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Abstract

Numerous studies have demonstrated the potential usefulness of river hydraulic data obtained from satellites in developing

general approaches to tracking floods and changes in river discharge from space. Few studies, however, have attempted to

estimate the magnitude of discharge in rivers entirely from remotely obtained information. The present study uses multiple-

regression analyses of hydraulic data from more than 1000 discharge measurements, ranging in magnitude from over 200,000 to

less than 1 m3/s, to develop multi-variate river discharge estimating equations that use various combinations of potentially

observable variables to estimate river discharge. Uncertainty analysis indicates that existing satellite-based sensors can measure

water-surface width (or surface area), water-surface elevation, and potentially the surface velocity of rivers with accuracies

sufficient to provide estimates of discharge with average uncertainty of less than 20%. Development and validation of multi-

variate rating equations that are applicable to the full range of rivers that can be observed from satellite sensors, development of

techniques to accurately estimate the average depth in rivers from stage measurements, and development of techniques to

accurately estimate the average velocity in rivers from surface-velocity measurements will be key to successful prediction of

discharge from satellite observations.
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1. Introduction

Currently, less than 60% of the runoff from the

continents is monitored at the point of inflow to the

oceans (Fekete et al., 1999). The distribution of runoff

within the continents is even less well monitored.

Despite the importance of river discharge infor-

mation, a comprehensive global river monitoring

network faces numerous technological, economic,

and institutional obstacles. As a result, gaging stations

and access to river discharge information have been

declining since the 1980s (Vorosmarty et al., 1999;

IAHS, 2001). Hydrographic data obtained from

satellites and other remote sources offer the possibility

of broad and potentially frequent global coverage of

river discharge estimates (Barrett, 1998). Thus, a

method that uses remotely sensed data to estimate

river discharge would provide a means to maintain or

even increase the global streamflow monitoring
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network and may, in the long run, be a cost-effective

method to obtain needed river discharge data on a

global scale.

The measurement of river discharge from space

will fundamentally require a knowledge of the

hydraulic relationship between river characteristics

that can be observed from space-based platforms and

river discharge. This paper reviews the types of river

hydraulic information that can potentially be observed

from space-based platforms and develops several

general relationships that can use this information to

estimate discharge. Hydraulic data from more than

1000 flow measurements in a wide range of rivers are

used to develop and validate the relationships. An

analysis of the impact of measurement error on

prediction accuarcy is also undertaken. The

approaches reviewed here are based on fundamental

in-stream hydraulic relationships that are independent

of watershed or basin predictor variables. Thus, the

prediction methods are independent of regional and

temporal climatic and physiographic variability and

can be considered to be generally applicable to fluvial

environments.

2. Estimating river discharge from hydraulic

variables

For most rivers, discharge ðQÞ cannot be measured

directly, but rather must be calculated from measure-

ments of the pertinent hydraulic elements of the flow.

Discharge at a river cross-section, from continuity, is

the volumetric flow rate through that cross-section

and is given by

Q ¼ VWY ¼ VA ð1Þ

where V is the average velocity, W is the water-

surface width, Y the average water depth, and A

the cross-sectional area perpendicular to the flow.

Traditionally, Q is measured at selected cross-sections

in a river by measurement of the velocity, depth and

width at incremental vertical stations across

the channel, and the incremental flow estimates are

summed to obtain the discharge through the cross-

section. These periodic velocity-area measurements

of discharge are then correlated with measured water-

surface elevation (stage) to develop a stage-discharge

‘rating’ for the cross-section. The stage-discharge

rating equation takes the general form (Rantz et al.,

1982; Herschey, 1998)

Q ¼ aðZ 2 eÞm ð2Þ

where the coefficients a and m are characteristic of the

specific channel cross-section, and e is the elevation

of zero flow.

For the periods between measurements of Q; the

stage ðZÞ is recorded and Q is inferred from the rating

curve. Since the value of e represents the elevation of

zero flow, the term ðZ 2 eÞ may be viewed as

equivalent to the effective flow depth ðYÞ and thus

the rating provides an estimate of discharge from the

hydraulic flow depth. A rating equation such as Eq. (2)

is developed for a particular river channel or cross-

section, and would not be expected to be applicable to

any other river location (Rantz et al., 1982). This is

because change in stage (or depth) is used as an index

to change in width and velocity, and is specific to the

channel characteristics of the reach being measured.

Thus, single variate discharge ratings cannot be

generalized without a potential substantial loss in

accuracy. Inclusion of additional hydraulic infroma-

tion into the rating model would improve the accuracy

of the rating by accounting for more of the variability

at any specific location.

Recently, Jasinski et al. (2001) used river stage

obtained from satellite (TOPEX/Poseiden) altimetry

data to develop discharge ratings for several locations

in the Amazon basin by comparing the altimetry data

with stage and discharge measured at existing gaging

stations. The accuracy of the ratings varied depending

on distance between the altimetry observation and the

ground-measured discharge, and on the topography

and the width of the river. This study demonstrated the

feasibility of using satellite altimetry as a source of

obtaining remote river stage information. However,

ground-based discharge data were required to develop

the rating, and the derived ratings could not be

extrapolated to other rivers or reaches of the Amazon.

While such a system might have advantages in some

situations, it does not solve the problems imposed by

the costs of establishing and periodically measuring

discharge on-the-ground, and would not offer the

prospect of expanding the global coverage of

discharge observations. Thus, a general rating that

can estimate discharge from remotely obtained

hydraulic data without ground-based measurements
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of discharge provides the best opportunity to capi-

taltize on satellite and other remote data sources.

A more general depth-discharge rating equation

can be developed from the Manning equation which is

widely viewed as generally applicable to natural

rivers (Chow, 1959). Assuming a wide ðW . 10YÞ

rectangular channel, the depth-discharge rating

defined from the Manning equation is

Q ¼ aY1:67 ð3Þ

with

a ¼ WS0:5
=n: ð4Þ

In Eq. (3), the average depth is the dynamic predictive

variable and the coefficient a can be directly

calculated from channel properties and is comprised

of a geometric component defined by W and a channel

component defined by S0:5=n (which represents the

balance between the gravitational energy supplied to

the reach, S and the flow resistance, n). In a

rectangular channel, W is constant and thus if S and

n are constant, the coefficient a is constant. To the

extent that S and n vary with depth, the exponent of

Eq. (3) may also vary.

If a parabolic shape is assumed for the channel

cross-section, a common assumption for natural

channels (Chow, 1959), the width is related to the

depth by Wx ¼ aY where x is the parabolic order. The

derived depth-discharge rating from this assumption

is

Q ¼ aY ð1=xþ1:67Þ ð5Þ

with

a ¼ ðWm=Y
1=x
m ÞðS0:5

=nÞ ð6Þ

The variable Wm is the maximum or bank-full width

and Ym the maximum or bank-full average depth.

A similar equation can also be developed that uses

width as the rating variable:

Q ¼ aW ð1:67xþ1Þ ð7Þ

with

a ¼ ðY1:67
m =W1:67x

m ÞðS0:5
=nÞ ð8Þ

Eqs. (5) and (7) can be regarded as generally

applicable discharge ratings for within-bank flow in

the same sense that the Manning equation is generally

applicable, under the assumption of a parabolic cross-

section shape.

The channel resistance cannot be measured

directly but is usually inferred from specific channel

conditions including bed and bank material, channel

irregularity (both in cross-section and planform

shape) and other factors. In practice, the channel

resistance is difficult to estimate with accuracy

(Dingman and Sharma, 1997) and often varies

considerably with discharge (Dingman, 1984). How-

ever, statistical studies by Riggs (1976), Jarrett (1984)

and Dingman and Sharma (1997) have shown that

reasonably accurate estimates of Q for within-bank

flows can be obtained without resistance as an input

variable, because the resistance varies with the

channel geometry. Assuming that the hydraulic radius

of the cross-section is equivalent to the mean depth

(which would be expected for a wide channel),

Dingman and Sharma (1997) show that for a wide

range of rivers discharge can be estimated as:

Q ¼ 4:62W1:17Y1:57S0:34 ð9Þ

with all variables in SI units. Eq. (9) was calibrated

with over 500 flow measurements in 128 rivers and

provides estimate accuracies, on average, in the range

of 20% or better. This relationship can be considered a

generally applicable multi-variate discharge rating

because it includes the fundamental elements of

uniform flow including the width, depth and slope.

Additionally, since resistance is not an input variable,

all of the necessary data can be measured either

directly or remotely.

An equation similar to Eq. (9), which assumes that

resistance is a function of the channel slope and

geometry, can also be developed for situations where

depth cannot be effectively measured, but velocity

could be, such as in channels where there is

substantial bed movement or bottom debris. The

equation is developed from Eq. (1) with a general

uniform flow equation such as Eq. (9), solving for the

depth in terms of W ; V and S; and then substituing this

back into Eq. (1). Carrying through these operations

yields an equation of the form:

Q ¼ cWbVf Sg ð10Þ

In many situations it is difficult to establish the

hydraulically meaningful channel slope that should be
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used in a theoretically or statistically based equation.

Davidian (1984) suggests that a hydraulically mean-

ingful slope should be measured over a reach length

on the order of 75 times the water depth. However, the

water-surface slope in a channel reach may vary

spatially and temporally due to unsteady and non-

uniform flow conditions (Davidian, 1984), and

because of this, the reach length and timing associated

with the slope measurement can alter the ‘true’

uniform hydraulic slope associated with a particular

discharge and channel geometry. Thus, consistent

definitions of channel and water-surface slope will be

important in attempting to apply equations involving

those quantities. Given the potential difficulties of

consistently measuring a water-surface slope that is

hydraulically meaningful, a slope index may be used

that considers the slope to be a constant rather than a

variable. Such an index could be the topographic

slope of the channel and thus might be related to

channel morphology.

Alternatively, a relationship between discharge

and an index velocity can be developed (Rantz et al.,

1982) which eliminates the slope variable. Since the

average velocity in a channel is proportional to

the square root of slope and 2/3 power of the depth

via the Manning equation, the mean velocity could be

substituted for the depth and slope to obtain a width-

velocity relationship that avoids the need to measure

depth and slope but that still provides estimates over a

wide range of flow conditions. The form of this

equation would be

Q ¼ cWhVi ð11Þ

where c is a coefficient, and the exponents h and i

reflect the relationships between depth and both width

and velocity.

3. Measurement of hydraulic variables from space

Few studies have attempted to estimate river

discharge entirely from satellite and/or other

remotely obtained information, although the poten-

tial has been pointed out (Koblinsky et al., 1993).

Estimating the discharge in rivers via Eqs. (1), (5),

(7), (9)–(11) requires a measure of the water-

surface width, depth and water velocity, and/or

river channel information including the water-

surface slope, bank-full width and bank-full depth.

The channel resistance is not a directly measurable

quantity in the sense that it cannot be measured

using an instrument, however it is related to the

other geometric variables of the channel (Leopold

et al., 1964; Bray, 1979; Dingman and Sharma,

1997) or can be evaluated by comparison with

channel charcteristics where resistance values are

known.

Satellite-based sensors and other remote data

sources can be used to determine channel and

water-surface width and water-surface area, water-

surface elevation, channel slope and channel

morphology (Table 1). In addition, there is a

possibility that surface velocity can be measured at

discrete locations across the river channel (Vor-

osmarty et al., 1999; Emmitt pers. commun., 2001).

The key hydrographic variables that cannot be

directly measured from satellite information or

other remote data sources are average depth and

average cross-sectional velocity. Thus, average

depth and average cross-sectional velocity will

need to be related, at least implicitly, to stage

and surface velocity, respectively, if these variables

are used for estimating discharge. Recently, Costa

et al. (2000) have demonstrated that surface

velocity measurements can effectively be used to

estimate the mean velocity in a channel section.

Numerous studies have employed satellite-based

imagery to estimate flood inundation area (Smith,

1997). However, few have used satellite derived

data to track variability in river and flood stage

elevations, and even fewer have attempted to

quantitatively estimate river discharge. Landsat 7

multi-Spectral Scanner (MSS), Thematic Mapper

(TM), and other visible/infrared spectrum sensors,

and synthetic aperture radar (SAR) imagery from

satellites have proven to be useful in tracking

changes in water surface area (and widths) in

floodplains and large rivers (Smith, 1997). Sippel

et al. (1994) determined the inundation area of the

Amazon River floodplain using a scanning multi-

channel microwave radiometer (SMMR) mounted

on the Nimbus 7 satellite. The SMMR sensor

measures the microwave emission of the earth’s

surface, which can be correlated to ground

saturation and open water at the surface; however
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Table 1

Satellite and remote data sources

Data source Hydrographic
data type

Resolution Relative Cost Limitations/advantages Coverage

Aerial
photography

Surface features
including width
and channel
shape. Stereoscopic
pairs can also
provide surface
roughness and slope

High resolution
depending on scale

Low Limited by inability to see
through cloud cover Can provide
high resolution and detail and
provides direct interpretation
and yields from a range
of spectral bands

Spatial—depends
on scale.
Temporal—Infrequent
coverage

Visible
spectrum
digital
imagery

Surface features
including width,
channel shape and
coupled with a DEM
surface roughness
and slope

Depends on
sensor, platform
and orbital
characteristics Aerial
Imagery such as
emerge (1)
photography can be
1 m or less satellite
based imagery such
as Landsat 7
typically 10 m
or less

Moderate to
high depending
on coverage
(large areas
are expensive)

Limited by inability
to see through cloud
cover Provides
direct interpretation and
yields information from a
range of spectral bands

Spatial—can be large
depending on desired
resolution.
Temporal—depends
on orbital period and
weather

Radar
Imagery

Surface features
including width,
channel and
roughness and
used with
interferometric
methods can
provide slope
and possibly surface
velocity using SAR
with interferometry

Space based
10m to 30 m
SAR surface
velocity (not verified).
Higher resolution
with aerial

High Interpretation may
be difficult Can
see through cloud cover
and yields information
from a range of spectral
bands

Spatial—can be
150 £ 150 km2 or
less depending on
desired resolution.
Temporal—depends
on orbital period

Radar
Altimetry

Elevation at
discrete points
which can be
used to determine
water surface
heights (stage)
and and possibly
slope

Space based
elevations typically
0.5 m but
possible to 10 cm

High Limited range of information
Can see through cloud cover

Provides discrete
point data with
coverage that depends
on the orbital period
(frequency of repeat
orbits)

Higher resolution
with aerial

Lidar Surface velocity,
water surface
slope and stage

Possible to
10 cm/s for
velocity
(not verified)
5 cm elevation

Not
evaluated

Limited by cloud cover
and range of information is
limited Interpretation
of return may be simpler
than radar

Provides discrete
point data with
coverage that depends
on the orbital period
(frequency of
repeat orbits)

Topographic
Maps and GIS

Static channel
shape and slope
and other static
surface features

Depends
on scale

Low Temporally limited
because it is a static
data base Interpretation
is direct

Spatial—depends
on scale.
Temporal—
static

EPA Reach
data base
and other
comparable
data bases

Potentially reach
lengths, channel
types and
other channel
feaatures

Depends
on data

Low Temporally limited
because it is a static
data base Interpretation
is direct

Dependent on
available data
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the resolution is low, on the order of 25 km, and

the signal is attentuated by atmospheric moisture.

Vorosmarty et al. (1996) correlated SMMR

signals with discharge in the Amazon River, thus

developing a discharge rating based on general

moisture conditions within the basin. Brakenridge

et al. (1994) used SAR images from ERS-1 to

delineate flood inundation area coupled with

topographic information to determine water-surface

elevations during the 1993 Mississippi floods.

Horritt (2000); Bates and DeRoo (2000) and Horritt

et al. (2001) have used SAR imagery to delineate

flood boundaries and calibrate river hydraulic

models.

A method to estimate river discharge from

aircraft has been developed (Kuprianov, 1978)

that couples ground-based channel geometry infor-

mation with surface velocity measurements made

by photographing floats or other tracking substance

introduced into the river by aerial drop. This

method has a reported accuracy of 10% or better

where winds are moderate (2– 3 m/s) and water-

surface velocity is in the range of 1–2 m/s.

Although this method relies on instruments intro-

duced into the streamflow (the floats) to measure

velocity, the measurement is made entirely from a

remote platform (the aircraft).

Smith et al. (1996) estimated the discharge in

three braided glacial rivers using reach-averaged

water surface area obtained from RADARSAT

SAR imagery. That study correlated the water-

surface area in braided reaches (lengths on the

order of 10 km) with discharge obtained from

existing ground-based gaging stations to derive

power function discharge ratings that use effective

width (water-surface area divided by the reach

length) as the predictor variable. The accuracy of

the ratings varied in each river, ranging from 1.5%

(for 11 estimated values) to 54% (19 estimated

values). A single best-fit power function was also

developed as a general rating for all of the rivers.

Error associated with this function was much

larger, providing accuracy only within a factor of

2 (100% error).

Smith et al. (1996) also pointed out that the total

sinuosity was an important discriminator between

the rivers studied. To test the predictive power of

sinuosity, we used the data from Smith et al.

(1996) to develop a general multi-parameter power

function with reach averaged width as the dynamic

variable and the average sinuosity as a channel

constant to predict discharge in all the three

braided rivers (data not shown). This relation

reduced the standard error of the estimate by

30% and improved the slope of the regression

compared to the width only relationship reported

by Smith et al. (1996). These results suggest that

morphologic features of a river channel that can be

observed remotely and that are related to the

energy dissipation process may be useful for

remote discharge estimation. These features may

include, in addition to channel sinuosity,

meander wavelength, meander radius of curvature,

bankfull width, width/depth ratio, and others

(Leliavsky, 1966; Dury, 1976; Osterkamp et al.,

1983; Rosgen, 1994).

In principle, it would seem that a width-

discharge rating might be developed for a wide

range of rivers, because width generally increases

with increasing discharge. However, in nearly

rectangular channels, or channels with highly

irregular cross-sectional shape, width may change

very little or in a highly non-linear way with

discharge. This is shown in Fig. 1, which shows

changes in width with discharge over a range of

flows for the Mississippi River at Thebes, Illinois,

and the Connecticut River at Thompsonville,

Connecticut (USGS, 2001). The graphs demonstrate

that in the Mississippi at Thebes width does indeed

change linearly with discharge and could be used

as an index to flow variation, whereas in the

Connecticut at Thompsonville it changes non-

linearly with very little change at higher discharges.

Similarly, width changes very little with discharge

in the Amazon River narrows at Obidos (Oltman,

1968). This condition may be common at many

locations in larger rivers, and suggests that multi-

variate discharge ratings that reflect general

hydraulic relationships would be more universally

applicable than relations based only on width. This

also suggests that the best locations for evaluating

river discharge from space, where width is the most

readily observed hydraulic variable, are those

channel reaches where width variation with dis-

chage is most pronounced (Smith, 1997).
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3.1. Measurement of width

Both channel width and water-surface width (and

also the water-surface area) can be measured from a

variety of sensors and imagers mounted on satellites

and aircraft (Table 2), including panchromatic and

infrared imagers, digital photography, and SAR

(Barrett, 1998; University of Wisconsin Environmen-

tal Remote Sensing Center, 2001). The resolution of

satellite mounted digital panchromatic sensors is

within the same range as aircraft mounted sensors,

indicating that satellite observation of width, because

of the larger coverage, may be the preferred method to

obtain this type of data. SAR is the only sensor that

can measure the width in any atmospheric condition

(Smith, 1997).

Panchromatic imagers have spatial resolution as

high as 1 or 2 m and SAR imagers as high as 10 m

(University of Wisconsin Environmental Remote

Sensing Center, 2001). Additionally, the ability of a

sensor to observe surface area or width change is not

wholly a function of the resolution, such that relatively

coarse resolution imagery may provide a measurement

accuracy significantly better than the resolution may

imply. Width estimates using any imager would be

subject to errors associated with vegetation obscuring

the water’s edge and the bank and, in the case of SAR,

wet ground, vegetation, wind roughening and rocks

can also obscure the edge of water. With a combination

of SAR imagery (to observe through cloud cover) and

digital panchromatic imagery, it is conceivable that

width could be observed with near global coverage on a

repeat cycle of nearly one week.

3.2. Measurement of stage and depth

Radar altimetry has been successfully used to track

water level elevations in large rivers, lakes and

floodplains. Koblinsky et al. (1993) were able to use

Geosat altimeter data to reproduce elevation changes

at several locations in the Amazon River basin with an

accuracy on the order of 0.7 m. The altimeter footprint

ranges from 0.2 to 2 km, indicating that the target

must be at least this wide to obtain a return unique to

the water body. More recently, Birkett (1998) and

Birkett et al. (2002) measured water surface elevation

changes in several rivers around the globe (including

rivers in the Amazon Basin, the Okavango River, the

Indus River and the Congo River) using water surface

elevation data obtained from the TOPEX/Posieden (T/

P) altimeter and reported an accuracy ranging from 11

to 60 cm.

With the currently deployed T/P altimeter, the

theoretical minimum river width that can be observed

ranges from 0.58 to 1.16 km (Birkett et al., 2002) with

accuracies ranging from 10 to 1 m. However, it is

possible that the altimeter can obtain accurate water

surface elevation measurements on rivers with widths

as low as 50 m by altering the signal filtering

algorithms (Rodriquez, pers. commun., 2001). The

accuracy of the T/P altimeter (and altimeters in

general) is strongly dependent on the surface con-

ditions being observed (Birkett et al., 2002). Laser

altimeters such as GLAS (NASA, 1997), which will be

deployed on ICESAT, can track elevation changes to

within 15 cm, and thus may provide significantly

higher accuracies in river environments than possible

with currently deployed radar altimeters.

Depth cannot be measured directly from remote

data (Tables 1 and 2). Thus, this variable will need

to be estimated, at least in part, from measurements

Fig. 1. Width versus discharge over a range of flows for the

Mississippi River gage at Thebes, Illinois and the Connecticut River

gage at Thompsonville, Connecticut (source of discharge measure-

ments: US Geological Survey).
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of stage coupled with other observable character-

istics of the channel. Depth could be derived from

repeated observations of stage over a wide range of

flow conditions provided accurate topographic data

or altimetric measurements of sufficient accuracy

were available to determine the exposed bank

elevation at each observed water level. However,

in large rivers low flow depths may never be

Table 2

Examples of river hydraulic variables observable from existing space based sensors

Observed variable Satellite/sensor Data type Data and

Resolution

Repeat observation

frequency

Observational Issues

Water surface

width and

channel Morphology

TERRA/ASTER Visible

infrared

15 m 1–2 days Cannot detect through

clouds.

Banks may be obscured

by vegetation and

shadows

Thermal

infrared

Shortwave

infrared

EROS A & B Visible to

infrared

1.5 m Daily (with a

constellation

of satellites)

Cannot detect through

clouds. Banks may

be obscured by vegetation

and shadows

ERS2 SAR 12–26 m 6 days Banks may be obscured

by vegetation and wet

soils

SPOT 4 Panchromatic visible 10 m 26 days Cannot detect through

clouds. Banks may be

obscured by vegetation

and shadows

LANDSAT 7 Panchromatic visible 15–60 m 16 days Cannot detect through

clouds. Banks may be

obscured by vegetation

and shadows

IKONOS Panchromatic visible 1–4 m Cannot detect through

clouds. Banks may be

obscured by vegetation

and shadows

RADARSAT SAR 8–30 m 1–6 days Banks may be obscured

by vegetation and wet

soils

Water surface

stage and

slope

ERS-2 TOPEX/

Posieden

Radar

altimeter

10 cm 10 days Repeat observations limited

to large rivers using

interferometry coupled

with altimetry (unproven)

RADARSAT SAR 1 cm 1–6 days

Water surface

velocity

Lidar NA Signal obscured by surface

wind and waves

Radar NA Sensors have not been

tested in rivers

SAR NA
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observed, necessitating the estimation of the bank-

full depth or other depth reference so that stage

measurements can be converted to average water

depths.

3.3. Measurement of water-surface slope

Water-surface slopes on the Amazon River and

some of its larger tributaries have been estimated by

Mertes et al. (1996) and Dunne et al. (1998) using

SEASAT and Birkett et al. (2001) using T/P.

All of these estimates have been made from sea-

level (the mouth of the Amazon) to an inland point

hundreds or thousands of kilometers upstream. The

long reaches that were evaluated minimized the

impact of altimeter accuracy on the estimates. Birkett

et al. (2002) were also able to observe temporal

changes in water surface slope in the mainstem of the

Amazon over long reaches.

In the Amazon River at Obidos, the water depth is

on the order of 40–50 m and hydraulically mean-

ingful water-surface gradients are on the order of

1 cm/km (Oltman, 1968). Thus, given an optimistic

altimeter error of 10–20 cm, a reach of 5–10 km

could conceivably result in slope estimates ranging

from negative values to 8 times the actual value. This

suggests that slope information obtained from the

current generation of altimeters would not provide

sufficient spatial resolution to be hydraulically mean-

ingful. Averaging the slope obtained from a large

sampling of water slope measurements may be the

most meaningful slope information that can be

considered reliable.

One approach to obtaining more accurate water

surface slope measurements could be through the use

of interferometric SAR. With this technique, water-

surface elevation changes on the order of 1 cm can be

detected in large rivers and flooded areas (Alsdorf

et al. 2000, 2001) and, when coupled with high

resolution topographic information, could be used to

estimate water-surface slopes across a flooded area as

well as within a river. Laser altimeters may also

provide a means to accurately measure hydraulically

meaningful water-surface slopes because the altimeter

could simultaneously measure the elevation at two

points in a channel reach.

3.4. Measurement of water-surface velocity

Surface velocity in rivers is potentially measurable

from satellites with doppler lidar or radar. However,

surface winds and waves on the water body could

significantly interfere with the measurement (Vor-

osmarty et al., 1999) although observing limitations

have not been fully evaluated. Theoretical (e.g. the

Prandtl-von Karman velocity profile) or empirical

relations would be required to translate surface

velocity to average velocity; however, surface vel-

ocity could potentially provide an index of average

flow velocity and hence be directly useful in

predicting discharge. Based on information supplied

by Emmitt pers. commun. (2001), a satellite mounted

doppler lidar sensor that could observe surface

velocity would have a footprint of approximately

10 m with 75 m between observations along a track,

and have a measurement accuracy on the order of

0.1 m/s. Given these specifications, the lidar could

observe two to three surface velocity ‘points’ across a

200 m wide river reach. There is no guarantee that the

satellite track would cross the river reach perpendicu-

lar to the flow, thus the point measurements may be

skewed across the channel. This should not be a

problem provided the distance to each bank can be

evaluated from another source (e.g. a concurrent

image of the channel and knowledge of the satellite

track). Despite the potential limitations, if surface

velocity were measured and can be used to infer

average velocity, there is the potential for measuring

all elements of Eq. (1) simultaneously and thus

enabling direct calculation of discharge.

3.5. Observation of channel morphology

Valley and channel features such as the channel

sinuosity, channel slope, meander length, and mean-

der radius of curvature can be observed from a variety

of data sources including visible and infrared

spectrum images, SAR images, DEMs and topo-

graphic map information. Since these features are

considered relatively stable over short time frames,

the frequency and timing of observations is not a

limiting factor, and therefore high resolution panchro-

matic images could be used to measure them when

weather conditions permit.
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4. Estimating river discharge

Based on the above discussion, there is a

possibility that the hydraulic elements of Eq. (1) can

all be measured simultaneously from satellites. If so,

discharge could be calculated directly, with an

accuracy dependent on the accuracy and precision of

the individual measurements of water-surface width,

surface velocity, and stage and of the estimations of

mean velocity and mean depth from observations of

surface velocity and stage. Because there is a potential

that stage or surface velocity will not be observed with

confidence (e.g. under strong winds or where

topography obscures the signal) there will be many

situations when all three of the key variables cannot

be observed at the same time. In these situations

statistically based relationships such as described by

Eqs. (9)–(11), may be useful.

4.1. Statistically based estimation methods

To explore the predictive characteristics of differ-

ent combinations of potentially observable (or

estimated) river hydraulic variables, a set of generally

applicable river discharge estimation equations

(models) were developed based on Eqs. (5), (7),

(9)–(11). The models were derived using multiple

regression analysis of hydraulic data from 1012

discharge measurements in 102 rivers in the United

States and New Zealand, including four measure-

ments from the Amazon River at Obidos. The data

base includes a wide range of river conditions

(Table 3) and was randomly divided into a calibration

data set and a validation data set each containing 506

measurements. The four Amazon River measure-

ments were equally divided between the calibration

and validation data sets.

The data base includes 569 discharge measure-

ments with reach averaged (generally three or more

cross-sections representing a reach length 5 or more

times the width) values of water-surface width,

average water-surface depth, average velocity, and

water-surface slope measured concurrently with the

discharge. These data were obtained from Barnes

(1967), Hicks and Mason (1991) and Coon (1998).

Because these data are reach-averaged, the hydraulic

geometry and velocity values are representative of the

energy and resistance relationships within the chan-

nel, and less a reflection of conditions at a single

cross-section. In addition, the reported width approxi-

mates the water-surface area divided by the reach

length, consistent with Smith et al. (1996). In this

way, the data are consistent with what might be

obtained from remote imagery capable of providing

reach averaged width, channel slope, and surface

velocity.

The reach-averaged data include only two dis-

charge measurements greater than 10,000 m3/s. In

order to include more large flows in the data base, 443

additional measurements representative of the larger

rivers of North America were obtained from USGS,

(2001) and data from four measurements for

Table 3

Range of hydraulic parameters in calibration and validation data sets

Parameter Symbol Units Mean Standard deviation Coefficient of variance Maximum Minimum

Calibration data N ¼ 506

Discharge Q m3/s 1585 12,260 7.74 216,000 0.01

Top width W m 146 206 1.41 2290 2.90

Average depth (hydraulic radius) Y m 2.48 3.56 1.44 48.03 0.18

Average velocity V m/s 1.12 0.66 0.59 5.10 0.02

Water surface slope (average) S m/m 0.00278 0.00572 2.06 0.04 0.0000007

Valdiation data N ¼ 506

Discharge Q m3/s 1666 13,184 7.91 283,170 0.05

Top width W m 158 211 1.34 2300 5.40

Average depth (hydraulic radius) Y m 2.73 3.53 1.29 50.33 0.14

Average velocity V m/s 1.13 0.61 0.54 3.61 0.07

Water surface slope (average) S m/m 0.00243 0.00474 1.95 0.04 0.0000007
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the Amazon River at Obidos, Brazil were also

included (Oltman, 1968; Dury, 1976). These large

river discharge measurements are not reach averaged,

and therefore have a certain incompatibility with the

rest of the data in the data base. However, it is

anticipated that hydraulic variability between the

measurement section and the reach as a whole is not

large, and that the number of observations will

average out the variability. In addtion, inspection of

the channel characteristics at the measurement sec-

tions for these rivers do not indicate any channel

constraints from bridges or other structures.

The discharge data are all in-bank and do not

represent overbank flow conditions. In general, the

data were obtained from relatively straight single

thread channel sections, and therefore do not necess-

arily reflect the hydraulic conditions in more complex

or less constrained channel patterns. Because of this,

the derived regression coefficients may be biased

towards these types of channels, reflecting typical

relationships between width and depth, depth and

resistance, and velocity and depth that would be found

in straight channels. However, because the models are

based on, and include, the fundamental hydraulic

variables of uniform flow, the resultant regression

equations are considered to remain generally repre-

sentative of uniform flow relationships for any defined

channel.

Similar to Dingman and Sharma (1997), the

predictive models were assumed to be multiplicative.

The form of the prediction equations (models) that

were developed are based on Eqs. (5) (7), (9)–(11), as

follows:

Model 1 (Eq. (9))

Q ¼ c1WaYbSd ð12Þ

Model 2 (Eq. (11))

Q ¼ c2WeVf Sg ð13Þ

Model 3 (Eq. (10))

Q ¼ c3WeVf ð14Þ

Model 4 (Eq. (5))

Q ¼ c4Wg
mYh

mSiYj ð15Þ

Model 5 (Eq. (7))

Q ¼ c5Wk
mYl

mSmWn ð16Þ

Models 1, 2, 4 and 5 use the water-surface slope as a

prediction variable. However, the USGS discharge

measurement data base does not include slope as a

measured parameter. Therefore, a channel slope for

these river stations was measured manually from

1:24,000 scale USGS topographic maps over one

contour interval. This results in a constant slope value

for all of the flow measurements at a particular river

station, implying slope as a geomorphic characteristic

of the river.

The implication of using a constant slope is

explored by comparing two realizations of Model 1

developed from the reach averaged data base, that

includes a unique measured slope for all discharge

measurements (minimum of five) at each river station

(excluding the Barnes (1967) data, which includes

only one flow measurement at each station). The first

model uses slope as a dynamic variable and the

second uses a slope obtained by averaging all of the

measured slopes over the entire discharge range at

each river station. The comparison shows nearly

identical regression models (Table 4). Based on this

comparison, we conclude that using an average slope,

or a channel slope obtained from topographic

information that is a constant for a river reach, can

be used in lieu of a measured slope, thus obviating the

need to track water surface slope as a dynamic

prediction variable. These results indicate also that the

USGS flow measurement data, which includes width,

average depth, average velocity, and discharge (but

not slope) can be combined with the reach averaged

data base (which includes a measured slope) using a

slope measured from 1:24,000 scale USGS topo-

graphic maps for each station. In the remainder of this

paper, all of the regression models and all discussion

of slope as a prediction variable assume a constant

slope for each river station, developed either as an

average of many measured values, or obtained from

topography.

Using the entire calibration data set ðN ¼ 506Þ; the

following regression models are developed:

Model 1:

Q ¼ 7:22W1:02Y1:74S0:35 ð17Þ

Model 2:

Q ¼ 0:09W1:21V1:53S20:30 ð18Þ
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Model 3:

Q ¼ 0:23W1:46V1:39 ð19Þ

Model 4:

Q ¼ 3:55W1:19
m Y20:84

m S0:3Y2:17 ð20Þ

Model 5:

Q ¼ 1:07W21:61
m Y1:11

m S0:08W2:65 ð21Þ

The values for Ym and Wm used in the regresssion

analysis are obtained as the maximum value for all of

the flow measurements at each river station, and thus

are constant for each station. The possiblity that the

Amazon River measurements skewed the regression

results was evaluated by removing them from the

calibration data set and re-running the regression

analysis. It was found that the Amazon data did not

significantly impact the regression results.

The four regression models varied in their ability to

describe the observed data. Comparative statistics

between the models are shown on Table 5 and indicate

that Models 1, 2 and 3 perform comparably well, and

that Model 4 does not perform as well as Models 1, 2

and 3 but is better than Model 5. The intercept and

coefficient of the slope for Model 5 are not

significantly different than zero at the 95% confidence

level. Since the form of the model is based on the

Manning equation, slope would be expected to be a

significant predictor variable as it is in Model 1. The

reason for this outcome may be due to the fact that

width by itself is not an especially good predictor

variable at many specific river stations (as indicated in

Fig. 1), and thus a constant slope at each river station

does not contribute to explaining at-a-station vari-

ation. The standard error of the estimate (standard

deviation of the log residuals) for Model 5 is nearly

twice as large as the standard errors for Model 1, 2 and

3, and indicates that 67% of the predictions using this

model fall within a wide margin (factor of 2.75).

Because of the relatively poor performance of Model

5 it is not evaluated further.

For comparative purposes, Table 5 also lists

regression results for three single-variate models

that use each element of Eq. (1) (W ; Y and V) to

predict Q: These models indicate that depth, by itself,

predicts discharge better than width and has a lower

standard error than Model 5, and would be expected toT
ab
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Table 5

Regression model comparison

Model Regression statistics

Model R2 Standard

error

regression

Coefficients Value Standard

error

Upper

95%

Lower

95%

t stat p

Model 1

log Q ¼ 0:86 þ 1:02 log W

þ1:74 log Y þ 0:35 log S

0.95 0.23 Intercept 0.86 0.06 0.98 0.73 13.40 ,0.0001

ðQ ¼ 7:22W1:02Y1:74S0:35Þ W 1.02 0.03 1.07 0.96 35.16 ,0.0001

Y 1.74 0.04 1.82 1.66 42.07 ,0.0001

S 0.35 0.02 0.40 0.31 15.27 ,0.0001

Model 2

log Q ¼ 21:06 þ 1:21 logW

þ1:53 logV 2 0:30 logS

0.97 0.19 Intercept 21.06 0.04 20.98 21.14 226.22 ,0.0001

ðQ ¼ 0:09W1:21V1:53S20:30Þ W 1.21 0.02 1.25 1.16 53.65 ,0.0001

V 1.53 0.03 1.59 1.47 51.85 ,0.0001

S 20.30 0.02 20.26 20.33 215.29 ,0.0001

Model 3

logQ ¼ 20:63 þ 1:46 logW

þ1:39 logV

0.95 0.23 Intercept 20.63 0.04 20.56 20.70 217.93 ,0.0001

ðQ ¼ 0:23W1:46V1:39Þ W 1.46 0.03 1.45 1.32 40.98 ,0.0001

V 1.39 0.02 1.50 1.43 80.57 ,0.0001

Model 4

logQ ¼ 0:55 þ 1:19 logWm 2 0:84 logYm

þ0:3 logS þ 2:17 logY

0.93 0.28 Intercept 0.55 0.11 0.76 0.34 5.19 ,0.0001

ðQ ¼ 3:55W1:19
m Y20:84

m S0:30Y2:17Þ Wm 1.19 0.06 1.29 1.08 21.42 ,0.0001

Ym 20.84 0.11 20.63 21.06 27.64 ,0.0001

S 0.30 0.03 0.37 0.24 9.48 ,0.0001

Y 2.17 0.05 2.27 2.06 42.11 ,0.0001

Model 5

logQ ¼ 0:03 2 1:61 logWm þ 1:11 logYm

þ0:08 logS þ 2:65 logY

0.83 0.44 Intercept 0.03 0.17 0.36 20.30 0.17 0.86

ðQ ¼ 1:07W21:61
m Y1:11

m S0:08W2:65Þ Wm 21.61 0.16 21.30 21.92 210.24 ,0.0001

Ym 1.11 0.16 1.42 0.79 6.86 ,0.0001

S 0.08 0.05 0.18 20.02 1.53 0.13

W 2.65 0.13 2.90 2.39 20.00 ,0.0001

Comparative single-

variate Models

Q 2 W

logQ ¼ 20:98 þ 1:62 logW 0.79 0.49 Intercept 20.97 0.07 20.84 21.11 213.74 ,0.0001

ðQ ¼ 0:11W1:62Þ W 1.62 0.04 1.69 1.55 43.85 ,0.0001

Q 2 Y

logQ ¼ 1:49 þ 2:46 logY 0.84 0.43 Intercept 1.49 0.02 1.54 1.45 70.33 ,0.0001

ðQ ¼ 30:90Y2:46Þ Y 2.46 0.05 2.55 2.37 51.64 ,0.0001

Q 2 V

logQ ¼ 2:07 þ 1:96 logV 0.33 0.87 Intercept 2.07 0.04 2.15 2.00 52.92 ,0.0001

ðQ ¼ 117:49V1:96Þ V 1.95 0.12 2.20 1.72 15.90 ,0.0001
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predict discharge to within a factor of 2.7, 67% of the

time (the standard error is the standard deviation of

the log residual, and its antilog represents the standard

deviation of the fractional errors between the

predicted and observed values). Width by itself

would be expected to predict discharge within a

factor of 3, 67% of the time. Velocity would predict

discharge within a factor of 7.4, 67% of the time,

indicating that by itself it is a very poor predictor of

discharge.

The validation statistics for Models 1, 2, 3 and 4

and the Dingman and Sharma Model (Eq. (9)) are

compared in Table 6. Comparative statistics include

the mean and standard deviation of the following

quantities:

Relative residual ¼ ðQp 2 QÞ=Q ð22Þ

Log residual ¼ logðQpÞ2 logðQÞ ð23Þ

Actual residual ¼ Qp 2 Q ð24Þ

In addition, the number of predictions within a

specified percent error interval (percent different

than the observed) are also tabulated for 20, 50 and

100% error. Fig. 2 shows the predicted discharge ðQpÞ

plotted against the observed discharge ðQÞ for each

model, along with an upper and lower envelope curve

defined by the ^50% error in the observed value.

The log and actual residuals indicate that Model 1

and the Dingman and Sharma model tend to over-

predict discharge and Models 2, 3 and 4 tend to under-

predict discharge (Table 6 and Fig. 2). Model 1 shows

the least overall prediction bias, and the Dingman and

Sharma model has the highest. The mean relative

error indicates the average percent error of the

predictions. Model 2 performs the best in this regard,

with an average relative error of 10%. Average

relative error for Model 1, 3 and 4 are less than 20%.

The antilog of the mean of the log residuals indicates

the fractional error between the predicted and

observed discharge (i.e. the ratio Qp=Q), which can

be regarded as a correction factor. This measure of

error shows that Model 1 has the highest mean

accuracy (with a ratio of less than 1%), and that

Models 2, 3 and 4 all show mean accuracy within 5%.

Table 6

Regression model validation statistics

Model Validation statistics

Relative residual

ðQp 2 QÞ=Q

Log residual

ðlogQp 2 logQÞ

Actual residual

ðQp 2 QÞ

Percent of predictions

within 20, 50 and 100%

of the observed

20% 50% 100%

Model 1

Q ¼ 7.22W1.02Y1.74S0.35 Mean 0.16 0.004 243 39% 82% 90%

Standard deviation 0.81 0.207 5059

Model 2

Q ¼ 0:09W1:21V1:53S20:3 Mean 0.07 20.017 2615 37% 79% 94%

Standard deviation 0.58 0.195 7129

Model 3

Q ¼ 0:23W1:46V1:39 Mean 0.10 20.024 2790 32% 71% 93%

Standard deviation 0.71 0.231 9946

Model 4

Q ¼ 3:55W1:19
m Y20:84

m S0:30Y2:17 Mean 0.17 20.016 2119 28% 73% 89%

Standard deviation 0.99 0.243 5333

Dingman and Sharma Model

Q ¼ 4:62W1:17Y1:57S0:34 Mean 0.43 0.092 763 41% 74% 86%

Standard deviation 1.01 0.215 7644
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Model 2 shows the least overall prediction error

variability, as indicated by the standard deviation of

the relative error and the log residual. The error

percentiles indicate that Models 1, 2 and the Dingman

and Sharma model are comparable.

Inspection of Fig. 2 indicates that the predictive

characteristics of the models vary for different ranges

of discharge. These differences are evaluated by

comparing the distribution of the relative residual

with observed discharge. To facilitate comparison,

the mean and standard deviation of the relative

residuals have been averaged within four categories

of discharge range (0–10, 10–100, 100–1000 and

.1000 m3/s). Models 1, 4 and the Dingman Sharma

model tend to over-predict primarily in the low

discharge range (0–10 m3/s). This suggests that these

models will have the best results in medium to

large rivers where discharge typically ranges above

10 m3/s. The reason for this may be that the

relationship between resistance and the channel

Fig. 2. Predicted discharge ðQpÞ plotted against observed discharge ðQÞ for the validation data set using Models 1, 2, 3, 4 and the Dingman and

Sharma Model. ^50% of the observed discharge is shown as envelope curves through the plotted data.
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geometry cannot be fully represented by a single

regression intercept (model coefficient). Models 2 and

3 also tends to over-predict discharge in the low range

(0–10 and 10–100 m3/s) but also under-predicts in

the high discharge range (.1000 m3/s). This result

indicates that Models 2 and 3 would do better if the

coefficients varied with discharge, i.e. different model

coefficients were calculated for different flow ranges.

The Dingman and Sharma Model shows a consistent

over-prediction for all flow ranges, which may result

because it was developed from a data set with fewer

large rivers (also suggesting that statistical models

such as these would be improved if they were

developed for specific flow ranges).

Prediction variability, as indicated by the upper

and lower standard deviation of the relative residuals,

is reduced in the highest discharge range for Models 1,

2, 3 and 4 (Fig. 3). This indicates that model precision

is improved for the larger rivers. The Dingman and

Sharma model does not follow this trend, which again

may be due to the presence of fewer large rivers in the

data base used to develop it. The validation statistics

indicate that prediction models based on Models 1, 2,

3 and 4 could all be used as general discharge

estimating models, with mean accuracy of less than

20% in all cases. The variability of the estimates

would be expected to be within ^50% of the acutal

value on the order of 2/3 of the time. The prediction

accuracy would be improved for medium and large

rivers.

As a comparison, under good measurement

conditions, the accuracy of a discharge measurement

made on the ground with standard techniques is

assumed to be in the range of 2 to 4% of the actual

value at least 2/3 of the time (Rantz et al., 1982;

Herschey, 1998). The accuracy of measurements

made using the slope-area method (usually for large

discharges that could not be meausred using standard

techniques), which is based on after-the-fact measure-

ments of the flow width, depth, energy slope and flow

resistance using the Manning or comparable uniform

flow equation, are not explicitly known because it

depends on field judgement and the quality of the

measured data (Kirby, 1987). However it is often

reported that good measurements have an accuracy

between 10 and 20% (Herschey, 1998).

The development of the rating curve averages out

some of the error associated with the discharge

measurements, however interpolation from the rating

curve may also introduce error, especially if the rating

curve is subject to change over time. The accuracy of

estimates made from the rating curve diminishes with

extrapolation beyond the highest and lowest measured

discharges because the nature of the ‘true’ rating

beyond the measured values is not known. Addition-

ally, hysteresis effects may not be adequately reflected

in the rating. Dickerson (1967) suggests that estimat-

ing future (uncalibrated) discharge values from a

rating curve may range from þ13 to 211% at the

80% confidence level, and from þ21 to 217% at the

95% confidence level.

4.2. Measurement uncertainty analysis

Models 1, 2, 3 and 4, and Eq. (1) enable

exploration of the impact that potential uncertainty

(error) in measurement of the dynamic variables W ;

Y and V would have on the accuracy of discharge

predictions. To do this, (the measured variables were

assumed to be error free which is not really the

case), typical measurement accuracies were assigned

to each variable, and then varied randomly assuming

a normal distribution such that the mean measure-

ment uncertainty for the entire data base is zero and

95% of the uncertainties are within the assigned

accuracy. The modified data were then used to re-

estimate the discharge in the validation data base and

then these values were compared via the relative

residual to the estimates that assumed no uncertai-

nity. A maximum and minimum measurement

accuracy is assumed for each dynamic variable.

For W ; the minimum assumed measurement uncer-

tainty is 1 m and the maximum is 10 m, which

would be consistent with many of the current SAR

and visible spectrum sensors (Table 2). The

minimum assumed measurement uncertainity in

water-surface elevation (as a proxy for Y) is 0.1 m

and the maximum is 0.5 m, consistent with the range

associated with current satellite altimeters (Birkett,

1998; Birkett et al., 2002). The minimum measure-

ment uncertainty in V is assumed to be 0.1 m/s,

which is the low end of the anticipated accuracy of a

surface velocity measurement (Emmitt pers. com-

mun., 2001), and the maximum was arbitrarily

chosen to be 0.5 m/s (since the measurement of

surface velocity from satellites has not been tested).
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This analysis does not consider the potential

uncertainity in estimating channel slope or the other

characteristic channel values Wm and Ym: These

variables could be determined by a number of

methods, including (1) estimation from topographic

mapping and geomorphologic considerations, (2)

measurement from repeated satellite observations,

and (3) measurement via field surveys. The magnitude

of uncertainty associated with determining the

channel characteristics will depend in large part on

the accuracy of available topographic information and

availability of channel survey data. The analysis also

does not consider the uncertainity associated with

estimating the average velocity from the surface

velocity measurements or the uncertainty associated

with converting stage to average depth. However,

Costa et al. (2000) has shown that the surface velocity

can be used to estimate the mean velocity in a cross-

section with good overall results by using a simple

correction factor of 0.85 (Rantz et al., 1982).

Fig. 3. Variation of the mean and standard deviation of the relative residuals averaged within ranges of observed discharge. The upper and lower

lines are plus and minus one standard deviation from the mean. Multiplying the relative residual by 100 gives the percent error. The number of

observations in each range, from lowest to highest range, are 71, 132, 209 and 94 respectively.
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The assumed measurement uncertainties are dis-

tributed with a mean of zero. For this reason, the

standard deviation of the relative residuals is used as

the indicator of the impact of measurement uncer-

tainty on the predictions. The standard deviation of

the relative residuals as a function of discharge

category for the maximum assumed uncertainty

(error), the minimum assumed uncertainty, and the

case with no uncertainity is shown on Fig. 4. The least

variability is associated with using Eq. (1) because

there is no associated statistical error. All of the plots

in Fig. 4 show that the impact of maximum

measurement uncertainty on prediction variability,

relative to the no uncertainity case, becomes pro-

nounced below a discharge of 10 m3/s. The impact of

maximum uncertainty for discharge above 10 m3/s is

greatest for Eq. (1) and Models 2 and 3. This result

shows the effect of compounding errors in the case of

Fig. 4. Standard deviation of the relative residuals assuming high (maximum) and low (minimum) measurement error in the dynamic variables

as compared to no (mean) assumed measurement error. The dynamic variables are width ðWÞ; average depth ðYÞ and average velocity ðVÞ:

Ninety five percent of the assumed maximum errors are within ^10 m for W ; ^0.5 m for Y and ^0.5 m/s for V : Ninety five percent of the

assumed minimum errors are within ^1 m for W ; ^0.1 m for Y and ^0.1 m/s for V :
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Eq. (1), which includes uncertainty in all three

dynamic variables, and indicates that uncertainty in

V has a larger impact on prediction variability than

does uncertainty in Y (comparing Model 1 and 2).

The impact of minimum uncertainty is not large

within any discharge category, although as in the

maximum uncertainty case it is most pronounced for

discharge below 10 m3/s. However, if the minimum

measurement uncertainty is achieved for all dynamic

variables, predicting discharge with Eq. (1) would

result in a standard deviation in the relative residual

(percent error) of less than 25% for discharges less

than 10 m3/s, less than 15% for discharge in the range

10–100 m3/s and less than 10% for discharge greater

than 100 m3/s. The impact of minimum measurement

uncertainty using Models 1, 2, 3 or 4 is less than 15%

for discharge less than 10 m3/s, and less than 10% for

all other discharge categories. The plots in Fig. 3 show

that if the minimum measurement uncertainty can be

achieved, uncertainty in the estimated discharge using

the statistically based models is well below the

uncertainty associated with the model itself (no error

case).

As suggested by comparing the plots for Model 1

and Models 2 and 3 in Fig. 4, there appears to be a

different error response between Y and V : The

differences in measurement uncertainty impact

associated with the three dynamic variables were

evaluated by introducing error into one variable at a

time, and then comparing the standard devaition of the

relative residuals. The results of this analysis are

shown in Fig. 5 for Eq. (1), and Models 1 and 3. The

plot for Eq. (1) shows that error in V has greater

impact on the discharge estimate than does error in Y ;

and that error in W has the least impact. Comparing

Models 1 and 3 shows that error in Y has the largest

impact relative to W and V at low discharge (less than

10 m3/s), and that error in V has a greater impact than

error in Y for discharge greater than 10 m3/s.

5. Discussion and conclusions

The advantage of a satellite based river discharge

monitoring system is that it can fill in gaps where

there is little or no information and obtain data over

large areas simultaneously. Another advantage that

satellite (or aerial) based measurement of hydraulic

variables (particularly width) provides is the ability to

observe variation over a reach, thus enabling a reach

averaged value to be derived and minimizing the local

variability that is specific to single cross-sections.

Development of a general method to estimate river

discharge using river channel hydraulic information

observed from existing space or aerial platforms can

be accomplished with statistical relationships devel-

oped from river data bases. If the water surface

Fig. 5. Variation in the standard deviation of the relative residuals

for prediction methods with more than one dynamic variable

assuming error in only one variable at a time, showing the relative

impact that error in the different dynamic variables has on

prediction variability.
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velocity of a river can be observed with doppler lidar

and used to estimate the average cross-sectional

velocity and if the water-surface elevation can be

used to estimate the average depth, all elements of Eq.

(1) can be obtained remotely and the discharge in the

river can be directly calculated.

The use of Eq. (1) is the preferred method to

estimate discharge because it does not rely on a

statistical derivation, shows the least overall predic-

tion variance, and because it is applicable to any river

under any flow conditions. However, it is likely that

not all elements of Eq. (1) can be observed at the same

time with confidence, thus statistically based models

such as described by Models 1, 2, 3 and 4 can be used

in these situations with reasonable accuracy, aver-

aging ^20% or less, with accuracy within approxi-

mately ^50% 2/3 of the time. This level of accuracy

compares favorably with estimates derived from

extrapolation of ground-based ratings and slope-area

measurements of discharge. Measurement error

analysis indicates that with anticipated maximum

uncertainty in the values of the observed variables, the

variability of discharge estimates is increased sub-

stantially for discharges less than 100 m3/s, however

assuming, a reasonable minimum measurement

uncertainty (0.1 m accuracy in depth, 1 m accuracy

in width and 0.1 m/s) prediction error variability is

only slightly increased over the no-error case.

Models that use width and surface-velocity only

to estimate discharge (Model 3) can be used in

situations where slope cannot be measured, or where

anthropogenic control of slope violates the hydraulic

assumptions inherent in Models 1 and 2, assuming

surface velocity can be effectively measured.

However, width-velocity models appear to have a

bias trend across a wide range of discharge,

indicating that these models would perform better

if calibrated for specific ranges of discharge. Future

studies should focus on further development and

validation of statistical models designed to discrimi-

nate between potential threshold values of flow or

size of rivers.

The predictive models described above are appli-

cable to within-bank discharge only, because these

models did not include over-bank flow in the data base

used to develop and evaluate them. However,

estimating over-bank discharge would require the

same information, i.e. the width of flow, the average

depth of flow and the average velocity of flow. Alsdorf

et al. (2000) has shown the feasibility of using

interferometric SAR to map the surface relief of an

inundated region of the Amazon, thus demonstrating

that mapping flow paths within a flooded area is

possible. With this information, the discharge within

the flooded area could be estimated and resolved in

the downstream direction using floodplain topography

and water surface elevation to estimate the flow

depths across the inundated area. As shown by

Brakenridge et al. (1998), Bates and DeRoo (2000)

and Horritt (2000), this information could also be used

in conjunction with a hydraulic model to estimate the

downstream discharge within a flooded region.

Brakenridge and Knox (1998) used satellite images

obtained from ERS-1 coupled with topographic

information to develop a three dimensional picture

of the flooded area (inlcuding depth and areal extent)

which were then used to track the flood wave and

estimate flood discharge using the HEC-2 river

hydraulic model.

The successful use of Eq. (1) and Models 2 and 3

will depend on the ability to measure surface velocity

from space. To this end, development and verification

of this technology will greatly enhance the potential

ability to measure river discharge from space.

Additionally, use of Eq. (1) and Models 1, 2, 3 and

4 all depend on the ability to translate surface

measurements of stage and/or velocity into average

values for the channel section under observation.

Thus, techniques to estimate the average water depth

in a channel section based on observation of water-

surface elevation and techniques to estimate the

average velocity in channel section based on

measurements of surface velocity need to be devel-

oped and verified. Another issue of concern is that

currently deployed altimeters cannot accurrately

obtain water surface elevations on rivers less than

several hundred meters wide. However, there is an

indication that these same altimeters can observe

much smaller rivers with similar accuracy by effecting

a change in the on-board signal processing (Rodri-

quez, pers. commun., 2001). Also, laser altimeters

may provide much greater accuracy with reduced

observation size limitations relative to radar alti-

meters. The potential improvements in river stage

measurement indicated by these developments need to

be evaluated.
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