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S U M M A R Y
Tomographic inversions of geophysical data generally include an underdetermined component.
To compensate for this shortcoming, assumptions or a priori knowledge need to be incorpo-
rated in the inversion process. A possible option for a broad class of problems is to restrict the
range of values within which the unknown model parameters must lie. Typical examples of
such problems include cavity detection or the delineation of isolated ore bodies in the subsur-
face. In cavity detection, the physical properties of the cavity can be narrowed down to those
of air and/or water, and the physical properties of the host rock either are known to within a
narrow band of values or can be established from simple experiments. Discrete tomography
techniques allow such information to be included as constraints on the inversions. We have de-
veloped a discrete tomography method that is based on mixed-integer linear programming. An
important feature of our method is the ability to invert jointly different types of data, for which
the key physical properties are only loosely connected or unconnected. Joint inversions reduce
the ambiguity in tomographic studies. The performance of our new algorithm is demonstrated
on several synthetic data sets. In particular, we show how the complementary nature of seismic
and georadar data can be exploited to locate air- or water-filled cavities.
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1 I N T RO D U C T I O N

Tomography is a widely used geophysical technique for determin-
ing 3-D spatial variations of physical properties (e.g. Menke 1989).
Energy generated by numerous seismic or electromagnetic sources
propagates through the media of interest to be registered by ar-
rays of sensors placed at the surface or within boreholes. Tomo-
graphic inversion of the recorded data provides the required subsur-
face information. Successful applications of tomography have been
reported for whole-earth investigations, hydrocarbon and mineral
exploration, engineering projects and natural hazard studies.

Because source and receiver arrays are usually restricted to the
surface or a small number of shallow boreholes, critical parts of the
target media may be only sparsely sampled, resulting in ambigui-
ties in the tomographic inversions. To compensate for limitations
of the recorded data, additional constraints are generally required.
One option is to assume that spatial variations of the subsurface
physical properties are smooth. This may be implemented using an
inversion algorithm that minimizes the curvature of the model space
(Constable et al. 1987). A potential disadvantage of such a proce-
dure is that the resultant images may be blurred and important small-
scale features may remain unresolved. Another way to compensate
for sparse data is to introduce a priori information in the form of

damping. In this approach, model parameters are not allowed to de-
viate greatly from a given starting model (Marquardt 1970). Clearly,
this requires that the starting model should be a close representation
of the true subsurface structure.

Although smoothing and damping are powerful mathematical
tools, it is much better to minimize the ambiguities by applying
appropriate data constraints. This has led to the concept of joint
inversions, whereby different types of data are inverted simultane-
ously (Vozoff & Jupp 1975). A necessary requirement for a joint
inversion is to have a factor that is common to the two data sets. The
most straightforward approach is to invert data sets that are sensitive
to the same physical property. For example, direct-current electrical
resistivity and electromagnetic data are both sensitive to electrical
resistivity. A variety of studies have demonstrated the substantial
reduction in ambiguity that may result from joint inversions (Vozoff
& Jupp 1975; Jupp & Vozoff 1977; Raiche et al. 1985; Sandberg
1993; Maier et al. 1995; Schmutz et al. 2000).

Jointly inverting data sets that are sensitive to different physical
properties is a more difficult problem. Coupling of the two data
sets must involve common structural elements. In 1-D applications,
the common elements may be layer thicknesses (e.g. Hering et al.
1995). This concept can be extended to 2- and 3-D data sets, as
long as the targets can be represented by different physical models
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with common geometries (Lines et al. 1988). Haber & Oldenburg
(1997) employ a Laplacian operator in combination with a non-
linear structure operator to relate the curvatures of models derived
from coincident seismic and geoelectric data sets (see also Zhang &
Morgan 1997). By minimizing data misfits and differences between
the seismic velocity and electrical resistivity structures, they achieve
a joint inversion.

Besides smoothing, damping and joint inversion, there exists a
further option for reducing model ambiguity: a priori knowledge
may enable the model parameters to be restricted to a few narrow
ranges of values. An important and highly topical example would
be cavity (e.g. caves, mines and tunnels) detection, in which the
physical properties of the cavity are known (either those of air or
water) and those of the host material can be assumed to lie within
a well-defined restricted interval. If this type of information can be
included in an inversion algorithm, the model space and thus the
ambiguities can be significantly reduced relative to standard least-
squares inversions that allow the model space to be continuous and
unlimited.

Discrete tomography is a possible option for tackling problems
characterized by variables that can only assume values within very
limited ranges (Herman & Kuba 1999). This tomographic method
has been used to map molecules in discrete lattices, reconstruct
the shapes and dimensions of industrial parts (Browne et al. 1998)
and determine approximate binary images from discrete X-rays
(Gritzmann et al. 2000). To our knowledge, discrete tomogra-
phy has not been applied to seismic and georadar traveltime
tomography.

In this contribution, we present a new discrete tomography al-
gorithm based on mixed-integer linear programming (MILP). An
important advantage of our MILP formulation is that it lends it-
self naturally to the concept of joint inversion. Indeed, it allows
all options for reducing ambiguities (i.e. smoothing, damping, joint
inversion and discrete parameter intervals) to be considered simul-
taneously.

We begin by reviewing traveltime tomography and the commonly
employed least-squares L2-norm minimization procedure (the con-
ventional approach). Since our MILP algorithm is based on linear
programming and L1-norm minimization, the necessary theoreti-
cal background for these concepts are outlined. After showing how
the MILP technique can be applied to discrete tomography prob-
lems, we present an extension that makes it amenable to joint in-
version problems. The possibilities and limitations of our approach
are demonstrated on synthetic traveltime data generated from sim-
ple models with relatively high velocity contrasts. In a second suite
of examples, we simulate realistic full-waveform seismograms and
radargrams for typical cavity detection problems. In these latter ex-
amples, we deal with very high-velocity contrasts that generally
cause difficulties in conventional tomographic inversions.

2 G E N E R A L T R AV E LT I M E
T O M O G R A P H Y

Traveltimes of first-arriving seismic or georadar waves can be used
to derive velocity models of the subsurface (e.g. Nolet 1987, and ref-
erences therein). Since first breaks are readily identifiable and their
arrival times are easy to pick from high-quality data, this technique
has been used successfully in surface seismic refraction (e.g. Zelt
& Smith 1992; Lanz et al. 1998), seismic crosshole (e.g. Dyer &
Worthington 1988; Chapman & Pratt 1992; Williamson et al. 1993;
Maurer & Green 1997) and georadar (Musil et al. 2002) crosshole
investigations.

The traveltime t of a seismic or georadar wave travelling along a
ray path S through a 2-D isotropic medium can be written as

t =
∫

S
u(r(x, z)) dr, (1)

where u(r) is the slowness (the reciprocal of velocity) field and r(x,
z) is the position vector. The slowness field u(r) is represented by
M cells, each having a constant slowness uj ( j = 1, . . . , M), so the
ith traveltime can be written as

ti =
M∑

j=1

li j u j = Li u, (2)

where l ij denotes the portion of the ith ray path in the jth cell. To
determine the matrix L, calculation of ray paths in 2-D media is
required. In strongly heterogeneous media, this can be achieved by
first computing the traveltime fields using a finite-difference approx-
imation of the eikonal equation and subsequently reconstructing the
ray paths (e.g. Lanz et al. 1998).

Eq. (2) describes a linear relationship between the traveltimes
and the 2-D slowness field. In principle, the slowness vector u may
be obtained by inverting the system of equations (2). In practice,
it is generally not possible to determine u unambiguously without
introducing a priori information in the form of smoothing and/or
damping constraints:




t

0

u0


 =




L

A

I


 u , (3)

where A is a smoothing matrix (Constable et al. 1987), u0 is a vector
of damping constraints (Marquardt 1970) and I is the identity matrix.
Eq. (3) can be written in a more compact form as

d = Gu. (4)

The smoothing and damping constraints cause the system of equa-
tions (4) to be overdetermined. Because the values of L depend on
the unknown slowness field u, the inversion problem is non-linear.
Consequently, eq. (4) must be solved iteratively (e.g. Menke 1989).

3 C O N T I N U O U S L 2- N O R M
M I N I M I Z AT I O N

Algorithms that employ ‘L2-norm minimization’ attempt to mini-
mize the squared sum of the prediction error

N∑
i=1

M∑
j=1

(Gi j u j − di )
2, (5)

where N is the number of traveltimes plus the additional con-
straints (see eq. 4). There are several options for solving the clas-
sical least-squares problem. Popular choices include accumulation
of the normal equations and inverting the resultant Hessian ma-
trix and singular-value decomposition of G (e.g. Menke 1989). For
very large data sets, the conjugate gradient methods (e.g. LSQR) of
Paige & Saunders (1982) prove to be particularly efficient. All of
these methods involve a directed search in the model space. They
can only be applied when the model parameter range is continuous.
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4 C O N T I N U O U S L 1 N O R M
M I N I M I Z AT I O N

Algorithms that employ ‘L1-norm minimization’ attempt to mini-
mize the absolute difference of the prediction error

N∑
i=1

M∑
j=1

|Gi j u j − di |. (6)

Linear programming is typically used for this purpose (Dantzig
1963; Menke 1989; Press et al. 1992). The overdetermined system
of equations (4) must be converted into an appropriate form for
L1-norm minimization. Following Menke (1989), we set

M∑
j=1

Gi j u j + xi − αi = di

M∑
j=1

Gi j u j − x ′
i + αi = di

ui ≥ 0 αi ≥ 0

xi ≥ 0 x ′
i ≥ 0.

(7)

Through linear programming, we attempt to minimize the ob-
jective function

∑N
i=1 αi . Note, that xi − αi and −x ′

i + αi rep-
resent the errors in fitting eqs (7). Since they are differences be-
tween positive quantities, these errors can be positive or negative. If∑M

j=1 Gi j u j − di is positive, the first set of constraints requires that

αi ≥ ∑M
j=1 Gi j u j − di , since xi cannot be negative. The second set

of constraints can then always be satisfied by choosing appropriate
positive values of x ′

i . In comparison, if
∑M

j=1 Gi j u j −di is negative,
then the first set of constraints can always be satisfied by choosing
any appropriate xi, but then the second set of constraints requires
that αi ≥ −∑M

j=1 Gi j u j +di . Taken together, these two sets of con-

straints require that αi ≥ |∑M
j=1 Gi j u j − di |. Minimizing

∑N
i=1 αi

is, therefore, equivalent to minimizing
∑N

i=1

∑M
j=1 |Gi j u j − di |. In

this form, the equations can be solved directly over a continuous
range using the simplex algorithm (Press et al. 1992).

5 D I S C R E T E T O M O G R A P H Y

When L1-norm minimization is combined with linear programming,
a variety of options for constraining the elements of u can be im-
plemented. In particular, their application in discrete tomography
is facilitated by the ability to add inequality constraints, such that
values of u are restricted to a few narrow ranges. For the case of two
ranges of values, this can be achieved by extending the system of
equations (7) with the following template for all M elements of u:

y1
j + y2

j = 1

−a1
L y1

j + z1
j ≥ 0

−a1
U y1

j + z1
j ≤ 0

−a2
L y2

j + z2
j ≥ 0

−a2
U y2

j + z2
j ≤ 0

−u j + z1
j + z2

j = 0,

(8)

where y1
j and y2

j are dummy binary variables that can be either 0 or
1, z1

j and z2
j are dummy continuous variables, and [a1

L, a1
U] and [a2

L,
a2

U] define the two ranges of values (L, lower bound and U, upper
bound). For the case of three ranges of values, two further equations
would need to be added for each element of u.
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Figure 1. Flow diagram describing our discrete inversion procedure.

The discrete aspect of the solution is introduced through the bi-
nary variables y1

j and y2
j . By definition, such a formulation falls into

the category of mixed-integer linear programming (MILP) problems
(Floudas 1995), because the objective function and the constraints
are linear and some variables are integers (binary in our case). The
computational time to solve such problems grows exponentially with
size.

Treating the inversion as a MILP problem requires linear pro-
gramming software with the added capability of handling integer
values. We have used ILOG CPLEX 7.0 (ILOG 2000), which in-
cludes a branch-and-cut algorithm (Land & Doig 1960; Grötschel &
Holland 1991; Padberg & Rinaldi 1991; Floudas 1995). Although it
is beyond the scope of this paper to discuss details of branch-and-cut
algorithms in detail, the Appendix includes a simple example that
helps to explain the basic idea of the method.

For traveltime tomography, the MILP algorithm has to be applied
in an iterative fashion (Fig. 1). Starting with an input homogeneous
velocity model based on the estimated velocity of the host medium
and straight rays, the MILP algorithm attempts to minimize the
objective function subject to the constraints described in eqs (7) and
(8). The resulting solution of velocity values is used to recompute the
rays (now curved) and the MILP algorithm is restarted. This scheme
is repeated until a convergence criterion is reached (i.e. when the
data misfit is below a predefined value, determined on the basis of
the traveltime pick accuracy). If during the course of the inversion
process a solution occurs twice in a row, a random perturbation is
made to the model to allow the inversion to escape from insignificant
local minima and to continue. In our algorithm, we simply set the
velocity of a certain number (e.g. 30 per cent) of randomly chosen
cells back to the value of the input homogeneous model. Note, that
this latter step merely causes the inversion program to explore other
parts of the model space. It does not guarantee success. Nevertheless,
it was found to be a dependable process for all tested models. To
ensure that a global minimum is found, the entire inversion process
should be repeated several times (see Section 7.1.4).
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6 J O I N T D I S C R E T E T O M O G R A P H Y

Our discrete tomography formulation for a single data set can be
readily extended to joint inversions of two or more data sets that are
sensitive to different physical parameters. For example, in searching
for air-filled cavities using the seismic and ground-penetrating radar
(georadar) methods, the known seismic and georadar velocities in
air are ∼300 m s−1 and ∼0.3 m ns−1, respectively. Since the seismic
and georadar velocities of the host rock may be of the order of
3000 m s−1 and 0.1 m ns−1, respectively, seismic waves experience
major decreases in velocity at rock–air interfaces, whereas georadar
waves experience major increases. Contrasts of opposite sign occur
at air–rock interfaces. Yet the shape of the cavity appears practically
identical for both methods (assuming wavelengths of the two wave
types are comparable), a property that is exploited in our algorithm.

The approach outlined below is formulated for the cavity de-
tection problem using a combination of the seismic and georadar
methods, for which only two discrete physical properties are rele-
vant. Extensions to other methods and additional physical properties
are straightforward.

As a first step, the two systems of equations for the individual
inversion problems are incorporated into a single combined system:

[
G1 0

0 G2

] [
u1

u2

]
=

[
d1

d2

]
, (9)

where the indices 1 and 2 refer to seismic and georadar parameters,
respectively. The model discretization for the slownesses must be
identical for both types of data, but the distribution of sources and
receivers may be different. In a second step, the combined system of
equations is transformed into a linear programming form according
to eqs (7). Finally, the following template of equations, which is
analogous to that introduced for single discrete inversions in eqs (8),
is added for all M pairs of slownesses

y1
j + y2

j = 1

−a1
L y1

j + z1
j ≥ 0

−a1
U y1

j + z1
j ≤ 0

−a2
L y2

j + z2
j ≥ 0

−a2
U y2

j + z2
j ≤ 0

−b1
L y1

j + z3
j ≥ 0

−b1
U y1

j + z3
j ≤ 0

−b2
L y2

j + z4
j ≥ 0

−b2
U y2

j + z4
j ≤ 0

−u j + z1
j + z2

j = 0

−u j+M + z3
j + z4

j = 0,

(10)

where y1
j and y2

j are dummy binary variables, z1
j , z2

j , z3
j and z4

j

are dummy continuous variables, and [a1
L, a1

U], [a2
L, a2

U], [b1
L, b1

U]
and [b2

L, b2
U] define the two ranges of values for the seismic (a)

and georadar (b) slowness values, respectively. For the case of three
discrete ranges of values, four additional equations are required. The
slowness vectors u1 and u2 are merged into a single vector, where
uj ( j = 1, . . . , M) are the seismic slownesses and uj ( j = M + 1,
. . . , 2M) are the georadar slownesses.

7 S Y N T H E T I C T E S T S W I T H H I G H
V E L O C I T Y C O N T R A S T S

7.1 A single body embedded in quasi-homogeneous media

To test the MILP inversion algorithms, a generic 20 × 20 unit model
with a single 6 × 6 unit inclusion in the centre was created. Initially,
two versions of the model were considered: a low-velocity inclusion
within a high-velocity homogeneous medium (Fig. 2a; velocity ratio
of 4/6) and a high-velocity inclusion within a low-velocity homo-
geneous medium (Fig. 2b; velocity ratio of 6/4). A combination of
these two models could represent an ice lens within a crystalline
host rock, such that the ice lens appears as a low-velocity anomaly
to seismic waves (e.g. 3500 versus 5300 m s−1) and a high-velocity
anomaly to georadar waves (e.g. 0.17 versus 0.11 m ns−1). Random
velocity fluctuations of ≤5 per cent superimposed on both models
introduced traveltime fluctuations of ∼1 per cent. Using 11 sources
along the left-hand edge and 11 receivers along the right-hand edge
of the model, asymptotic ray theory was used to generate synthetic
traveltimes for both types of wave. To highlight the effects of the
two velocity anomalies, relative reduced traveltimes (RRT) were
computed as follows:

RRT = 100
tcalc − thomo

t calc
, (11)

where t calc were the traveltimes calculated using the models in Figs
2(a) and (b) and thomo were the traveltimes calculated using models
with either a velocity of 4 (Fig. 2a) or a velocity of 6 (Fig. 2b). The
RRTs for each model are shown in Figs 2(c) and (d), and the ray
paths for all source–receiver pairs are plotted in Figs 2(e) and (f).
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Figure 2. Velocity models comprising constant-velocity media with super-
imposed random fluctuations (≤5 per cent; note that the random fluctuations
are difficult to see in the dark blue regions) and (a) an embedded low-velocity
body and (b) an embedded high-velocity body. Parts (c) and (d) show relative
reduced traveltimes (RRT = 100(tcalc − thomo)/tcalc) for velocity models in
(a) and (b), respectively. Parts (e) and (f) display ray path distributions for
all transmitters to all receivers for models (a) and (b), respectively.
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The mostly positive RRTs of Fig. 2(c) are caused by the rays that
curve around the low-velocity body. In contrast, the mostly negative
RRTs of Fig. 2(d) are caused by rays being channelled through
the high-velocity body of Fig. 2(d). It is noteworthy that the RRTs
associated with the low-velocity body lie between −1 and 6 per cent
(Fig. 2c), whereas those associated with the high-velocity body are
as negative as −13 per cent (Fig. 2d). The ray distribution in Fig. 2(e)
suggests that the rough location and shape of the low-velocity body
may be delineated in an inversion process, but the actual anomalous
velocity values are unlikely to be resolved. The concentration of
rays through the high-velocity body (Fig. 2f) causes gaps above and
below the anomaly that may introduce resolution problems at these
locations.

All inversions were carried out with a cell size of 1 × 1 unit.
The smoothing and damping constraints were chosen by trial and
error and the initial models were homogeneous with the velocity
set to that of the host medium. Since the solution space in discrete
tomography is restricted to two or three a priori known ranges of
values, it is appropriate to initiate the inversion with the velocity of
the host medium, or an approximation thereof.

7.1.1 Conventional velocity tomograms

The low-velocity body is detected on the conventional (least-
squares) tomogram, but its aspect ratio is distorted and the anoma-
lous velocities are strongly overestimated (5.1–5.4 versus 4.0;
Fig. 3a). Even with these moderately low velocities, the fastest rays
are those that circumvent the anomalous body. Note how few rays
enter the low-velocity body in Fig. 3(e), with only one ray traversing
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Figure 3. Parts (a) and (b) are conventional velocity tomograms determined
from the two suites of traveltimes computed for velocity models in Figs 2(a)
and (b), respectively. Solid lines outline the true boundaries of the embedded
bodies. The average relative residual (ARR= 100

N

∑N
i=1 |t true

i − tpre
i |/t true

i )
is shown for both tomograms. Parts (c) and (d) show relative reduced trav-
eltimes (RRT = 100(tcalc − thomo)/tcalc) for velocity models in (a) and (b),
respectively. Parts (e) and (f) display ray path distributions for all transmitters
to all receivers for models (a) and (b), respectively.

it. The high-velocity anomaly is somewhat better resolved than the
low-velocity one, but the velocity contrast is underestimated (4.8–
5.1 versus 6.0; Fig. 3b). For both cases, the slightly asymmetrical
tomograms are largely the result of the ray-tracing program and the
small random traveltime fluctuations.

There is a good match between the RRTs in Figs 3(c) and (d) and
between the RRTs in Figs 2(c) and (d), indicating that the inverted
models explain the data well. The degree of agreement between true
t true and predicted tpre traveltimes is further quantified by the average
relative residual (ARR) defined as

ARR = 100

N

N∑
i=1

|t true
i − tpre

i |
t true
i

. (12)

As indicated in Figs 3(a) and (b), the ARRs (0.25 and 0.34 per cent)
are well below the 1 per cent traveltime variations caused by the
random velocity fluctuations.

The ray diagrams in Figs 3(e) and (f) are similar to those in
Figs 2(e) and (f), except the smoothing constraints enable a few
rays to enter the low-velocity body (Fig. 3e) and travel through the
regions above and below the high-velocity body (Fig. 3f). These
same smoothing constraints cause the anomalous bodies to appear
somewhat blurred in Figs 3(a) and (b).

7.1.2 Discrete velocity tomograms

For the discrete tomography, it is assumed that the velocities of
the host material and anomalous bodies are approximately known;
velocities are forced to lie between either 3.8 and 4.2 or 5.7 and
6.3. The resultant tomogram of Fig. 4(a) shows the correct location
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Figure 4. Parts (a) and (b) are discrete velocity tomograms determined
by individually inverting the two suites of traveltimes computed for ve-
locity models in Figs 2(a) and (b), respectively. Solid lines outline the
true boundaries of the embedded bodies. The average relative residual
(ARR = 100

N

∑N
i=1 |t true

i − tpre
i |/t true

i ) is shown for both tomograms. Parts
(c) and (d) show relative reduced traveltimes (RRT=100(tcalc − thomo)/tcalc)
for velocity models in (a) and (b), respectively. Parts (e) and (f) display ray
path distributions for all transmitters to all receivers for models (a) and (b),
respectively.
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and velocity of the low-velocity body, but its shape is distorted in
a similar fashion to that of the conventional tomogram of Fig. 3(a).
Features of the high-velocity body are quite well resolved (Fig. 4b).
The RRT patterns of Figs 4(c) and (d) are close to those of Figs
2(c) and (d), respectively, and the ARRs (0.45 and 0.32 per cent)
are again well below the random traveltime fluctuations. Since the
velocities are restricted to lie within two narrow ranges about the
true values, the ray paths in Figs 4(e) and (f) are close to the true
ray paths in Figs 2(e) and (f).

7.1.3 Joint discrete velocity tomograms

Excellent reconstructions of both the low- and high-velocity bodies
are achieved using the discrete joint inversion algorithm (Figs 5a and
b). Considering the good fits, it is not surprising that the RRT patterns
of Figs 2(c) and (d) are well produced in Figs 5(c) and (d), and the
ARRs (0.15 and 0.30 per cent) are again well below the random
traveltime fluctuations. The improved results are not only a result of
the effective increase in data (242 instead of 121 traveltimes), but
they are also the result of an improved ray distribution (Fig. 5e); all
parts of the model are now reasonably well covered by crossing rays.
Note, that simply adding more sources and receivers along the same
length of boreholes would not substantially improve the tomograms
shown in Figs 3(a) and 4(a).

7.1.4 Convergence characteristics

Although the discrete tomograms (Figs 4a,b and 5a,b) are supe-
rior to the conventional ones (Figs 3a and b), convergence of the
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Figure 5. Parts (a) and (b) are discrete velocity tomograms determined
by jointly inverting the two suites of traveltimes computed for velocity
models for Figs 2(a) and (b), respectively. Solid lines outline the true
boundaries of the embedded bodies. The average relative residual (ARR=
100
N
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i − tpre
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i ) is shown for both tomograms. Parts (c) and (d)
show relative reduced traveltimes (RRT = 100(tcalc − thomo)/tcalc]) for ve-
locity models in (a) and (b), respectively. (e) Combined ray path distribution
for velocity tomograms of (a) and (b).
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and discrete tomography (dashed line) applied to traveltime data computed
for the velocity model in Fig. 2(b). The average relative residual at ‘iteration
0’ was calculated for the input homogeneous model.

MILP algorithm is more erratic than that of the least-squares ap-
proach. Fig. 6 shows the ARRs as functions of iteration number for
the conventional and single discrete inversion runs that resulted in
Figs 3(b) and 4(b). The form of the ARR function for the least-
squares inversion is fairly standard, with a rapid decay followed by
gradually decreasing values. In contrast, the equivalent curve for the
discrete inversion falls rapidly to a minimum, then oscillates over
∼20 iterations before falling to reach a slightly lower minimum.
The numerous local minima are probably caused by non-linear ef-
fects introduced by the binary variables: in continuous inversions,
the velocities are modified gradually from one iteration to the next,
such that ray paths change gradually, whereas in discrete inversions,
large velocity contrasts are created in the model domain, such that
ray paths may change abruptly from one iteration to the next. For
large velocity contrasts, many iterations may be required before an
acceptable data misfit is obtained.

Using the model of Fig. 2(b) as an example, we now wish
to explore the robustness of our solutions. Least-squares meth-
ods are known to be fairly robust when applied to high-quality
dense and well-distributed data that contain moderate amounts
of random noise. They converge to similar solutions from dif-
ferent starting models. Moreover, there exist a number of means
to test the reliability of conventional tomograms (e.g. resolution
matrices and singular-value spectra; Menke 1989). In compari-
son, it is unclear how the non-linear influence associated with
restricting some variables to be binary affects the robustness of
the MILP results. A simple method to test the dependability of
MILP-based models is to repeat the inversions several times. Since
MILP algorithms include random components, the resulting mod-
els should scatter about the most probable solutions in the model
space. Fig. 7 shows discrete velocity tomograms resulting from runs
with the same suite of traveltimes generated for the velocity model
of Fig. 2(b), but with different starting models (the velocities of
the initial homogeneous models varied by ±5 per cent) and dif-
ferent random ‘seeds’. Differences between the tomograms are a
measure of the dependability of the reconstructions. For this and
other examples shown in this paper, very similar solutions and
ARRs are obtained, regardless of the random perturbations. As a
rule, this testing procedure (i.e. several runs of the discrete tomog-
raphy program) should be followed for the inversion of all data
sets.
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Figure 7. (a)–(d) Discrete velocity tomograms resulting from runs with the
same suite of traveltimes computed for the velocity model of Fig. 2(b), but
with different starting models and different random ‘seeds’ (see the text).

7.2 Two separate bodies of the same material type
embedded in quasi-homogeneous media

To gain further insight into the behaviour of our discrete tomog-
raphy algorithm, additional tests with more complex models have
been performed. As for the first example (Figs 2–5), stochastic ve-
locity fluctuations of ≤5 per cent were superimposed on the basic
model values (e.g. two bodies with anomalous velocities embedded
in homogeneous media).

Results for models with two embedded inclusions of the same
type are shown in Fig. 8. In the conventional tomograms, the two
square low-velocity bodies appear as horizontally stretched struc-
tures with velocities that are too high (5.5–5.7 versus 4.0; Fig. 8c),
whereas the two square high-velocity bodies are smeared diagonally
with velocities that are too low (4.8–5.3 versus 6.0; Fig. 8d). The
discrete tomograms identify two separate bodies with the correct
velocities (Figs 8e and f), but their shapes are not well reproduced.
In comparison, the joint discrete inversion produces tomograms that
reveal nearly square bodies at their correct positions (Figs 8g and h).
In all cases, the ARRs are below the 1 per cent random traveltime
fluctuations. This indicates that all models are numerically equiva-
lent; improvements are only possible by increasing the source and
receiver apertures.

7.3 Two separate bodies of distinct material types
embedded in quasi-homogeneous media

For the next suite of tests, three discrete velocity values were used.
In Fig. 9(a), high- and low-velocity bodies were embedded in a
homogeneous medium of velocity 4.6. Again, stochastic velocity
fluctuations of ≤5 per cent were superimposed on the basic model
values. In Fig. 9(b), the bodies were interchanged and different ran-
dom fluctuations superimposed; because the sources and receivers
are symmetric, Figs 9(a) and (b) show two realizations of essentially
the same model.

In the conventional tomograms of Figs 9(c) and (d), the anoma-
lous bodies are barely recognizable, with velocities that are too low
(5.1–5.3 versus 6.0) or too high (4.4–4.6 versus 3.8). The discrete
tomograms reveal two separate bodies with the correct velocities
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Figure 8. Velocity models comprising constant-velocity media with su-
perimposed random fluctuations (≤5 per cent; note that the random
fluctuations are difficult to see in the dark blue regions) and (a) two
embedded low-velocity anomalies and (b) two embedded high-velocity
anomalies. Parts (c) and (d) are conventional velocity tomograms deter-
mined from the two suites of traveltimes generated by ray tracing through
the velocity models shown in (a) and (b), respectively. Parts (e) and (f) are
discrete velocity tomograms determined by individually inverting the two
suites of traveltimes. Parts (g) and (h) are discrete velocity tomograms de-
termined by jointly inverting the two suites of traveltimes. Average relative
residuals (ARR = 100

N

∑N
i=1 |t true

i − tpre
i |/t true

i ) and boundaries of true ve-
locity anomalies are shown on each tomogram.

(Figs 9e and f), but their shapes and positions are incorrect. Note
how the low-velocity bodies in both discrete tomograms are some-
what horizontally elongated. In contrast, the joint discrete inversion
produces tomograms that show nearly square bodies at their correct
locations (Figs 9g and h) and lower ARRs.

7.4 Two connected bodies of distinct material types
embedded in quasi-homogeneous media

The fourth suite of tests is similar to the third one (homogenous
medium of velocity 4.6 with embedded high- (6.0) and low-velocity
(3.8) bodies and superimposed stochastic velocity fluctuations of
≤5 per cent), except the anomalous bodies are smaller and joined
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Figure 9. Velocity models comprising constant-velocity media with su-
perimposed random fluctuations (≤5 per cent; different for each model;
note that the random fluctuations are difficult to see in the dark blue re-
gions) and symmetric (a) high- and low-velocity anomalies and (b) low- and
high-velocity anomalies. Parts (c) and (d) are conventional velocity tomo-
grams determined from the two suites of traveltimes generated by ray tracing
through the velocity models shown in (a) and (b), respectively. Parts (e) and
(f) are discrete velocity tomograms determined by individually inverting the
two suites of traveltimes. Parts (g) and (h) are discrete velocity tomograms
determined by jointly inverting the two suites of traveltimes. Average rela-
tive residuals (ARR = 100

N

∑N
i=1 |t true

i − tpre
i |/t true

i ) and boundaries of true
velocity anomalies are shown on each tomogram.

together (Figs 10a and b; note, we are again showing two realizations
of essentially the same model).

As for previous results, the conventional tomograms are char-
acterized by symmetric patterns. The low-velocity bodies are just
barely distinguishable and the velocities of the high-velocity bodies
are underestimated (Figs 10c and d; 5.1–5.3 versus 6.0). Consid-
ering the strength of the artefacts (e.g. the smeared high-velocity
values on either side of the high-velocity body), it is unlikely that
the low-velocity body would be identified as significant in a field
data set. Lack of resolution in the low-velocity regions is caused by
focusing of rays through the high-velocity bodies. Since this type
of ray coverage imposes inherent limitations on resolution, it is not
surprising that the discrete inversions fail to detect the low-velocity
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Figure 10. Velocity models comprising constant-velocity media with su-
perimposed random fluctuations (≤5 per cent; different for each model; note
that the random fluctuations are difficult to see in the dark blue regions) and
(a) connected high- and low-velocity anomalies and (b) connected low- and
high-velocity anomalies. Parts (c) and (d) are conventional velocity tomo-
grams determined from the two suites of traveltimes generated by ray tracing
through the velocity models shown in (a) and (b), respectively. Parts (e) and
(f) are discrete velocity tomograms determined by individually inverting the
two suites of traveltimes. Parts (g) and (h) are discrete velocity tomograms
determined by jointly inverting the two suites of traveltimes. Average rela-
tive residuals (ARR = 100

N

∑N
i=1 |t true

i − tpre
i |/t true

i ) and boundaries of true
velocity anomalies are shown on each tomogram.

body. The individual discrete tomograms only reveal the correctly re-
constructed high-velocity bodies (Figs 10e and f). For this recording
configuration, a low-velocity body adjacent to a high-velocity body
is effectively invisible. As a result of the complementary nature of
the two traveltime data sets, the joint discrete inversion reconstructs
both bodies approximately correctly (Figs 10g and h). Similarly low
ARRs (0.19–0.32 per cent) are obtained for all inversions.

8 C AV I T Y D E T E C T I O N W I T H S E I S M I C
A N D G E O R A DA R M E T H O D S

To test the discrete inversion algorithms on more realistic data,
appropriate finite-difference algorithms (Robertsson et al. 1994;
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Holliger & Bergmann 2002) are used to generate synthetic seis-
mograms and radargrams for models of a rock mass containing a
cavity. Velocities within the cavity are either those of air (seismic,
∼300 m s−1; georadar, ∼0.3 m ns−1) or water (seismic, ∼1600 m
s−1; georadar, ∼0.03 m ns−1), whereas the velocities of the host
rock are set to typical sedimentary rock values (seismic, 3300 m
s−1; georadar, 0.11 m ns−1). Both the seismic and georadar velocity
contrasts in these models are much higher (factors of 2–10) than
those in the previous suites of models. Such high-velocity contrasts
are particularly problematic for most conventional tomographic in-
version routines.

The model dimensions are 20 × 20 m2 with a cell size of 1 m.
Stochastic velocity fluctuations of ≤5 per cent are, again, added to
the host medium. The source–receiver geometries are the same as
those employed in previous examples. First-arrival traveltimes are
picked from the synthetic traces. We estimate that the traveltime
picks have an accuracy of approximately ±2 per cent.

8.1 An air cavity embedded in quasi-homogeneous
host rock

Our first example using synthetic seismograms and radargrams is
a single air-filled cavity within a host sedimentary rock (Figs 11a
and b). Seismic and georadar sections for sources located at 10 m
depth are presented in Figs 12(a) and (b). The seismic section is
mainly characterized by first arrivals that circumvent the cavity. They
have highly variable amplitudes with the weakest signals recorded
at receivers in the shadow of the cavity. The georadar section con-
tains several prominent phases: first arrivals that pass once through
the cavity, and strong secondary arrivals that comprise direct and
diffracted waves that travel entirely within the host material (dom-
inant secondary phases recorded at the upper and lower receivers)
and waves that are doubly reflected within the cavity (i.e. a form
of multiple; dominant secondary phases recorded at the central re-
ceivers).

Conventional inversions perform rather poorly (Figs 11c and d),
probably because of the large velocity contrasts involved. The cavity
is barely visible in the seismic tomogram (Fig. 11c) and although the
georadar tomogram includes a high-velocity anomaly at the correct
location (Fig. 11d), the estimated velocity contrast is far too small
for an air-filled cavity.

For the discrete inversions, we assume that the cavity could be
either air- or water-filled. This requires consideration of three differ-
ent velocities (air, water, host rock). For the model geometry shown
in Fig. 11(a), a ∼20 per cent negative velocity contrast is sufficient
to ensure that the first-arriving energy travels entirely around the
anomaly. Consequently, on the basis of the seismic data alone it is
not possible to distinguish between air- and water-filled cavities. It
is, therefore, not surprising that the discrete inversion of the seis-
mic data suggests the presence of a water-filled cavity (Fig. 11e). In
comparison, the georadar tomogram resolves the location and shape
of the cavity well and yields the correct velocity (Fig. 11f).

Significantly improved models are obtained from the joint dis-
crete inversion (Figs 11g and h). As a result of the seismic and
georadar air velocity coupling (eqs 10), the location and shape of
the cavity are well reconstructed and all velocities are recovered
correctly. Although all ARR values are well below the ±2 per cent
traveltime reading accuracy, the ARRs for the discrete inversion of
the georadar data are uniformly higher (1.00–1.19 per cent) than
the others. It is also noteworthy that the ARRs are similar for the
discrete seismic tomograms in Figs 11(e) and (g), but the character-
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Figure 11. Seismic and georadar velocity models representing the same
air-filled cavity. Velocity models comprising constant-velocity media with
superimposed random fluctuations (≤5 per cent; note that the random fluc-
tuations are difficult to see in the dark blue regions) and (a) a seismic low-
velocity (300 m s−1) cavity and (b) a georadar high-velocity (0.3 m ns−1) cav-
ity. Parts (c) and (d) are conventional velocity tomograms determined from
the suites of traveltimes picked from finite-difference synthetic seismic and
georadar sections (Fig. 12) computed for the velocity models shown in (a) and
(b), respectively. Parts (e) and (f) are discrete velocity tomograms determined
by individually inverting the two suites of traveltimes. Parts (g) and (h) are
discrete velocity tomograms determined by jointly inverting the two suites of
traveltimes. Average relative residuals (ARR = 100

N

∑N
i=1 |t true

i − tpre
i |/t true

i )
and boundaries of true velocity anomalies are shown on each tomogram.

istics of the resultant anomalous structures are quite different. This
indicates an inherent lack of information in the seismic data.

8.2 A cavity half-filled with water embedded
in quasi-homogeneous host rock

The second example corresponds to a cavity half-filled with water
and half-filled with air (Figs 13a and b). Seismic and georadar sec-
tions for sources located at 10 m depth are presented in Figs 14(a)
and (b). Two prominent phases are present in the seismic section:
first arrivals that circumvent the cavity and waves that pass through
the water-filled part of the cavity. The georadar section is similar to
that derived for the totally air-filled cavity (Fig. 12b); high-velocity
waves travelling through the air-filled part of the cavity dominate
the georadar section (Fig. 14b).

Again, the conventional inversion of the seismic data produces
rather poor results (Fig. 13c). The conventional georadar tomogram
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Figure 12. (a) A seismic section for the source position at 10 m depth generated from the model given in Fig. 11(a). (b) A georadar section for the source
position at 10 m depth generated from the model given in Fig. 11(b). Traces are plotted with true relative amplitudes.
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Figure 13. As for Fig. 11, except the lower half of the cavity is filled with
water and the upper half is filled with air.

reveals the presence of the air-filled part of the cavity, but the esti-
mated velocity is much too low (0.18 versus 0.3 m ns−1). Consider-
ing the inadequacies of the conventional tomograms, the low ARRs
(0.46–0.57 per cent) are surprising.

The discrete inversion of the seismic data yields a vertically elon-
gated anomaly with the velocity of water (Fig. 13e), whereas the
corresponding georadar tomogram resolves the air-filled part of the
cavity (Fig. 13f). On the basis of these results, it would be concluded
that a cavity exists. As mentioned for Fig. 11(e), the seismic data

require the presence of low-velocity material, it can be water and/or
air. The water-filled part of the cavity is difficult to resolve with
this type of data, because rays focus in the adjacent high-velocity
air-filled part of the cavity. Tomograms that result from the joint
discrete inversion (Figs 13g and h) map well the air-filled part of the
cavity, but they do not delineate the water-filled part. This is a result
of the fact that the seismic and georadar data do not complement
each other in this environment; in both models, the water-filled part
of the cavity has lower velocities than the host rock.

9 D I S C U S S I O N A N D C O N C L U S I O N S

We have introduced a discrete tomography technique for individu-
ally or jointly inverting seismic and georadar crosshole data. The
technique is applicable to a broad class of problems for which the
propagation velocities are restricted to a few relatively narrow ranges
of values. If sufficient a priori velocity information exists, the tomo-
graphic inversions should be reliable. For example, we have demon-
strated that the technique works well when the average velocities
are known to within ±5 per cent. Other tests indicate that conver-
gence to correct velocities also occurs when velocity uncertainties
are as large as ±10 per cent. In cases for which only poor velocity
information is available, wide velocity ranges would have to be cho-
sen. This would result in only limited advantages over conventional
least-squares approaches. The new technique is unlikely to produce
meaningful results if the average velocities fall outside the chosen
velocity ranges.

Unlike conventional least-squares inversion methods, our discrete
tomography technique does not provide a formal means of esti-
mating ambiguity or, equivalently, of determining unequivocally
whether the output model is the result of an insignificant local min-
imum in the model space or whether it is one of a number of very
similar solutions distributed about the global minimum. To address
this issue, each data set should be independently inverted several
times and the resultant models compared. For all of the tests that we
have performed, including many not shown here, the output models
of all multiple runs were found to be very close to each other (e.g.
Fig. 7).

Under a variety of conditions, the joint discrete inversions were
found to be more robust than the individual discrete inversions. The
complementary nature of the jointly inverted data sets allowed less
ambiguous tomographic reconstructions to be achieved. This was
caused by the substantially improved model constraints provided
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Figure 14. (a) A seismic section for a source position at 10 m depth generated from the model given in Fig. 13(a). (b) A georadar section for the source
position at 10 m depth generated from the model given in Fig. 13(b). Traces are plotted with true relative amplitudes.

by the combined ray coverage of the two data sets (Figs 3–5 and
8–14). Such enhanced ray coverage for either the seismic or geo-
radar data sets would not have been obtained by simply increasing
the number of sources and receivers along the limited lengths of
the boreholes, because the first-arriving energy tended to circum-
vent the low-velocity regions. In cases where complementary ray
coverage was either very limited or not available, joint discrete inver-
sions did not provide improved models (e.g. Fig. 13). Furthermore,
despite the restrictions on the ranges of values, a certain degree of
ambiguity for all of our results remained because 400 slowness cells
were being derived on the basis of 121 and 242 data values in the
single and joint discrete inversions, respectively.

Besides the cavity (e.g. caves, mines and tunnels) mapping prob-
lem discussed in this paper, the technique may be used for detecting
ice lenses in permafrost research, ore bodies in exploration, gravel
lenses in hydrogeological projects, and anthropogenic features in
archaeological prospecting. Furthermore, the general technique can
be extended to a wide variety of other geophysical data sets for
which adequate a priori knowledge is available.

Compared with least-squares inversions, the MILP approach is
computationally much more demanding. Typical run times for our
test cases are ∼5 min for the least-squares inversions and ∼5 h
for the discrete inversions. This currently limits the applicability of
the method to relatively small-scale problems. However, the effi-
ciency of linear programming algorithms is improving rapidly (for
a particular problem, CPLEX 1.0 (1988) took 57 840 s and CPLEX
6.5 (1999) took 165 s) and computer performance is continuously
improving.
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A P P E N D I X A : M I X E D - I N T E G E R
L I N E A R P RO G R A M M I N G

Many combinatorial optimization problems can be formulated as
mixed-integer linear programming problems. They can be solved by
branch-and-cut methods, which are exact algorithms that combine
cutting plane with branch-and-bound methods (Land & Doig 1960;
Grötschel & Holland 1991; Padberg & Rinaldi 1991; Floudas 1995;
Mitchell 2000).

The most widely used technique for solving integer problems is
the branch-and-bound method. Subproblems are created by restrict-
ing the range of the integer variables. A variable with a lower bound
l and an upper bound u is divided into two problems with ranges l to

Problem (A1).
Solution A to relaxation:
(2.43,3.71), z = -33.14

No solution
Solution B to relaxation:
(2.67,3), z = -31
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(3,2), z = -28
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Figure A2. (a) 2-D integer programming problem. The region of continuous solution space is outlined by solid lines. Dots indicate feasible integer solutions.
Dashed and dotted lines indicate branch-and-cut constraints. A–C denote possible solutions. (b) Progress of the branch-and-cut process applied to the 2-D
integer programming problem by first branching on x2 (modified after Mitchell 2000).

q and q + 1 to u, respectively, where q is obtained by rounding the
continuous solutions. Lower bounds on the objective function are
provided by the linear programming (LP) relaxation to the problem,
which involves maintaining the objective function and constraints,
but relaxing the integrality restrictions to derive a continuous LP
problem. If the optimum solution to a relaxed problem is integral, it
is an optimum solution to the subproblem, and the associated value
can be used to terminate searches of subproblems that have higher
lower bounds.

In the branch-and-cut method, the lower bound of the objective
function is again provided by the LP relaxation to the integer prob-
lem. The optimum solution to this problem is at a corner of the
polyhedron that represents the ‘feasible’ region. If the optimum
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solution to the LP problem is not integral, this method searches for
a constraint that is violated by this solution, but is not violated by
any integer solutions. This constraint is called a cutting plane. When
this constraint is added to the LP problem, the old optimum solution
is no longer valid, so the new optimum solution will be different,
potentially providing a better lower bound. Cutting planes are added
iteratively until either an integral solution is found or it becomes im-
possible or too expensive to find another cutting plane. In the latter
case, a traditional branch-and-bound operation is performed and the
search for cutting planes continues within the subproblems.

To illustrate briefly the basic ideas behind a branch-and-cut al-
gorithm, a simple example with two variables is presented (after
Mitchell 2000). The integer programming problem

min z := −6x1 −5x2

subject to 3x1 +x2 ≤ 11

−x1 +2x2 ≤ 5

x1, x2 ≥ 0, integer

(A1)

is illustrated in Fig. A1(a). Possible integer solutions to eq. (A1)
are marked with dots. By dropping the integer restrictions, an LP
relaxation is obtained. Continuous solutions are contained within
the polyhedron outlined by the solid lines.

A branch-and-cut approach first solves the LP relaxation using
the simplex algorithm (Press et al. 1992), giving the point (2.43,
3.71; A in Fig. A1a) with a value of −33.14. There is now a choice:
the LP relaxation can be improved by adding a cutting plane (an
inequality that cuts off part of the LP relaxation), or the problem
can be divided into two by restricting a variable to be above or below
appropriate integer values (i.e. branch-and-bound on x1 (below and
including 2, and above and including 3) or x2 (below and including
3, and above and including 4)). Note, that these integers are obtained
by rounding the solution to the continuous problem.

If the algorithm branches on x1, two new problems are obtained
(Fig. A1b):

min z := −6x1 −5x2

subject to 3x1 +x2 ≤ 11

−x1 +2x2 ≤ 5

x1 ≥ 3

x1, x2 ≥ 0, integer.

(A2)

and

min z := −6x1 −5x2

subject to 3x1 +x2 ≤ 11
−x1 +2x2 ≤ 5

x1 ≤ 2
x1, x2 ≥ 0, integer.

(A3)

The optimum solution to the original problem will be the better
of the solutions to these two subproblems. The solution to the LP
relaxation of eq. (A2) is (3, 2; B in Fig. A1a) with a value of −28.
This solution is integral, so it solves eq. (A2) and becomes the
incumbent best known feasible solution. The LP relaxation of eq.
(A3) has an optimum solution of (2, 3.5; C in Fig. A1a) with a value
of −29.5. This point is non-integral (it does not solve eq. A3), so
that eq. (A3) must be attacked further with additional constraints.
For problems with many variables, the strategy would be similar,
except the depth of the branching tree may become very large.

Assume a cutting plane that adds the inequality 2x1 + x2 ≤ 7
to eq. (A3) (the dashed line in Fig. A1a). This is a valid inequality,
in that it is satisfied by every integral point that satisfies eq. (A3).
Furthermore, this inequality explicitly excludes (2, 3.5), so it is a
cutting plane. The resulting subproblem is

min z := −6x1 − 5x2

subject to 3x1 + x2 ≤ 11
−x1 + 2x2 ≤ 5

x1 ≤ 2
2x1 + x2 ≤ 7

x1, x2 ≥ 0, integer.

(A4)

The LP relaxation of eq. (A4) has an optimum solution of (1.8, 3.4;
D in Fig. A1a) with a value of −27.8. Since the optimum value for
this modified relaxation is larger than the value of the incumbent
solution, the second subproblem must be at least as large as the value
of the relaxation (the optimum solution to the continuous problem).
Therefore, the incumbent solution is better than any feasible integral
solution for eq. (A4), so it actually solves the original problem. Note,
that if the solution of eq. (A4) was lower than that of eq. (A2), another
round of branch-and-cut would be performed.

For completeness, the same problem is solved by first branching
on x2 (Fig. A2). For the branch with x2 ≥ 4 there is no solution. For
the branch with x2 ≤ 3, the solution to the LP relaxation is (2.67,
3; B in Fig. A2a) with a value of −31. Introduction of a cutting
plane x1 + x2 ≤ 5 results in the solution of (3, 2; C in Fig. A2a)
with a value of −28. This solution is integral and since there are
no additional subproblems, it solves the integer problem. Note, that
the optimum integer solution is found regardless of the sequence
of steps. However, one sequence will probably converge with fewer
computations than the others.

There are several issues that have to be resolved during the search
for an optimum solution. These include the questions of deciding
whether to branch or to cut and deciding how to branch and how to
generate cutting planes. It is, however, beyond the scope of this arti-
cle to describe these and related issues for general problems. CPLEX
is equipped with various algorithms that are executed throughout the
course of the optimization.
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