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Abstract

A state–space representation of the transfer function–noise (TFN) model allows the choice of a modeling (input) interval

that is smaller than the measuring interval of the output variable. Since in geohydrological applications the interval of the

available input series (precipitation excess) is often smaller than the interval of the output series (groundwater head),

the state–space model opens the way to a more detailed description of the system. This paper evaluates the influence of the

reduction of the modeling interval on the performance of the state–space time series model while keeping the measuring

interval fixed. In order to obtain general conclusions of the relation between the modeling interval and the model performance,

a large number of groundwater time series are generated and modeled with the state–space time series model. The results show

that a reduction of the modeling interval noticeably improves the model performance. The degree of improvement depends on

aspects like the response time of the system, the length of the time series and the amount of noise. A case study illustrates the

effect of reducing the modeling interval as well as that of adding high-frequency measurements to the time series.
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1. Introduction

Time series models (Box and Jenkins, 1970), and

especially transfer function–noise (TFN) models,

have been applied to analyze hydrological systems

for many years (Hipel and McLeod, 1994; Van Geer

and Zuur, 1997; Young et al., 1997). In groundwater

hydrology, the main applications of TFN modeling

are decomposition of groundwater level fluctuations

into natural and anthropogenic fluctuations (Van Geer

and Defize, 1987; Gehrels et al., 1994) and prediction

of the effects of interventions (Knotters and Bierkens,

2000).

Besides the TFN model form proposed by Box and

Jenkins, there is an alternative way to describe a

dynamic system, namely by using the state–space

form (Schweppe, 1973; Maybeck, 1979).

This formulation is a very powerful and flexible

representation of a system and has been successfully
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applied in many problem areas, such as economics

(Harvey, 1990; Young, 1994), catchment hydrology

(O’Connell, 1980), and groundwater hydrology (Van

Geer and Zuur, 1997; Bierkens et al., 2001). Shum-

way and Stoffer (1982) and more recently Bierkens

et al. (1999) show that the state–space form is

particularly useful for filling gaps of irregularly or

sparsely observed time series. In the context of TFN

modeling this means that the modeling interval is

decoupled from measuring interval (interval of the

output series) and based on the interval of the input

series.

A perhaps even more important reason for

decoupling the modeling and measuring interval is

that a reduction of the modeling interval may greatly

improve the descriptive performance of the transfer

model. Clearly, a reduction of the modeling interval

implies a finer discretization of the transfer function,

resulting in a better approximation to the underlying

process. In the Netherlands, for example, groundwater

head is measured bimonthly on the 14th and 28th of

each month. This means that the measuring interval

varies between 14 and 17 days. Applying the state–

space form of the TFN model, the modeling interval

can be set to 1 day (provided that daily observations of

precipitation excess are available) and the ground-

water time series can be modeled more accurately.

The objective of this paper is therefore to

determine the influence of a reduction of the modeling

interval on the performance of the state–space time

series model. In this context, performance is defined

as how well the transfer function can be estimated and

hence the fluctuations caused by the input series can

be filtered out of the output series. For this purpose a

large number of representative time series were

generated, using a range of predefined transfer

functions. Also, a stochastic component was added

to the series to make the time series similar to real

groundwater time series. Evaluation of the calibrated

time series models for different measuring and

modeling intervals shows that a reduction of the

modeling interval generally improves the model. The

rate of improvement depends on several variables,

such as the system noise and the response time of the

system. A validation study confirms these results, but

is not discussed in this paper. A real-world model of

irregularly observed groundwater head data illustrates

and confirms these results.

2. Theoretical background

This section shortly describes the modeling frame-

work that is used in the experiments presented in

Section 3. A state–space form of the TFN model is

applied to describe the groundwater system. The

state–space representation of a system is a very

generic formulation and is widely applied in system

and control theory. Moreover, it allows the use of the

well-known Kalman filter. The unknown parameters

can then be estimated by combining the Kalman filter

with a maximum likelihood criterion.

2.1. State–space model

The state–space form (Schweppe, 1973) of a linear

single-input single-output (SISO) system consists of

two equations:

xt ¼ Atxt21 þ btut þ gtwt; t ¼ 1;…;T ; ð1Þ

yt ¼ ctxt þ yr þ vt; t ¼ 1;…;T ; ð2Þ

where xt is the unobserved, m-dimensional system

state; the At is an m £ m transition matrix; bt is an

m £ 1 vector; ut is a scalar representing the system

input at time t; gt is an m £ 1 vector that relates the

noise statistics to the system states; ct is a 1 £ m

vector; yt is a measurement available at time t; yr is a

constant depending on the reference level of the time

series; wt and vt are scalars representing the system

noise and measurement noise, respectively, with the

following properties:

w . Nð0; qÞ; v . Nð0; rÞ; E{wtvt} ¼ 0: ð3Þ

Based on Eqs. (1) and (2) the state–space represen-

tation of the linear TFN model is written as

xd

xs

" #
t

¼
Ad 0

0 As

" #
xd

xs

" #
t21

þ
bd

0

" #
ut

þ
0

gs

" #
wt; ð4Þ

yt ¼ ½cd cs�
xd

xs

" #
t

þyr þ vt; ð5Þ
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with

Ad ¼

d1 1 0 · · · 0

d2 0 . .
. . .

. ..
.

..

. ..
. . .

. . .
.
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dr21
..
. . .

.
1

dr 0 · · · · · · 0

2
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3
7777777777775
;

bT
d ¼ v0 v1 · · · vr22 vr21

	 

;

cd ¼ 1 0 · · · 0
	 


;

ð6Þ

As ¼

f1 1 0 · · · 0

f2 0 . .
. . .

. ..
.

..

. ..
. . .

. . .
.

0

fp21
..
. . .

.
1

fp 0 · · · · · · 0

2
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3
7777777777775
;

gT
s ¼ 1 u1 · · · up22 up21

	 

;

cs ¼ 1 0 · · · 0
	 


:

ð7Þ

The elements of xd describe the deterministic

component, z; of the system (i.e. that part of the

system that can be related to the model input):

xd;1 ¼ zt; xd;2 ¼ zt21;…; xd;r ¼ zt2rþ1: In a similar

way xs describe the stochastic component, j;

of the system (which cannot be related to

the model input): xs;1 ¼ jt; xs;2 ¼ jt21;…; xs;r ¼

jt2pþ1: Besides the reference level yr and measure-

ment noise r; the observation yt thus consists of zt

and jt:

The parameters in the system matrices are

unknown and defined as follows: di and vj

represent, respectively, the ith autoregressive par-

ameter and the jth moving average parameter of the

transfer model; fk and ul represent, respectively,

the kth autoregressive parameter and the lth moving

average parameter of the noise model. This set

of parameters together with the variance of the

system noise q; and the reference level yr; will

be referred to as the parameter set a: The variance

of the measurement noise, r; is assumed to be

known.

2.2. State estimation

The state xt is estimated from the observations

y1;…; yt using the Kalman filter, which is a recursive

procedure for computing the optimal estimator of the

state vector at time t; based on the information

available at time t: The Kalman filter algorithm for the

state equation (4) consists of the following equations

(Bierkens et al., 1999):

Initial conditions:

x̂0 and P0: ð8Þ

Time update:

�xt ¼ Atx̂t21 þ btut; ð9Þ

Mt ¼ AtPt21AT
t þ gtqgT

t : ð10Þ

Measurement update:

nt ¼ yt 2 yr 2 ct �xt; ð11Þ

ft ¼ ctMtc
T
t þ r; ð12Þ

Kt ¼ Mtc
T
t f21

t ; ð13Þ

x̂t ¼ �xt þ Ktnt; ð14Þ

Pt ¼ ðI 2 KtctÞMt; ð15Þ

where x̂t is the measurement update; �xt is the time

update; Pt is the covariance matrix of the error in

the measurement update: covðxt 2 x̂tÞ; Mt is the

covariance matrix of the error in the time update:

covðxt 2 �xtÞ; nt is the innovation; ft is the innovation

variance; Kt is the Kalman gain; and I is the

identity matrix. If at time step t no measurement is

available,

x̂t ¼ �xt; ð16Þ

Pt ¼ Mt: ð17Þ

2.3. Parameter estimation

A basic assumption in the filtering algorithm

described in Section 2.2 is that the system

matrices together with x̂0 and P0 are known.

However, the parameter vector a is unknown and
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needs to be estimated by evaluating the log-

likelihood function for the innovations of the

Kalman filter:

log LðN;aÞ ¼ 2
N

2
log 2p2

1

2

XN
t¼1

log ftðaÞ

2
1

2

XN
t¼1

n2
t ðaÞ

ftðaÞ
: ð18Þ

In order to reduce the number of parameters to be

estimated, Harvey (1990) suggests multiplication of

the variances in the model by a scaling factor. If

the scaling variance is

s2
p ¼ varðwtÞ; ð19Þ

then r is scaled to

rp ¼
varðvtÞ

s2
p

; ð20Þ

and

qp ¼
varðwtÞ

s2
p

¼ 1: ð21Þ

As a result, the dimension of a reduces by 1.

Writing down the log-likelihood in terms of these

newly defined parameters gives

logLðN;aÞ¼2
N

2
log2p2

N

2
logs2

pðaÞ

2
1

2

XN
t¼1

logftðaÞ2
1

2s2
pðaÞ

XN
t¼1

n2
t ðaÞ

ftðaÞ
: ð22Þ

The advantage of this is that Eq. (22) can be

maximized with respect to s2
pðaÞ by setting the

derivative to zero, resulting in

s2
pðaÞ¼

1

N

XN
t¼1

n2
t ðaÞ

ftðaÞ
: ð23Þ

If s2
pðaÞ is substituted in Eq. (22), the ‘reduced’

log-likelihood function is obtained:

logLðN;aÞ¼2
N

2
ðlog2pþ1Þ2

1

2

XN
t¼1

logftðaÞ

2
N

2
logs2

pðaÞ: ð24Þ

A sequential quadratic programming (SQP)

method (Gill et al., 1981) is used to optimize Eq.

(24). The required Jacobian of the parameter vector

a is calculated by evaluating the derivatives of ft
and nt analytically (through differentiating Eqs. (9)–

(17), running in parallel with the Kalman filter).

In absence of any prior information on the initial

state, x0 is set to zero and P0 to k times the identity

matrix, where k is a large number (e.g. 10,000). This

large covariance matrix indicates that little is known

about the initial state. As x0 and P0 are independent of

a; ›x0=›ai ¼ 0 and ›P0=›ai ¼ 0: In practice, the first

few observations are used to estimate the starting

values, so the first prediction errors and variances

should be omitted from the likelihood function.

Janacek and Swift (1993) suggest to use the first m

observations to estimate the m-dimensional state so

that N is replaced by N 2 m in Eqs. (23) and (24).

The covariance matrix of parameter estimation

errors is estimated using the Cramer–Rao lower

bound (Schweppe, 1973):

R21
C ¼

›2log LðN;aÞ

›a›aT
; ð25Þ

where RC is the Cramer–Rao lower bound.

Finally, several tests have to ensure that the fitted

model adequately describes the time series under

consideration. The main diagnostics are based on the

innovations obtained by the Kalman filter. The

whiteness of the innovations can be tested using

the autocorrelation function of the innovations.

Harvey (1990) gives an estimation of the autocorre-

lation function of innovations containing missing

values:

rðkÞ ¼
XN†

t¼mþ1

~n†
t ~n

†
t2k

NðkÞ

2
4

3
5 XN†

t¼mþ1

~n†2
t

ðN 2 mÞ

2
4

3
521

; ð26Þ

where k is the time lag; N† is the length of

the series generated by the underlying model; NðkÞ

is the number of non-zero cross-products

of innovations in the numerator of the statistic;

and ~n†
t denotes the standardized innovation defined

by

~n†
t ¼

nt

f 1=2
t

; t ¼ m þ 1;…;N ð27Þ

if yt is observed and is set to zero for all other

values of t for t ¼ m þ 1;…;N†: The cross-

correlation between input series and innovations

as well as the cross-correlation between input series
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and residuals (i.e. estimated stochastic component)

provide useful information on the correctness of the

model structure.

3. Description of experiment

The effect of reducing the modeling interval is

evaluated using generated time series. The advantage

of a generated series is that the relation (transfer

function) between the input and output is exactly

known, enabling an accurate evaluation of the model

performance. This section describes how time series

were generated. Also it describes the criteria that were

used to evaluate the model results.

3.1. Generation of groundwater time series

Groundwater time series were generated by

transferring a daily input series of precipitation

excess, using a predefined transfer function described

by the probability density function of a lognormal

distribution:

CðtÞ ¼
c

ts
ffiffiffiffi
2p

p exp 2
1

2

ln t 2 m

s

 �2
" #

;

s . 0; 0 , t , 1; ð28Þ

where m and s are the geometric mean and standard

deviation of the distribution, respectively, and c is a

scaling constant. The main reasons for choosing this

function are its flexibility (continuous in time) and the

fact that the response of many hydrological systems to

precipitation can be described by an exponential

function. The deterministic component zt of the

generated time series can thus be written as

zt ¼
Xt21

t¼1

CtPe;t2t: ð29Þ

Here, Pe is the precipitation excess [LT21]:

Pe ¼ P 2 fpE0; ð30Þ

where P is the precipitation [LT21]; E0 is the Penman

open water evaporation [LT21]; and fp is a crop factor

½2� which was set to a value of 0.8. Both precipitation

and evaporation were obtained from daily

observations at the main meteorological station of the

Royal Netherlands Meteorological Institute at De Bilt

in the period from July 1, 1957 to December 31, 1999.

In addition to the deterministic transfer function, a

stochastic component was added to the system. This

component represents the part of the system dynamics

that is not related to the input signal. The stochastic

component is assumed to be described by the

following autoregressive model:

jt ¼ fjt21 þ at; ð31Þ

where at is normally distributed with zero mean and

variance s2
a; which was set to 1% of the variance of

the deterministic component. A number of 20

independent realizations of each stochastic com-

ponent were generated to obtain a statistically correct

experiment.

Using Eqs. (29) and (31) many different time series

were generated, varying from fast responding systems

(peak response within a couple of days) to very slow

responding systems (peak response after one year).

Fig. 1 gives some transfer functions used in this

experiment. This paper only describes the results of

the time series generated with the transfer curve in

Fig. 1 depicted in bold, having a time of peak response

tp ¼ 43 days. Conclusions from this experiment are

similar to those of the other analyzed transfer

functions.

Each deterministic component was combined with

two different stochastic components. Table 1 gives the

parameters of this transfer function as well as the

parameters of the stochastic component. Here, the

ratio SN is defined as

SN ¼
varðjtÞ

varðztÞ
; ð32Þ

where varðjtÞ is the variance of the stochastic

component, and varðztÞ is the variance of the deter-

ministic component. Table 1 shows that, as a result of

the higher value of f; the value of SN of series S2 is

higher.

Fig. 2 shows one realization of time series S2.

The time series was finally split into a calibration

period (1957–1989) and a validation period (1990–

1999) to validate the results obtained by the

calibration.

3.2. Resampling of time series

A thorough analysis of the relation between

modeling interval and model performance not only

W.L. Berendrecht et al. / Journal of Hydrology 278 (2003) 1–16 5



requires a range of transfer functions (as described in

Section 3.1) but also a number of other variables that

influence the relation between modeling interval and

model performance. Table 2 gives an overview of the

variables that were taken into account and the range of

variation that was analyzed in this paper. Basically,

these time series were modeled with two different

model forms: model 1 has a modeling interval equal to

the measuring interval; model 2 has a modeling

interval of 10 days.

3.3. Evaluation criteria

Before comparing models of different time series

and with different modeling intervals, the number of

parameters of each model needs to be selected. In

practical applications, well-known criteria are the

Akaike Information Criterion (AIC), Bayes Infor-

mation Criterion (BIC) as well as the innovation

variance of the calibrated and validated time series. In

this experiment, with generated time series and a

known deterministic component, the ‘fit’ of the

calibrated deterministic component of the model to

the real deterministic component can be calculated. A

good measure of ‘fit’ (or ‘error’) is the Mean Absolute

Error (MAE) [L] of the deterministic component,

described as

MAE ¼
1

N 2 m

XN
t¼mþ1

lẑt 2 ztl; ð33Þ

where ẑt represents the estimated deterministic

component. In other words, the MAE quantifies how

well the deterministic component can be separated

from the stochastic component. Based on the MAE,

the optimal number of parameters was selected for

each time series model. The MAE-criterion was also

applied to compare the models of the time series given

in Table 2. A second criterion was used to indicate the

accuracy of the estimated transfer function. For this

purpose, a useful parameter is the standard deviation

of the gain of the transfer function sG [L(LT21)21],

where the gain G [L(LT21)21] represents the area

Fig. 1. Examples of transfer functions applied to generate time series. The bold curve is used in this paper.

Table 1

Parameters of predefined transfer function used to generate time

series

Series Deterministic component Stochastic

component

m s c f SN

S1 4.0 0.5 10 0 0.01

S2 4.0 0.5 10 0.99 0.37
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under the impulse response curve:

G ¼

X
i

vi

1 2
X

k

dk

; ð34Þ

with v and d as defined in Eq. (6).

4. Comparison of model results for varying

modeling and measuring interval

This section discusses the results of the exper-

iment. First, the influence of modeling interval,

measuring interval, and length of time series on the

fit of the deterministic component is evaluated. Next,

the influence of these aspects on the parameter

accuracy is analyzed. Finally, the effect of adding

high-frequency measurements to an existing time

series of low-frequency measurements is

demonstrated.

4.1. Fit of deterministic component

Fig. 3 shows the fit of the deterministic component

expressed in terms of MAE, for four different cases

and seven measuring intervals. For the calculation of

the MAE only the errors at measurement points were

used. The four cases are interpreted as follows:

(1) S1—Model 1: f ¼ 0; dtmod ¼ dtmeas: Fig. 3

shows that the performance of the model improves as

the measuring interval decreases: from a mean

absolute error of ca. 3.5 cm to an error of ca.

0.5 cm. A smaller measuring interval (and thus

a smaller modeling interval) clearly allows for a

finer discretization and hence a better approximation

of the transfer function. The curve of MAE flattens

from the moment the measuring interval becomes

larger than the time of peak response tp: From this

point, a coarser discretization of the transfer function

will hardly influence the model fit. This is directly

related to the gradient of the transfer function. The

rising limb of the transfer function is steep and

requires a small interval, whereas the falling limb of

the transfer function has a smaller gradient and can

therefore be well approximated by a model with a

large interval.

(2) S1—Model 2: f ¼ 0; dtmod ¼ 10: In this case,

the same time series S1 is modeled, but with the

modeling interval fixed at 10 days. Fig. 3 shows that

the performance of this model is much better and in

fact practically insensitive to the measuring interval.

This is easily understood by realizing again that a

smaller modeling interval gives a finer discretization

Fig. 2. Realization of time series generated with a predefined transfer function (log–normal probability density function) and an autoregressive

stochastic component corresponding to S2 in Table 1.

Table 2

Variation of variables applied for resampling of the time series

Variable Range of variation

Measuring

interval

10, 20,…,70 days

Length of

time series

10, 20,…,100% of maximum

length (1957–1989)

Varying measuring

interval

First fraction (0, 10, 20,…,100%)

of time series has measuring

interval of 70 days, last fraction

a measuring interval of 10 days;

modeling interval is 10 days

W.L. Berendrecht et al. / Journal of Hydrology 278 (2003) 1–16 7



of the transfer function, resulting in a better

approximation.

(3) S2—Model 1: f ¼ 0:99; dtmod ¼ dtmeas: The

difference between series S1 and S2 is that the

stochastic component of Series S2 has an autoregres-

sive part, resulting in a larger value of SN: Conse-

quently, the fit of the deterministic component of

series S2 is not as good as for S1. The difference,

however, is limited compared to the effect of the

measuring interval.

(4) S2—Model 2: f ¼ 0:99; dtmod ¼ 10: Again, a

reduction of the modeling interval greatly improves

the performance of the model. However, the MAE

slowly increases as the measuring interval increases,

whereas the curve of MAE flattens from the

moment the measuring interval becomes larger than

tp: It can therefore be concluded that the influence of

the modeling interval on MAE increases as the

correlation length (i.e. the value of f) of the stochastic

component increases.

Another important aspect that influences the fit of

the deterministic component is the length of the time

series. In Fig. 3 the length of the time series was fixed

at 33 years. In the context of this paper an important

question is whether a reduction of the modeling

interval still improves the fit if the time series is short.

Fig. 4 shows the relation between the MAE and

the length of the time series. Only the results for series

S2 are presented, because this series has a large

stochastic component.

For a length of 100% the curve of the MAE is the

same as the curve in Fig. 3. If the modeling interval is

equal to the measuring interval (Fig. 4a), the MAE

first hardly increases as the length decreases. Only if

the length is reduced to less than 50% (16.5 years) the

increase becomes noticeable. The pattern of the curve

becomes a little irregular for combinations of large

measuring interval and short time series. Much more

realizations would be necessary to obtain a smooth

curve. These combinations of measuring interval and

length of time series, however, result in datasets with

an unrealistic small number of measurements. For

example, the worst combination (measuring interval

is 70 days and length is 10% of the full length)

consists of only 16 measurements. For all other

combinations, a reduction of the modeling interval

clearly improves the fit of the deterministic

component.

Bierkens et al. (1999) found as well (for a time

series with tp ¼ 1 day) that similar parameter values

can be obtained for different measuring intervals as

long as the measuring interval is smaller than the

characteristic response time (i.e. time for which

the response is only 5% of the maximum response).

Fig. 3. Fit of deterministic component (mean absolute error, MAE) as a function of measuring interval, for series S1 using 20 realizations of a

white-noise stochastic component (f ¼ 0) and S2 using 20 realizations of an autoregressive stochastic component (f ¼ 0:99). Model 1 has a

modeling interval equal to the measuring interval, whereas Model 2 keeps the modeling interval fixed at 10 days.
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On the basis of the present study more general

statements can be made, summarized as follows:

(1) A reduction of the modeling interval results in a

better fit of the deterministic component, regard-

less the measuring interval;

(2) The effect of a reduction of the modeling interval

increases for larger measuring intervals;

(3) For a small stochastic component, the fit is

practically insensitive to the measuring interval

if a small modeling interval (i.e. small with

respect to the time of peak response) is used;

(4) For a large stochastic component, the fit slightly

decreases with increasing measuring interval if a

small modeling interval is used.

These results are of great practical importance,

because the models of existing groundwater time

series can simply be improved by only reducing the

modeling interval.

4.2. Parameter accuracy

The overall accuracy of the estimated parameters,

expressed by the standard deviation of the gain (sG), is

evaluated in relation to the measuring interval and the

length of the time series. Fig. 5 shows this relation for

the same four cases as in Section 4.1. In this context, it

is important to note that the estimated gain is about

10 cm(mmday21)21 (¼ c in Eq. (28)). The figures are

interpreted as follows:

(1) Fig. 5a. S1—Model 1: f ¼ 0; dtmod ¼ dtmeas:

The figure shows that the standard deviation of

the gain decreases considerably with decreasing

measuring interval. This is not surprising because

more measurements result in a more accurate

estimation of the parameters. In addition, the curve

of sG has the same pattern as found for the MAE: a

rather fast increase for measuring intervals smaller

than tp and a flattening of the curve for measuring

intervals larger than tp: Finally, the influence of the

measuring interval increases with decreasing length of

the time series. High standard deviations occur for

short time series with large measuring interval.

(2) Fig. 5b. S1—Model 2: f ¼ 0; dtmod ¼ 10:

Similar to the results presented for the MAE, a

fixed small modeling interval results in better

models for all measuring intervals in the sense

that the transfer function is estimated more

accurately. However, a small increase of sG can

still be observed as the measuring interval

increases. This is directly related to the fact that

the number of measurements reduces as the

measuring interval increases.

(3) Fig. 5c and d. S2 (f ¼ 0:99)—Model 1

(dtmod ¼ dtmeas) and Model 2 (dtmod ¼ 10). The

pattern of sG is similar to the pattern of series S1.

However, the influence of the measuring interval on

sG is small with respect to the influence of the

stochastic component on sG:

Summarizing, a reduction of the modeling

interval has a positive effect on the accuracy of

the estimated transfer function. The relative

improvement (improvement with respect to its

original value) depends on the contribution of the

stochastic component.

Fig. 4. Fit of deterministic component (mean absolute error, MAE) as a function of measuring interval and length of the time series (as a

percentage of the total length, i.e. 33 years), for series S2 and (a) Model 1 having a modeling interval equal to the measuring interval; and (b)

Model 2 having a modeling interval of 10 days. The results are based on 20 realizations of the stochastic component.
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4.3. Adding high-frequency measurements

In practice, a large data set of groundwater

measurements is often available. The previous sec-

tions have shown that a reduction of the modeling

interval can improve the model performance

considerably. Another way to improve the model

performance is to extend the time series with a set of

high-frequency measurements obtained with

automatic data loggers. This section evaluates the

influence of such an extension on the model

performance. MAE and sG are used again as

evaluation criteria.

Fig. 6 shows the effect of adding high-frequency

measurements to the time series S1 and S2 used

earlier. The horizontal axis represents the fraction of

the time series that has a measuring interval of 10 days

(instead of 70 days). Hence, if t10=ttot ¼ 0 the whole

time series has a measuring interval of 70 days,

whereas t10=ttot ¼ 0:1 means that the first 90% of

the time series has a measuring interval of 70 days and

the final 10% a measuring interval of 10 days.

The MAE is calculated at each model time step to

obtain a valid comparison between the models.

Fig. 6a shows that the first high-frequency

measurements (between 0% and 20% of the total

Fig. 5. Relation between parameter accuracy, measuring interval and length of time series (relative to the original length of the time series (33

years) for (a) series S1, Model 1; (b) series S1, Model 2; (c) series S2, Model 1; and (d) series S2, Model 2. The results are based on 20

realizations of the stochastic component.
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length of the series) are the most effective in terms of

an increase in the model performance, especially for

series S2. This is very attractive, because it means that

relatively few extra measurements are needed to

reduce the MAE considerably. The curves of sG

(Fig. 6b) are different: instead of a quick drop during

the first 20%, the curves display a steady decrease of

sG: One of the reasons is that sG depends more on the

total number of measurements and length of the time

series than on the measuring interval. The same

experiment was applied to shorter time series,

showing the same results.

Summarizing, the model performance can be

further improved by extending (low-frequency)

time series with high-frequency measurements.

The effect of this extension becomes larger for

time series with large stochastic components. This

section only evaluated the influence of high-

frequency measurements at the ending of a period,

because there are already many time series with

low-frequency measurements available. If one starts

monitoring, however, it could be advantageous to

start with high-frequency measurements. This topic

will not be discussed in detail, but several

calculations have shown that high-frequency

measurements at the beginning of the period have

more effect than at the end of the period. The

reason for this is that the Kalman filter is a forward

scheme.

5. Case study

5.1. Description of the data set

The groundwater head data (1990–2000) were

obtained from an observation well (phreatic aquifer)

in the east of the Netherlands. The measuring

frequency of this series is 24 observations per year.

In 1999, the measuring frequency has been increased

to one observation per day during a period of three

months (which is about 2.5% of the total length of the

time series). This time series is therefore a good

example to examine the practical significance of the

results reported in the previous sections. The series

was split into a calibration series (from 1990 to June

1999, which is at the end of the daily measurements)

and a validation series (from July 1999 to October

2000). The daily meteorological input data were

obtained from two meteorological stations: the

precipitation from a nearby station at Eerbeek (5 km

distance) and the potential evapotranspiration from a

station at De Bilt (65 km distance).

From this time series three different samples were

selected:

(1) Measuring interval ¼ 14 days, modeling

interval ¼ 14 days,

(2) Measuring interval ¼ 14 days, modeling

interval ¼ 1 day,

Fig. 6. Influence of reducing the measuring interval from 70 to 10 days in the final t10=ttot fraction of time series S1 and S2 on (a) the fit of the

deterministic component (MAE); and (b) the parameter accuracy (sG). The modeling interval is 10 days and the length of the series is 33 years.

The results are based on 20 realizations of the stochastic component.
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(3) Measuring interval ¼ 14 days and 1 day, model-

ing interval ¼ 1 day.

5.2. Modeling results

Identification of the system resulted in the follow-

ing model form for all three samples:

xd;1

xd;2

xs;1

2
664

3
775

t

¼

d1 1 0

d2 0 0

0 0 f1

2
664

3
775

xd;1

xd;2

xs;1

2
664

3
775

t21

þ

v0

v1

0

2
664

3
775ut þ

0

0

1

2
664

3
775wt;

yt ¼ ½1 0 1�

xd;1

xd;2

xs;1

2
664

3
775

t

þyr þ vt;

with elements as defined in Eqs. (4)–(7).

Table 3 lists the estimated parameters of the three

models. The graphical output is given in Figs. 7 and 8.

Since the difference between the estimated determi-

nistic parameters (d1, d2, v0, v1) of series 2 and series

3 is not significant (see Table 3), the result of series 2

is omitted. Note that due to the extra measurements in

series 3 the standard deviations of the parameters

(except yr) decrease.

The results in both figures allow for some general

statements. A small modeling interval enables a much

better approximation to the peak response (compare

Figs. 7d and 8d). As a result, the extreme values of

the time series are modeled clearly better (compare

the peaks in 1994 and 1999 in Figs. 7a and 8a).

Also, Fig. 8c shows that the daily fluctuations of

groundwater head are modeled rather well. Only a

slight local trend is observed. A possible explanation

of this trend is that the assumption of linearity is

incorrect.

The difference in model performance has to be

quantified by criteria such as the innovation variance

of the calibrated series, varðnc;tÞ; the innovation

variance of the validated series, varðnv;tÞ; and the

standard deviation of the gain, sG: As different

modeling intervals are used, comparison of the

variance of the system noise q ¼ varðwtÞ is not useful.

Instead, the variance of the stochastic component is

compared:

varðjtÞ ¼
q

1 2 f2
1

: ð35Þ

Table 4 evaluates the model performance, using these

criteria. Before comparing the results it is important to

remark that the coefficient of determination, R2
T ; is

based on all measurements. Hence, the value of R2
T of

series 3 is based on more measurements and thus not

directly comparable to R2
T of series 1 and 2. If the

daily measurements of series 3 would be ignored in

the calculation of R2
T ; then R2

T ¼ 0:86:

Table 4 shows the following:

(1) Reducing the modeling interval from 14 days to

1 day results in a reduction of varðjtÞ of about

21%. The variance reduces another 3% if the

daily measurements are added to the time series.

(2) The gain G increases slightly if the modeling

interval is reduced to 1 day, which means that the

area under the impulse response function

increases. This is also expressed by an increase

of the coefficient of determination.

(3) The accuracy of the estimated transfer function

improves from series 1 to 2: sG reduces by

22%. Adding daily measurements, however,

Table 3

Estimated parameters of the calibrated models. The standard deviation of the parameter estimation error is given in parentheses

Series dtmeas (day) dtmod (day) d1 d2 f1 v0

(cm(mmday21)21)

v1

(cm(mmday21)21)

yr

(cm)

1 14 14 1.0438(0.12) 20.1698(0.092) 0.3906(0.044) 7.377(0.020) 24.066(0.056) 2138.6(1.9)

2 14 1 1.8594(0.015) 20.8609(0.015) 0.9417(0.0068) 0.8724(0.035) 20.8317(0.034) 2140.1(1.6)

3 Mixed 1 1.8729(0.011) 20.8742(0.010) 0.9578(0.0044) 0.8264(0.028) 20.7905(0.027) 2139.8(1.8)
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does not result in a reduction of sG: The

reason for this is the relatively large stochastic

component and short series of high-frequency

measurements.

This case study confirms that adjusting the

modeling interval to the response time of the system,

improves the model significantly. The model

especially describes the extremes in the time series

much better. As a result, the system noise reduces

considerably. The noise could be reduced even further

by adding high-frequency measurements. The

improvements due to the relatively short series of

high-frequency measurements is, however, small. A

longer high-frequency time series will probably lead

to a further improvement.

Fig. 7. Results of series 1; (a) measurements and predictions of the model for the calibration period; (b) measurements combined with the

predictions and 95% prediction interval for the validation period; (c) measurements and predictions for the period of daily measurements (for

comparison with Fig. 8); and (d) estimated impulse response function.
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Fig. 8. Results of series 3; (a) measurements and predictions of the model for the calibration period; (b) measurements combined with the

predictions and 95% prediction interval for the validation period; (c) measurements and predictions for the period of daily measurements; and

(d) estimated impulse response function.

Table 4

Comparison of the criteria for the evaluation of the performance of the three different models

Series dtmeas (day) dtmod (day) varðnc;tÞ

(cm2)

varðnv;tÞ

(cm2)

varðjtÞ

(cm2)

G

(cm(mmday21)21

sG

(cm(mmday21)21)

R2
T

1 14 14 152.7 118.2 180.5 26.29 1.8 0.83

2 14 1 120.7 116.7 142.0 26.74 1.4 0.87

3 mixed 1 89.2 114.8 136.7 26.50 1.4 0.84
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6. Discussion and conclusions

The objective of this paper was to determine the

influence of a reduction of the modeling interval on

the performance (i.e. ‘fit’ and accuracy of estimated

transfer function) of the state–space time series

model. The fit can only be measured if the real

transfer function is known. For this reason a large

range of groundwater time series were generated.

Calculations on several samples (with varying

measuring and modeling intervals) of different time

series show that the performance of transfer models

can be increased by simply reducing the modeling

interval. The degree of model improvement depends

on several aspects.

First, the modeling interval itself relative to the

time of peak response of the system is important. If

the modeling interval is large with respect to the time

of peak response, a reduction of the interval will

greatly improve the performance. On the other hand,

if the modeling interval is already small with respect

to the time of peak response, a further reduction will

not be very effective.

Second, the relative effect of a reduction of the

modeling interval will be less if the stochastic

component of the system (the part of the system

dynamics that is not related to the input signal) is large.

Third, the effect of reducing the modeling interval

becomes larger as the length of the time series

increases. This reduction is especially observed for

the fit of the deterministic component.

In addition to reducing the modeling interval, a

time series can be extended with easily obtainable

high-frequency measurements (i.e. a reduction of the

measuring interval). The effect of such an extra set of

high-frequency measurements again strongly depends

on the stochastic component: high-frequency

measurements are much more effective if the

stochastic component is large. Moreover, the first

high-frequency measurements have the greatest

influence on the model performance. It is therefore

attractive to add a small time period of high-frequency

measurements to the existing time series of low-

frequency measurements.

The state–space time series model has been used to

model a real-world test case of which the measuring

interval was reduced to one day for the last three

months. The results of this case study support

the results of the generated time series: a reduction

of the modeling interval significantly improves the

performance of the time series model. Due to the short

period of high-frequency measurements in the test

case (only three months), the improvement resulting

from these high-frequency measurements was

relatively moderate.

Further improvement of groundwater time series

models can be achieved by including physical

knowledge. The state–space approach allows for

extension of the model with unobserved states.

Current research focuses on incorporation of unsatu-

rated processes in the time series model. This

physically-based model has already been tested on

time series of relatively deep groundwater levels and

results show that this model gives much better

predictions than the linear TFN model. Besides, the

physical basis of the model parameters enables

comparison of the calibrated parameters with physical

knowledge of the system.
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