in the presence
of noise or the absence of frequencies below 20 Hz (Fig. 8, see
Section 6.1). The next inversion step would fit a fundamental normal
mode to this higher mode. This would lead to a subsurface model
with erroneous velocities and to an unrealistic Poisson’s ratio in the
case of joint inversion with body-wave traveltimes (Paper II).

An attractive way to overcome these complications is modelling
of the full wavefield either by synthetic seismograms or by (ω, p)
spectra rather than by fitting a dispersion curve. Then we need not
identify normal modes in the data prior to inversion and would in-
clude higher modes and leaky modes without extra complications.
Seismograms are highly non-linear and computationally intense
functionals of the subsurface parameters. Initial models for shallow-
seismic structures are seldom more than a first guess. Hence, in most
cases a direct inversion of waveforms is not practical.

4 T H E S P E C T R A L A P P ROA C H

To derive Earth model parameters from recorded shallow-seismic
surface waves, I propose an inversion in the frequency and slowness
domain. This requires a precise representation of the recorded wave-
fields in this domain. Finding it is the first stage of the inversion.
The inference of subsurface parameters from the (ω, p) spectra is
the second stage of the inversion, which is the subject of Paper II.

To set up an automatic inversion scheme we need to predict theo-
retically the wavefield excited by shallow-seismic experiments in a
hypothetical medium. In this work the medium is regarded as being
flat and laterally homogeneous. Furthermore, cylindrically symmet-
ric sources (vertical hammer blow and explosion) are used. An ap-
propriate prediction for the Fourier coefficients of the seismic wave-
form at offset r in this case may be written as the Bessel-function
expansion

ũz(ω, r ) =
∫ +∞

0
Gz(ω, p)J0(ωpr )p dp (14a)

for the vertical vector component of the wavefield and

ũr (ω, r ) =
∫ +∞

0
Gr (ω, p)J1(ωpr )p dp (14b)

for the radial component. I will abbreviate eqs (14a) and (14b) by

ũη(ω, r ) =
∫ +∞

0
Gη(ω, p)Jη(ωpr )p dp, (15)

where η = 0 denotes the vertical component and η = 1 for the radial
component. J 0 and J 1 are Bessel functions of the first kind and
order zero and one, respectively.

The complex-valued function Gη(ω, p) represents the spectral
coefficients of the wavefield in the frequency and slowness do-
main. In the case of a point source in time and space Gη(ω, p)
may be addressed as the spectrum of the Green’s function. A robust
and widely used algorithm to calculate Gη(ω, p) is the reflectivity
method (Fuchs 1968; Müller 1985).

For the second stage I propose using an inversion algorithm that
fits the data in the (ω, p) domain, which has several advantages due
to properties of Gη(ω, p).

First, the relationship between Gη(ω, p) and the subsurface prop-
erties (in particular, the seismic velocities) is by far less non-linear
than for the waveform data. This is due to the oscillating harmonic
and cylindrical functions being worked in when evaluating the ex-
pansion integrals, eqs (15) and (2). A small change in the phase
slowness of a maximum in Gη(ω, p) may easily cause a phase shift
greater than 180◦ in the waveform at large offsets. Thus Gη(ω, p) is
much easier to linearize for an iterative least-squares scheme than
the waveform. And there is less risk of being trapped by local minima
of the objective function.

Secondly, the theorems of discrete spectral analysis tell us that a
set of seismograms at N different offsets r l does not contain more in-
formation than for resolving Gη(ω, pj) at N different wavenumbers
kj = ω pj. In a typical survey N is about 24–100. However, to cal-
culate waveforms by numerical integration of eq. (15) we would
typically need 500–2000 coefficients Gη(ω, pj) per frequency to
obtain accurate results. Since fitting the data in the (ω, p) domain
avoids the evaluation of eq. (15) it has the potential to decrease the
computation times by a factor of ten. If partial derivatives are ap-
proximated by finite differences, an extra calculation of all Gη(ω, p)
for each single model parameter is necessary. The overall compu-
tation time then almost only depends on the numerical effort spent
on the calculation of the Gη(ω, p) coefficients.

Thirdly, to work in the (ω, p) domain facilitates the construction
of an initial model, which still must be done by trial and error. While
multiple modes interfere in the oscillating time series, they can often
be separated in the (ω, p) domain.

In order to carry out the fit in the (ω, p) domain we first need a
method to calculate spectral coefficients Gη(ω, p) that reproduce the
recorded data in eq. (15). Additionally, Gη(ω, p) should interpolate
the wavefield between the r l by a wave propagating away from the
source. Below I will discuss a modification of the Bessel transfor-
mation that meets these requirements. The slant stack GSLS(ω, p)
cannot be used to reproduce the wavefield excited by a point source
in the expansion (15).

5 M O D I F I E D F O U R I E R – B E S S E L
T R A N S F O R M

Eq. (15) may be addressed as one part of the symmetric Bessel
transformation (Sommerfeld 1978, Section 21.8a) that is derived
from the Fourier–Bessel integral
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f (r ) =
∫ +∞

0
Jn(kr )

∫ +∞

0
f (r ′)Jn(kr ′)r ′ dr ′k dk, (16)

where n is any integer order (Ben-Menahem & Singh 1981; Morse
& Feshbach 1953, eqs D.29 and 6.3.62, respectively). The inverse
to eq. (15) are simply the (ω, p) coefficients

Gη(ω, p) = ω2

∫ +∞

0
ũη(ω, r )Jη(ωpr )r dr (17)

derived from the Fourier coefficients of the seismograms in straight-
forward calculation. In practice we do not know the continuous
wavefield ũη(ω, r ). Since there exists no corresponding discrete
form for the Bessel transformation, we approximate eq. (17) by

Gη(ω, p) = ω2
N∑

l=1

ũη(ω, rl )Jη(ωprl )rl�rl , (18a)

where

�rl = 1

2




r2 − r1 for l = 1,

rN − rN−1 for l = N and

rl+1 − rl−1 otherwise

(18b)

with r l+1 ≥ r l corresponds to the trapezoid rule.
The r l are predefined by the field configuration. We may not ex-

pect them to ensure an accurate approximation of eq. (17) by eq.
(18) for all frequencies. However, as experience shows, the approx-
imation is acceptable for practical usage if we replace the Bessel-
function J η = (H (1)

η + H (2)
η )/2 by the Hankel-function H (2)

η /2 alone
and thus modify eq. (18a) to give

GBTR
η (ω, p) = ω2

2

N∑
l=1

ũη(ω, rl )H (2)
η (ωprl )rl�rl . (19)

5.1 Outgoing and incoming waves

The motivation to omit the Hankel-function H (1)
η in eq. (19) follows

from a closer look at the aliasing arising from eq. (18). Eq. (18a)
may be rewritten as

Gη(ω, p) = ω2

2

N∑
l=1

[
H (1)

η (ωprl ) + H (2)
η (ωprl )

]

× ũη(ω, rl )rl�rl

(20)

using the Hankel functions H (1)
η and H (2)

η . Moreover, we express the
Hankel functions by

H (1)
η (x) = Mη(x) exp[iη(x)] (21a)

and

H (2)
η (x) = Mη(x) exp[−iη(x)], (21b)

respectively, where the modulus Mη(x) and the phase η(x) are real
functions (Abramowitz & Stegun 1972, eq. 9.2.17). Now we analyse
an outward propagating cylindrical wavefield

ũη(ω, rl ) = H (1)
η (ωpwaverl ), (22)

which leads to

Gη(ω, p) = ω2

2

N∑
l=1


exp[iη(ωpwaverl ) + iη(ωprl )]︸ ︷︷ ︸

1©

+ exp[iη(ωpwaverl ) − iη(ωprl )]︸ ︷︷ ︸
2©




× Mη(ωpwaverl )Mη(ωprl )rl︸ ︷︷ ︸
3©

�rl . (23)

The term 1© is due to H (1)
η and 2© is due to H (2)

η in eq. (20). Since a
first-order approximation gives M2

η(x) ≈ 2/(πx), the factor 3© will
give a contribution of the same magnitude at every l. The result of the
summation in eq. (23) is mainly determined by terms 1© and 2©. The
phase η(x) is an antisymmetric, increasing monotonic function
(Abramowitz & Stegun 1972 , eq. 9.2.21). Thus, as discussed above
for eq. (8), in most cases the values of the exponential functions
will be distributed over the complex unit circle and compensate
each other in the sum. However, for p = −pwave or pwave term 1© or
2©, respectively, is independent of l and gives a major contribution

to the sum.
Furthermore, we replace the phase by its far-field approximation
η(x) ≈ x − (η/2 + 1/4) and choose r l = l �r . Then,

1© ≈ exp[iωl�r (pwave + p)] exp[−i(2η + 1)/2] (24)

and

2© ≈ exp[iωl�r (pwave − p)]. (25)

Analogous to the discussion of eq. (8) we find major contributions
to the amplitude of Gη(ω, p) in eq. (23) for

p = −pwave + n
2π

ω�r
(26)

due to 1© and for

p = pwave + n
2π

ω�r
(27)

due to 2© for all integer n. Again the amplitude maxima for n = 0
are the main peaks, whereas maxima with n 	= 0 are �r-dependent
and must be addressed as aliasing. The latter vanish as we approach
the continuous case (i.e. �r → 0).

For GSLS(ω, p) in eq. (8) we only found the condition (27) (which
is identical to eq. 9). In the construction of eq. (8) we only consid-
ered waves travelling away from the source. However, in the general
case (as represented by eq. 18 or 20) a finite set of seismograms
may be understood as outgoing waves as well as waves cumulating
at the source. This is the origin of term 1©, which adds a signifi-
cant disturbance to Gη(ω, p) with its aliasing for n > 0 at positive
slowness p.

We get rid of this by using eq. (19) rather than eq. (18a). An
exact mathematical treatment has not been found because it involves
integrals of products of cylindrical functions of different type, which
cannot be solved analytically. However, the discussed properties
become plausible through the example in Fig. 6.

5.2 Examples and wavefield reconstruction

The ambiguity inherent in eq. (18) is illustrated in Fig. 6. The three
panels on the left show different versions of the Bessel transform
analysis of a single shot from the Bietigheim data set. The top
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A

C

B

D                                                                                  FE

Figure 6. The Bietigheim data set: analysis and reconstruction of single-shot seismograms. The grey-scale gives the amplitudes of the GBTR
z (ω, p) spectrum

calculated using eq. (19) from the seismograms. Recorded seismograms (thick lines) are superimposed on the reconstructed waveforms in the right-hand
panels. Top left: the Bietigheim data set analysed by eq. (19). A, fundamental mode main peak (n = 0 in eq. 27); B, higher-mode main peak (n = 0 in eq.
27); C, fundamental mode alias peak with n = −1 in eq. (27). Top right: waveforms reconstructed by inserting the GBTR

z (ω, p) spectrum (top left) into the
expansion (14a). The reconstructed waveforms interpolate the recorded data using outgoing waves. At the geophone offsets of the field experiment they cannot
be distinguished from the superimposed data. Middle left: the Bietigheim data set analysed using eq. (19) and with H (2)

0 replaced by H (1)
0 . D, the fundamental

mode alias peak with n = 1 in eq. (26); E, the higher-mode alias peak with n = 1 in eq. (26); F, the higher-mode alias peak with n = 2 in eq. (26). Middle right:
the reconstructed wavefield is interpolated using waves with a negative phase velocity of unphysical meaning. The waves still propagate with a positive group
velocity. Bottom left: the Bietigheim data set analysed using eq. (18a). This is equal to a superposition of the above panels. Bottom right: the reconstructed
wavefield is severely disturbed by waves with a negative phase velocity. It is interpolated using non-propagating waves.
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Figure 7. The Berkheim data set: a Bessel-transform analysis and reconstruction of waveforms. Top: the grey-scale gives the amplitude of the GBTR
z (ω, p)

spectrum calculated using eq. (19) from the seismograms shown in Fig. 2. See Fig. 5 for a discussion of modes. Bottom: the seismograms were calculated by
inserting the GBTR

z (ω, p) spectrum displayed in the top figure into the expansion (14a). Recorded waveforms (thick lines) are superimposed. Only in the body
waves at small offsets can they be distinguished from the reconstructed signal.
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730 T. Forbriger

Figure 8. The Bietigheim data set: GBTR
z spectrum and conventional dispersion analysis. The grey-scale image shows the amplitudes of a wavefield spectrum

calculated using eq. (19) from the Bietigheim data set. The superimposed dispersion curve was calculated using the phase-slowness analysis technique described
in the appendix. Interference of two modes of similar amplitude leads to jumps of the dispersion curve around 30 Hz. The seismograms were tapered before
the analysis to remove body-wave onsets and surface wave coda. For frequencies larger than 50 Hz the phase increment in eq. (A3) was forced to be positive.

spectrum is GBTR
z (ω, p), calculated using eq. (19). As already dis-

cussed for Fig. 4 we can identify a fundamental mode and a higher
mode. The spectrum in the middle was calculated using eq. (19),
but with H (2)

0 replaced by H (1)
0 . Three maxima are marked, which

are aliasing according to term 1© in eq. (23) with n = 1 (D and E
in Fig. 6) and n = 2 (F) in eq. (26), respectively. The bottom panel
shows the result of the discretized Bessel transformation as defined
by eq. (18). This is essentially a superposition of the two spectra
above.

The panels on the right show the waveforms calculated from the
spectra on the left by inserting them in the expansion integrals (14a)
and (2). The Bessel expansion eq. (14a) can be evaluated numerically
to arbitrary precision since GBTR

z (ω, p) can be calculated at any p.
The recorded seismograms are superimposed. The GBTR

z (ω, p) spec-
trum at the top reconstructs and interpolates the recorded waveforms
very well. They are indeed indistinguishable from the superimposed
data. The H (1)

0 version in the middle panel, in contrast, interpolates
with waves of negative phase velocity of unphysical meaning. The
group velocity is still positive, which is essential to reconstruct the
recorded waveforms at r l. As can be seen in the bottom panel, the
discretized version of the Bessel transformation, i.e. eq. (18), does
not produce a successful representation of the wavefield. It is sig-

nificantly disturbed by the aliasing of term 1© in eq. (23), which is
represented by the middle panels. It is even unable to reconstruct
the waveforms at the original offsets reasonably. Hence, we prefer
the modified Bessel transform, eq. (19), which results in GBTR

z (ω,
p) as shown in the top panels.

Fig. 7 shows the amplitudes of GBTR
z (ω, p) calculated using

eq. (19) from the Berkheim data set (Fig. 2). As discussed for Fig. 5,
several modes may be distinguished that contribute to the wave-
field. The complex coefficients have the potential to reconstruct the
recorded waveforms when inserted in the expansion integrals (14a)
and (2). This is confirmed by the waveforms in Fig. 7, where recorded
seismograms are superimposed on the reconstructed signals. Only
for the body waves at small offsets do both signals depart slightly
from each other.

6 C O M PA R I S O N W I T H
C O N V E N T I O N A L T E C H N I Q U E S

To emphasize the potential of the proposed method, I will finally
compare it with conventional techniques widely used for dispersion
analysis (Dziewonski & Hales 1972; Kovach 1978).
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Figure 9. The Berkheim data set: GBTR
z spectrum and conventional dispersion analysis. The grey-scale image shows the amplitudes of a wavefield spectrum

calculated with eq. (19) from the Berkheim data set. The superimposed dispersion curve was calculated using the phase-slowness analysis technique described
in the appendix. Since the contribution of several modes to the wavefield varies with frequency, the phase-slowness dispersion curve jumps. The seismograms
were tapered before the analysis to remove body-wave onsets and surface wave coda. For frequencies greater than 60 Hz the phase increment in eq. (A3) was
forced to be positive.

6.1 Phase-slowness analysis

If a single-mode plane wave can be extracted from the waveforms,
its phase-velocity dispersion can be derived from phase differences
between Fourier coefficients at different offsets (see the Appendix).
However, in the case of multimode data sets the result of such tech-
niques may become ambiguous or even misleading. Fig. 8 shows
the GBTR

z (ω, p) spectrum of the Bietigheim data set with a conven-
tionally derived dispersion curve superimposed. A similar plot for
the Berkheim data set is shown in Fig. 9.

The sudden jumps of the dispersion curves to smaller phase slow-
ness values indicate the influence of higher modes. However, in the
absence of a sufficient signal-to-noise ratio in the data below 25 Hz,
we would probably interpret the higher mode of the Bietigheim data
set as a fundamental mode. Only a subsurface model with unreal-
istic material properties (a negative Poisson ratio) could describe
the dispersion as a fundamental mode and the P-wave onsets at the
same time (Paper II).

Applying the phase-difference method to a data set such as
Berkheim, but with worse noise conditions, would apparently indi-
cate a decreasing phase-slowness dispersion curve of a single mode.

However, it is impossible to find a 1-D subsurface model that ex-
plains the wavefield of the Berkheim data set with single-mode
dispersion (Paper II).

Note that the situation becomes even worse when using phase
differences between only two receivers (as is usual with SASW).
Since deriving the phase of the signal involves the application of
a non-unique inverse of the complex exponential function, phase
jumps will then be interpreted as increasing phase slowness rather
than as a sudden jump to a different mode with smaller phase slow-
ness. For a receiver distance of 25 m the jump of about 1 s km−1 at
40 Hz (Fig. 9) would be completely invisible.

6.2 Group-slowness analysis

A conventional technique appropriate for multimode data sets is
the interpretation of group-arrival times. They can be read from
a spectrogram (sometimes called a ‘Gabor matrix’) as shown in
Fig. 10 for the Berkheim data set (the calculation is outlined in the
appendix). The amplitude maxima define the arrival of wavegroups
of the given frequency at an offset of 51.5 m. Dividing the arrival
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Figure 10. The Berkheim data set: spectrogram (Gabor matrix) of trace no 72 at 51.5 m offset. Amplitudes as given by the grey values are scaled as frequency-
dependent to remove the influence of the source spectrum. Scaling the time axis with the reciprocal offset immediately leads to a group-slowness dispersion
plot. As a result of the crossing of dispersion curves, the multimode character of the data set does not become obvious. However, by a comparison with the
GBTR spectrum in Fig. 9 it becomes recognizable that each mode is excited in its group-slowness minimum. The Gabor matrix alone shows an apparently
inverse dispersion (i.e. the group slowness decreases with increasing frequency) as discussed for the waveforms in Fig. 2. The waveform was tapered before
the analysis to remove body-wave onsets and the surface wave coda.

time by the offset immediately leads to a group-slowness dispersion
curve. However, the multimode character of the data set does not
become apparent from Fig. 10 (in contrast to the phase-slowness
spectra in Figs 5, 7 and 9) because group-slowness dispersion curves
may cross each other arbitrarily. Again we could tend to interpret
the wavefield dispersion as a single inversely dispersed fundamental
mode.

7 C O N C L U S I O N S A N D O U T L O O K

The two example data sets, Bietigheim and Berkheim, have prop-
erties that are typical for most of our shallow-seismic field-data
sets: multiple Rayleigh modes interfere in the wavefield. Even the
fundamental mode cannot be separated in the time domain and
higher modes dominate in some frequency ranges. Thus, conven-
tional phase-difference techniques to determine a dispersion relation
are not applicable.

Furthermore, it may be impossible to identify normal modes in the
spectrum of the observed wavefield, due to osculation points, noise
and a lack of mode excitation. Leaky modes are not distinguishable

from normal modes in the wavefield spectrum. Therefore, I propose
a two-stage inversion that fits the observed wavefield by synthetic
predictions in terms of Fourier–Bessel expansion coefficients. This
method exploits the full signal content, including the dispersion of
higher modes, leaky modes and their true amplitudes. It is by far
less non-linear and more efficient than waveform fitting.

In this paper I developed a modified Bessel transformation that al-
lows the calculation of Fourier–Bessel expansion coefficients from
a discrete set of seismograms excited by a point source. Examples
have confirmed that the coefficients determined from eq. (19) are ca-
pable of reconstructing the full recorded wavefield in the waveform
domain. They are an equivalent representation of the recorded data
and thus may be fitted by synthetic predictions. This second stage
of wavefield inversion is described in a companion paper (Forbriger
2003, this issue).
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A P P E N D I X A : P H A S E - S L O W N E S S
A N A LY S I S

Phase velocities may be derived from the phase ϕ(ω, r ) of the Fourier
coefficients

ũ(ω, r ) = A(ω, r ) exp[iϕ(ω, r )] (A1)

if the corresponding waveforms are single-mode plane waves (then
A(ω, r ) will vary only slowly with r). If they are not, the outcome
of phase-difference techniques is unpredictable.

The phase

ϕ(ω, r ) = p(ω)ωr (A2)

of a single plane mode is a linear function of the offset. The deriva-
tion of its absolute value from the Fourier coefficients is ambiguous
by an additive constant of an integer multiple of 2π . This is due to
the non-uniqueness of the involved arctan- or complex ln-function.
However, for a wide frequency range the phase increment from r l to

r l+1 is certainly less than 2π . For this reason we use the advantage
of a dense geophone spread and derive the phase traveltime

T (ω, rl ) =
l∑

k=2

−i

ω
ln[ũ(ω, rk)/ũ(ω, rk−1)] (A3)

relative to offset r 1. Then we fit a straight line

Tfit(ω, r ) = p(ω)r + c (A4)

to the T (ω, r l) values at each frequency. Some offsets at both ends
of the spread may be discarded if this improves the fit. The gradient
p(ω) is the sought phase slowness at angular frequency ω.

A P P E N D I X B : G RO U P - S L O W N E S S
A N A LY S I S

The spectrogram (Gabor matrix) as shown in Fig. 10 is defined by

f (ω, t) =
∫ +∞

−∞
u(t ′, r )h(t ′ − t)eiωt ′ dt ′ (B1)

with a Gaussian taper

h(τ ) = exp[−(τ/σ )2]. (B2)

This essentially is the Fourier transform of a tapered version of the
waveform with the taper centred at t. σ = 53 ms was used for Fig. 10,
which means a half-width of 90 ms for the taper.

Properties of this ‘moving-window analysis’ are discussed by
Kodera et al. (1976) and Wielandt & Schenk (1983).
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