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Abstract

A new approach is presented for the simulation of steady-state groundwater flow in multi-aquifer systems that contain many

cylindrical inhomogeneities. The hydraulic conductivity of all aquifers and the resistance of all leaky layers may be different

inside each cylinder. The approach is based on separation of variables and combines principles of the theory for multi-aquifer

flow with principles of the analytic element method. The solution fulfills the governing differential equations exactly

everywhere; the head, flow, and leakage between aquifers may be computed analytically at any point in the aquifer system. The

boundary conditions along the circumference of the cylinder are satisfied approximately, but may be met at any precision. Two

examples are discussed to illustrate the accuracy of the approach and the significance of inhomogeneities in multi-aquifer

systems. The first application simulates the vertical and horizontal, advective spreading of a conservative tracer in a

homogeneous aquifer that is overlain by an aquifer with cylindrical inclusions of higher permeability. The second application

concerns the three-dimensional shape of the capture zone of a well that is screened in the bottom aquifer of a three-aquifer

system. The capture zone extends to the top aquifer due to cylindrical holes of lower resistance in the separating clay layers.

q 2003 Elsevier Science B.V. All rights reserved.

Keywords: Multi-aquifer; Inhomogeneities; Analytic element method; Capture zone

1. Introduction

The objective of this paper is to present a new

analytic element approach for the simulation of

steady-state groundwater flow through multi-aquifer

systems that contain many cylindrical inhomogene-

ities. The proposed approach may be used, for

example, to study the effect on the flow of local

inclusions of higher or lower hydraulic conduc-

tivity, or to study the effect of holes in leaky

separating layers. If the exact location and proper-

ties of such inclusions and holes are unknown, the

approach may be used for hypothesis-testing, based

on available hydrogeological evidence of the

discontinuity of aquifer properties, leaky layer

properties, or both. The hydraulic conductivity of

all aquifers and the resistance of all leaky layers

may be different inside each cylinder, but the

cylinders may not overlap; flow must remain

(semi)confined in all aquifers. Two examples are

presented to illustrate the significance of inhomo-

geneities in multi-aquifer systems. The first example

is the advective spreading of a conservative tracer
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in a homogeneous aquifer that is overlain by an

aquifer with cylindrical inclusions of higher

permeability. The second example studies the

extent of the capture zone of a pumping well in

a system of homogeneous aquifers with leaky clay

layers that contain sandy, cylindrical holes.

The general theory for steady-state flow through

an aquifer system consisting of an arbitrary number

of aquifers and leaky layers was first presented by

Hemker (1984). Maas (1986) demonstrated the

power of matrix equations to solve flow in semi-

confined, multi-aquifer systems. Bruggeman (1999)

used this approach to derive exact solutions to over

50 problems of semi-confined, multi-aquifer flow,

including several problems of radial flow through a

single cylindrical inhomogeneity. Exact solutions

for uniform flow through a single cylindrical

inhomogeneity in a confined aquifer system were

presented by Bakker (2002).

The analytic element formulation for steady-state

flow through cylindrical inhomogeneities in a single

aquifer was developed by Strack (1987, 1989).

Barnes and Janković (1999) developed algorithms

for the accurate computation of the coefficients in

the solution and the efficient modeling of flow

through a large number of cylinders. Strack (1989)

also presented a theory for flow through elliptical

inhomogeneities in a single aquifer. An analogous

theory for three-dimensional flow through ellipsoi-

dal inhomogeneities was developed by Fitts (1991);

accurate and efficient algorithms to simulate flow

through thousands of ellipsoids were presented by

Janković and Barnes (1999).

The approach presented in this paper is based on

the separation of variables and applies principles of

the theory for multi-aquifer flow of Hemker (1984)

and the analytic element method (Strack, 1989;

Haitjema, 1995). Use will be made of algorithms

developed by Barnes and Janković (1999) to increase

accuracy and efficiency. The solution will fulfill the

governing systems of differential equations exactly

everywhere. It will be possible to compute the head,

flow, and leakage between aquifers analytically at any

point in the aquifer system. The boundary conditions

along the circumference of the cylinder will be

satisfied approximately, but to any desired accuracy,

depending on the abilities of the employed computer.

2. Basic equations for multi-aquifer flow

Consider a confined, multi-aquifer system with M

aquifers and M þ 1 leaky layers (Fig. 1); leaky layers

1 and M þ 1 are impermeable. The aquifers are

numbered 1 through M from top to bottom and the

leaky layers are numbered 1 (top of aquifer 1) through

M þ 1 (bottom of aquifer M). All aquifer properties

are homogeneous and isotropic, and are written as

vectors of which component m represents layer m

(following the notation of Hemker, 1984; Maas, 1986;

and Bruggeman, 1999). The transmissivities of the

aquifers are represented by the vector ~T [L2/T] and the

resistances to vertical flow of the leaky layers by the

vector ~C [T]; since the aquifer system is confined,

C1 ¼ CMþ1 ¼ 1: The comprehensive transmissivity

of the aquifer system, the sum of the transmissivities

of all aquifers, is called T, and the normalized unit

transmissivity vector is defined as ~Tn ¼ ~T=T : A

cylindrical r; u; z coordinate system is adopted (Fig. 1).

The resistance to flow in the vertical direction is

neglected within an aquifer (the Dupuit–Forchheimer

approximation). It is emphasized that this does not

mean that flow in the aquifer is horizontal. The

vertical component of flow may be obtained at any

point in the aquifer from three-dimensional continuity

of flow, once the horizontal components are computed

(Polubarinova-Kochina, 1962, p. 408; Strack, 1984).

Flow in the leaky layers is approximated as vertical.

The upward leakage qp [L/T] from aquifer p to aquifer

p 2 1 is computed as

qp ¼ ðhp 2 hp21Þ=Cp ð1Þ

where hp is the head in aquifer p: Steady-state flow in

aquifer p is governed by (e.g. Hemker, 1984)

72ðTphpÞ ¼
hp 2 hp21

Cp

þ
hp 2 hpþ1

Cpþ1

ð2Þ

where 72 is the two-dimensional Laplacian. The

heads in the differential equation may be converted to

discharge potentials (Strack, 1989), and the differen-

tial equations for all aquifers may be combined into

one matrix differential equation (e.g. Hemker, 1984)

72 ~F ¼ G ~F ð3Þ
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where ~F is a column-vector of discharge potentials

~F ¼ ~T ( ~h ð4Þ

where ‘(’ stands for the term-by-term multiplication

of two vectors (the Hadamard product; e.g. Magnus

and Neudecker, 1999). G is the system matrix, a tri-

diagonal M £ M matrix with diagonal terms

Gm;m ¼
1

CmTm

þ
1

Cmþ1Tm

ð5Þ

and off-diagonal terms

Gm;m21 ¼
21

CmTm21

Gm;mþ1 ¼
21

Cmþ1Tmþ1

ð6Þ

The r and u components of the discharge vector, the

vertically integrated flow in each aquifer, are each

written as column vectors, with their components

representing the r and u components of flow in the

different aquifers. The components of the discharge

vector may be obtained from the potential by

differentiation

~Qr ¼ 2
› ~F

›r
~Qu ¼ 2

1

r

› ~F

›u
ð7Þ

For a confined aquifer system consisting of M

aquifers, the system matrix is semi-positive definite

and has M 2 1 positive eigenvalues and one zero

eigenvalue. The non-zero eigenvalues are called wm

ðm ¼ 1;…;M 2 1Þ and the corresponding eigenvec-

tors ~Um: The general solution to Eq. (3) may be

written as (e.g. Hemker, 1984; Bakker and Strack,

2003)

~F ¼ FL
~Tn þ

XM21

m¼1

Fm
~Um ð8Þ

where FL fulfills Laplace’s differential equation in

two dimensions

72FL ¼ 0 ð9Þ

and Fm fulfills the modified Helmholtz equation

72Fm ¼ Fm=L
2
m ð10Þ

Fig. 1. A multi-aquifer system with a cylindrical inhomogeneity; shaded portions represent leaky layers.
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where Lm ¼ 1=
ffiffiffiffi
wm

p
are called the leakage factors and

have the dimension of length. It is important to note

that for a confined aquifer system, the sum of the

components of each eigenvector ~Um equals zero

(Bakker, 2001), and thus FL is the comprehensive

potential, the sum of the potentials in all aquifers (e.g.

Strack, 1981).

3. Problem statement

Consider a confined aquifer system with a

cylindrical inhomogeneity in a general flow field

(which may contain other cylindrical inhomogene-

ities); the cylinder cuts through all aquifers and leaky

layers (Fig. 1). The origin of an r; u; z coordinate

system is chosen at the center of the cylinder on the

bottom of the bottom aquifer; u is measured counter-

clockwise and the z axis points vertically upward. The

aquifer properties on the outside of the cylinder are as

stated previously (they are also summarized in

Table 1). On the inside of the cylinder, the

transmissivity vector is ~t; the comprehensive trans-

missivity is t; the normalized unit transmissivity

vector is ~tn; and the vector of resistances of the leaky

layers is ~c; the radius of the cylinder is R.

The vector of discharge potentials on the inside of

the cylinder is defined as

~F ¼ ~t ( ~h ð11Þ

Steady-state flow on the inside of the cylinder is

governed by

72 ~F ¼ H ~F ð12Þ

The coefficients of the system matrix H may be

obtained with Eqs. (5) and (6) when the components

of the vectors ~T and ~C are replaced with the

components of the vectors ~t and ~c, respectively. The

non-zero eigenvalues of H are called vm ðm ¼

1;…;M 2 1Þ; the corresponding leakage factors lm ¼

1=
ffiffiffiffi
vm

p
; and the corresponding eigenvectors ~Vm:

The boundary conditions along the circumference

of the cylinder are that the head and radial flow are

continuous in each aquifer

~hþ ¼ ~h2 ð13Þ

~Qþ
r ¼ ~Q2

r ð14Þ

where the superscripts ‘ þ ’ and ‘ 2 ’ stand for

evaluation on the circumference of the cylinder ðr ¼

RÞ just inside and just outside the cylinder, respect-

ively. The former condition may be written in terms of

potentials as

~Fþ(~T 2 ~F2( ~t ¼ 0 ð15Þ

The potential due to the cylinder is called ~Fc and

must fulfill Eq. (12) on the inside of the cylinder and

Eq. (3) on the outside of the cylinder, and must have

enough degrees of freedom to satisfy boundary

conditions (14) and (15) accurately along the

circumference of the cylinder. In addition, the

potential due to the cylinder must be finite everywhere

and should vanish at infinity.

4. Solution

The potential in the aquifer system on the outside

of the cylinder is written as

~F ¼ ~Fc þ
~Fo r $ R ð16Þ

where ~Fc is the vector of discharge potentials due to

the cylinder, and ~Fo is the vector of discharge

Table 1

Basic notation

Aquifer properties

M Number of aquifers
~T Transmissivity vector outside cylinder

~t Transmissivity vector inside cylinder

T Comprehensive transmissivity of aquifer system outside

cylinder T ¼
P

Ti

t Comprehensive transmissivity of aquifer system inside

cylinder t ¼
P
ti

~Tn Normalized transmissivity vector outside cylinder ~Tn ¼ ~T=T

~tn Normalized transmissivity vector inside cylinder ~tn ¼ ~t=t
~C Resistance vector outside cylinder.

~c Resistance vector inside cylinder

System matrix symbols

G System matrix outside cylinder

H System matrix inside cylinder

wm Non-zero eigenvalue m of G

vm Non-zero eigenvalue m of H
~Um Eigenvector m of G corresponding to non-zero eigenvalue wm

~Vm Eigenvector m of H corresponding to non-zero eigenvalue vm

Lm Leakage factor m outside cylinder Lm ¼ 1=
ffiffiffiffi
wm

p

lm Leakage factor m inside cylinder lm ¼ 1=
ffiffiffiffi
vm

p
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potentials due to all other aquifer features (which may

include other cylinders). On the inside of the cylinder,
~Fo is not valid because it does not fulfill Eq. (12), and

the potential is written instead as

~F ¼ ~Fc þFo ~tn r # R ð17Þ

where Fo is the comprehensive potential of ~Fo (i.e.

the portion that fulfills Laplace’s equation); Fo is a

function of the horizontal coordinates only.

Following Eq. (8), ~Fc will be written on the outside

of the cylinder as

~Fc ¼ FL
~Tn þ

XM21

m¼1

Fm
~Um r $ R ð18Þ

and on the inside as

~Fc ¼ GL ~tn þ
XM21

m¼1

Gm
~Vm r # R ð19Þ

where FL and GL fulfill Laplace’s differential

equation, and Fm and Gm fulfill the modified

Helmholtz equations

72Fm ¼ Fm=L
2
m ð20Þ

72Gm ¼ Gm=l
2
m ð21Þ

Expressions for FL, Fm, GL, and Gm will be obtained

by application of separation of variables.

5. Separation of variables

The general solution FL to Laplace’s equation in

cylindrical coordinates may be written as follows,

using separation of variables (Moon and Spencer

(1971), p. 14)

FLðr; uÞ ¼ ðArp þ Br2pÞ½CcosðpuÞ þ DsinðpuÞ� ð22Þ

where p is a non-negative integer. Since FL must be

finite on the outside of the cylinder and vanish at

infinity, it only includes negative powers of p

FL ¼
X1

p¼1

½apcosðpuÞ þ bpsinðpuÞ�r2p ð23Þ

The function GL must be finite on the inside of the

cylinder, and thus does not include any negative

powers of r

GL ¼
X1

p¼0

½apcosðpuÞ þ bpsinðpuÞ�rp ð24Þ

The modified Hemlholtz equation in r and u may

also be solved using separation of variables. Moon

and Spencer (1971, p. 16) show that separation of the

unmodified Hemlholtz equation (i.e. Eq. (10) has a

negative term on the right-hand side), results in

Bessel’s differential equation in r. The separated

modified-Helmholtz equation may be obtained

through the addition of a negative sign to the results

of Moon and Spencer, which results in the modified

Bessel’s differential equation in r (as may be

expected). The general solution may be written as

Fm ¼ ½AIpðr=lmÞ þ BKpðr=lmÞ�½CcosðpuÞ þ DsinðpuÞ�

ð25Þ

where Ip and Kp are modified Bessel functions of

order p and of the first and second kind, respectively,

and lm is a leakage factor. Recall that IpðrÞ approaches

zero for r approaching zero (except I0 which

approaches one), and Ip approaches infinity for r

approaching infinity (e.g. Abramowitz and Stegun,

1965). Conversely, KpðrÞ approaches infinity for r

approaching zero, and zero for r approaching infinity.

Since Fm must be finite on the outside of the cylinder

and vanish at infinity, it does not contain any

functions Ip

Fm ¼
X1

p¼0

½cpcosðpuÞ þ dpsinðpuÞ�Kpðr=LmÞ ð26Þ

The functions Gm must be finite on the inside of the

cylinder and thus do not contain any functions Kp

Gm ¼
X1

p¼0

½gpcosðpuÞ þ dpsinðpuÞ�Ipðr=lpÞ ð27Þ

The potential due to a cylindrical inhomogeneity

may now be obtained by combining Eqs. (18), (19),

(23), (24), (26) and (27). For practical purposes, the

infinite series are truncated at p ¼ P, which will be

referred to as the order of the inhomogeneity.
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The potential on the outside of the cylinder is

~Fc ¼
XP

p¼1

½apcosðpuÞ þ bpsinðpuÞ�r2p ~Tn

þ
XM21

m¼1

XP

p¼0

½cp;mcosðpuÞ

þ dp;msinðpuÞ�Kpðr=LmÞ ~Um ð28Þ

and on the inside of the cylinder

~Fc ¼
XP

p¼0

½apcosðpuÞþbpsinðpuÞ�rp
~tn

þ
XM21

m¼1

XP

p¼0

½gp;mcosðpuÞþdp;msinðpuÞ�Ipðr=lmÞ~Vm

ð29Þ

The coefficients d0;m, b0, and d0;m all equal zero

(because sinðpuÞ vanishes for p¼ 0). The other

coefficients will be determined by application of the

boundary conditions as discussed in Section 6.

Expressions of the r and u components of the

discharge vector may be obtained from differentiation

of the discharge potential, and are presented in the

Appendix. It is noted that the portions of the solutions

that fulfill Laplace’s equation (Eqs. (23) and (24)) are

equivalent to the real part of the solution for a circular

inhomogeneity in a single aquifer presented by Strack

(1987), who formulated his problem in terms of a

complex potential.

6. Solving for the coefficients

The expressions for the potential due to the

cylindrical inhomogeneity (Eqs. (28) and (29))

contain a total of 2Mð2P þ 1Þ2 1 coefficients. The

coefficients may be determined by application of the

boundary conditions (14) and (15) at a number of

points, referred to as collocation points, along the

circumference of the cylinder. At every ðx; yÞ location

of a collocation point, boundary conditions (14) and

(15) are applied in each aquifer, resulting in 2M linear

equations per collocation point. If 2P þ 1 collocation

points are selected, then boundary conditions (14) and

(15) may be applied at every collocation point in

every aquifer, except for at one collocation point in

one aquifer where only one of the two boundary

conditions may be applied. The resulting system of

2Mð2P þ 1Þ2 1 linear equations may be solved with

a standard method.

It is emphasized that the proposed solution fulfills

the governing differential equations exactly and

fulfills the boundary conditions along the edge of

the cylinder approximately, although up to any

desired accuracy by increasing the order P. The

solution for a given order P may be improved by

applying the boundary conditions along the edge of

the cylinder at more than 2P þ 1 points, and by

solving the resulting system of linear equations in a

least-squares sense. The improvement in accuracy of

the solution by this approach was demonstrated for

cylindrical inhomogeneities in a single aquifer by

Barnes and Janković (1999).

The proposed solution may be used to model flow

through an aquifer system with many non-overlapping

cylindrical inhomogeneities. In Eqs. (16) and (17) the

potential in the aquifer was written as the sum of the

potential due to a cylinder plus the potential due to all

other aquifer features, potential ~Fo, which may

contain other cylindrical inhomogeneities. Hence,

the values of the coefficients of one cylindrical

inhomogeneity may influence the values of the

coefficients of another inhomogeneity. The coeffi-

cients of all cylindrical inhomogeneities may be

obtained by solving one large explicit system for all

inhomogeneities simultaneously. Although this is

possible, it is more convenient to compute the

coefficients of each cylinder in an iterative manner,

using the Gauss–Seidel approach proposed for

circular inhomogeneities in single-aquifer flow by

Barnes and Janković (1999). The coefficients for each

cylinder are computed by holding the coefficients of

all other cylinders fixed. For each cylinder, 2Mð2P þ

1Þ2 1 linear equations are solved; the resulting

square, full matrix may be inverted and stored using

a standard approach (e.g. LDU decomposition). The

final solution is obtained by cycling through all

cylinders until the change of the coefficients becomes

insignificant. Experimentation has shown that this

approach converges quickly, generally in less than 20

iterations.

For computational accuracy it is recommended to

scale the parameters by the value of the Bessel

M. Bakker / Journal of Hydrology 277 (2003) 268–279 273



functions on the circumference of the cylinder. For

example, cp;m in Eq. (28) should be replaced by ~cp;m=

KpðR=LmÞ and the problem should be solved for ~cp;m.

Similarly, the coefficients of the portion of the

solution that fulfills Laplace’s equation should be

scaled according to the power of R. For example, ap in

Eq. (28) should be replaced by ~apRp and the problem

should be solved for ~ap:

7. Application I

The first application concerns the advective trans-

port of a conservative tracer in a heterogeneous two-

aquifer system. The thickness of each aquifer is 10 m

and the hydraulic conductivity is 2 m/d; the leaky

layer that separates the two aquifers has a thickness of

2 m and a vertical hydraulic conductivity of

kv ¼ 0:001 m/d so that the vertical resistance is

C ¼ 2000 d. The bottom aquifer is homogeneous,

but the top aquifer contains seven cylindrical

inclusions with a larger hydraulic conductivity of

10 m/d; the vertical hydraulic conductivity of the

leaky layer below the cylinders is kv ¼ 0:04 m/d for a

resistance of c ¼ 50 d. The radii of the cylinders vary

from 50 to 80 m and their distribution is shown in

Fig. 2. Far away from the cylinders, flow is uniform

from West to East with a gradient of 0.01. It is

emphasized that the hydraulic conductivity inside the

cylinders in the bottom aquifer may also be varied; it

is not varied here to study the specific effect of

inhomogeneities in the top aquifer on the flow in the

bottom aquifer.

There is one leaky layer and thus one leakage

factor. Outside the cylinders the leakage factor is

141 m, inside the cylinders the leakage factor is 29 m.

(From a practical standpoint, the leakage between

aquifers may be considered negligible at a distance of

three times the leakage factor away from any

disturbances.) The order of each cylinder is chosen

as P ¼ 4; the influence of the order on the accuracy of

the solution will be evaluated next.

A small computer program is written in MATLAB

to obtain a solution. Contour lines of the head in the

top and bottom aquifers are presented in Fig. 2(a) and

(b), respectively (North–South running solid lines).

The accuracy of the solution is evaluated by

calculating the error in the normal discharge across

the circumferences of the cylinders. The error 1 in

each aquifer is computed as

1 ¼ ðQþ
r 2 Q2

r Þ=Q0 ð30Þ

where Q0 is the uniform flow from West to East in

each aquifer. The average absolute error along the

circumference of the largest cylinder is l �1l ¼ 0:00018

the maximum absolute error is l1lmax ¼ 0:00061: It is

noted that the sum of the errors in the normal

discharges in the two aquifers equals zero, so that the

overall water balance is met. Although the error 1 in

each aquifer is small and will have no significant

practical consequence, the accuracy may be increased

by increasing the order P. For example, every increase

of four in the order of the largest cylinder results in

approximately an order of magnitude decrease of both

the average and the maximum errors. As a result, for

P ¼ 20 the errors have reduced to l �1l ¼ 9 £ 1029 and

l1lmax ¼ 3 £ 1028: The error in head along the

circumferences of the cylinders decreases in a similar

fashion.

The influence of the cylindrical inhomogeneities in

the top aquifer on the flow in the bottom aquifer is

evaluated by computing pathlines of a conservative

tracer that is released in the bottom aquifer. The

horizontal components of the specific discharge

vector are obtained by dividing the components of

the integrated horizontal discharge (Eq. (7)) by the

thickness of the appropriate aquifer. The vertical

component of flow at the top and bottom of each

aquifer may be obtained with Eq. (1). The vertical

variation of qz within an aquifer is linear, since the

resistance to flow in the vertical direction within an

aquifer is neglected (Strack, 1984). Pathlines are

computed using a second-order predictor-corrector

scheme (e.g. Barnes and Janković, 1999); special care

is taken to compute accurately the intersection of a

pathline with a cylinder and with the leaky layer.

A conservative tracer is released at point A over the

entire thickness of the bottom aquifer (Fig. 2(b)).

Pathlines are started from nine points, with vertical

intervals of 1 m, starting at 1 m above the bottom of

the aquifer. Pathlines are represented by the West–

East running lines in Fig. 2(a)–(c). When a pathline is

in the bottom aquifer, it is represented by a solid line

in Fig. 2(b) and a dotted line in Fig. 2(a). When a

pathline is in the top aquifer, it is represented by a

solid line in Fig. 2(a) and a dotted line in Fig. 2(b).
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A projection of all pathlines on a West–East running

vertical cross-section is shown in Fig. 2(c), where the

shaded area represents the leaky layer. To assist in the

interpretation of the pathlines, areas of upward

leakage through the leaky layer are shown in

Fig. 2(d) (shaded areas). All but one pathline flow

through portions of the top aquifer. The four pathlines

with the highest starting locations (at z ¼ 6–9 m)

Fig. 2. Application I. (a) Pathlines in top aquifer, (b) pathlines in bottom aquifer, (c) projection of pathlines on West–East vertical cross-section

(vertical scale exaggerated), and (d) areas of upward leakage (shaded).

M. Bakker / Journal of Hydrology 277 (2003) 268–279 275



show a significant deviation from the other pathlines.

The cylindrical inhomogeneities in the top aquifer

cause a significant lateral spreading of the tracer.

8. Application II

The second application concerns flow towards a

well screened in the bottom aquifer of a confined

aquifer system with three aquifers and two leaky clay

layers. The three aquifers are homogeneous, but the

two clay layers have cylindrical holes of smaller

vertical resistance. The thickness of the top two

aquifers is 10 m each, the thickness of the bottom

aquifer is 20 m, and the hydraulic conductivity of all

aquifers is 2 m/d. There are two holes of radius 60 m

in the top clay layer (light gray circles in Fig. 3(a)) and

one hole of radius 80 m in the bottom clay layer (dark

Fig. 3. Application II. (a) Horizontal projection of pathlines in top aquifer (thick), middle aquifer (thin), and bottom aquifer (dashed), (b)

Projection of pathlines on West–East vertical cross-section (vertical scale exaggerated).
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gray, larger circle in Fig. 3(a)). The resistance to

vertical flow of the clay layers is 10,000 d, except for

inside the cylindrical holes where it is 50 d. Far away

from the well, flow is uniform from West to East with

a gradient of 0.01; the discharge of the well is 300 m3/

d. The effect of the well is represented by the analytic

solution for flow to a well in a multi-aquifer system

(e.g. Hemker, 1984; Bakker, 2001).

Seven pathlines are shown in Fig. 3. Fig. 3(a)

represents a plan view and Fig. 3(b) is a projection of

the pathlines on a West–East running vertical plane.

In Fig. 3(a), a thick solid line represents a pathline in

the top aquifer, a thin solid line a pathline in the

middle aquifer, and a dashed line a pathline in the

bottom aquifer. A small circle is drawn at the point

where a pathline leaks to a lower aquifer. All pathlines

are started 800 m upstream of the well. A vertical

South–North cross-section, 800 m upstream of the

well, is shown in Fig. 4. The thick solid line represents

the capture zone envelope and the crosses indicate the

starting points of the pathlines. The dashed-dotted line

represents the capture zone envelope in absence of the

holes in the leaky layers.

Pathlines A and B are started at the bottom of the

aquifer system and represent the capture zone

envelope in the bottom aquifer. When a pathline is

started in any of the top two aquifers and leaks to

the bottom aquifer between pathlines A and B, then

the pathline will end at the well; otherwise it will

bypass the well. The capture zone envelope extends to

the top aquifer due to the presence of the holes in the

leaky layers. For example, pathlines C and D are

started in aquifer 1 and end at the well. It may be seen

from Fig. 3 that pathlines C and D were started within

the three-dimensional capture zone envelope. At point

E, two pathlines are started at different elevations;

pathline E1 starts outside the capture zone envelope

and pathline E2 starts inside the capture zone

envelope. The two pathlines follow the same path in

the horizontal plane until pathline E2 leaks to the

bottom aquifer. It may be interesting to point out that

the horizontal extent of the capture zone envelope

may be larger in the middle aquifer than in the bottom

aquifer. This is illustrated by pathline F, which is

started in the middle aquifer outside the horizontal

extend of the capture zone envelope in the bottom

aquifer, but it still ends at the well, because it leaks to

the bottom aquifer between pathlines A and B.

9. Conclusions

A new approach was presented for the simulation

of steady groundwater flow in multi-aquifer

systems with many cylindrical inhomogeneities.

Fig. 4. Application II. South–North vertical cross section 800 m upstream of well (vertical scale exaggerated). Thick line represents boundary

of capture zone envelope. Dashed-dotted line is capture zone envelope in absence of holes.
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The properties of all aquifers and leaky layers may be

different inside each cylinder. The approach is limited

to cases where flow remains (semi)confined in all

aquifers; cylinders may not overlap. Solutions

obtained with the new approach fulfill the system of

differential equations exactly and fulfill the boundary

conditions along the boundary of the cylinder up to

any desired accuracy (depending on the abilities of the

employed computer). For simplicity, the analysis was

restricted to the case where the number of aquifers and

leaky layers on the outside of the cylinder was equal

to the number on the inside of the cylinder. This is not

a limitation of the approach, which may equally well

be applied to cylindrical inhomogeneities consisting

of an arbitrary number of aquifers.

The head, flow and leakage may be computed

analytically at any point in the aquifer system. The

practical significance of the proposed approach was

illustrated by the presentation of two hypothetical

applications. In the first application, flow was

considered in a two aquifer system with cylindrical

inhomogeneities in the top aquifer only; the bottom

aquifer was homogeneous. It was shown that a

conservative tracer that is released in the bottom

aquifer is subject to a significant lateral spreading due

to the inhomogeneities in the overlying aquifer. In the

second application, the capture zone of a pumping

well in a three-aquifer system was evaluated. The

effect of cylindrical holes of lower resistance in the

leaky clay layers was evaluated. It was shown that the

cylindrical holes caused the capture zone of the well

to extend all the way to the top aquifer.

Appendix

The radial and tangential components of the

discharge vector are obtained with Eq. (7). The radial

discharge outside the cylinder is

~Qr ¼
XP

p¼1

½apcosðpuÞ þ bpsinðpuÞ�
p

rpþ1
~Tn

2
XM21

m¼1

XP

p¼0

½cp;mcosðpuÞ

þ dp;msinðpuÞ�K0
pðr=LmÞ ~Um ð31Þ

and inside the cylinder

~Qr ¼2
XP

p¼1

½apcosðpuÞþbpsinðpuÞ�prp21
~tn

2
XM21

m¼1

XP

p¼0

½gp;mcosðpuÞþdp;msinðpuÞ�I0pðr=lmÞ~Vm

ð32Þ

where the prime stands for differentiation with respect

to r. The derivatives of the Bessel functions are (e.g.

Abramowitz and Stegun, 1969)

I0pðr=lmÞ ¼
Ip21ðr=lmÞþ Ipþ1ðr=lmÞ

2lm

ð33Þ

K0
pðr=LmÞ ¼2

Kp21ðr=LmÞþKpþ1ðr=LmÞ

2Lm

ð34Þ

The tangential discharge outside the cylinder is

~Qu ¼
XP

p¼1

½apsinðpuÞ2bpcosðpuÞ�
p

rpþ1
~Tn

þ
XM21

m¼1

XP

p¼1

½cp;msinðpuÞ

2dp;mcosðpuÞ�
p

r
Kpðr=LmÞ ~Um ð35Þ

and inside the cylinder

~Qu ¼
XP

p¼1

½apsinðpuÞþbpcosðpuÞ�prp21
~tn

þ
XM21

m¼1

XP

p¼1

½gp;msinðpuÞ

2dp;mcosðpuÞ�
p

r
Ipðr=lmÞ~V ~m ð36Þ
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