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Abstract

Rapid preferential drainage or by-pass flow of water and pollutants occurs in soil macropores such as burrows and channels

formed by earthworm activity in soils. We show that preferential flow through these non-capillary pores can be described by a

traveling-dispersive wave. This wave is the solution of a non-linear convective–dispersive equation (KDW model) that

depends on three transport parameters: two are related to a convective celerity and the other one is a dispersive coefficient. We

show that the flux–mobile water content relation is hysteretic and that it can be described by a non-linear function of the mobile

water content and its first time derivative.

By combining the latter relation with the continuity equation we derive the KDW model. This model can be viewed as a

second-order correction of the purely convective kinematic wave model. The dispersive term incorporates the large-scale

effects of dissipative forces without resolving the small-scale conservation equations in detail. We further present numerical

solutions for the signaling problem and a direct method for estimating model parameters. The model is validated with data

obtained from laboratory infiltration experiments on soil columns. The experiments were carried out in repacked soil columns

inoculated with Allolobophora chlorotica earthworms. Varying rainfall intensities were applied at the top surface of the

columns with a rainfall simulator. Both the mean of mobile water content within the columns and the drainage hydrograph at the

bottom were recorded in time. The parameters of the model were estimated from the experimental flux–mobile water content

relation. A very good agreement was found between model prediction and experimental data.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Usually, soils show a nearly continuous distri-

bution of void sizes, ranging from micrometers to

centimeters. The balance between forces driving

the flow (pressure and gravity) and the resistance

forces opposing it (friction between the solid walls

and the fluid, and irreversible dissipation due to

viscosity) determines the total inertial variation of the

linear momentum carried by infiltrating water and

thus the mean water velocity in soil pores. The

prevalence of each one of these forces on water flow

depends on the pore size and therefore the hydraulic
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behavior varies across void sizes. Channeling flow

(by-pass or macropore flow) is a rapid transient

physical phenomena occurring in the larger and

predominantly vertical continuous soil pores.

Germann (1990) and Chen and Wagenet (1992)

derived functional relations between the mean water

flux and the mobile water content within the draining

porosity, based, respectively, on Newton’s law of

shear and on channel flow approaches. Both

approaches lead to non-linear single-valued functions

between the flux and the mobile water content.

The combination of these relations with the

continuity equation leads to a kinematic wave model

for describing water flow in draining pores (Germann,

1985). Although the kinematic wave model usually

overestimates preferential flow, it has shown to well

approximate mobile water in structured soils (Ger-

mann et al., 1997; Mdaghri-Alaoui, 1998). Actually,

dispersive effects implying attenuation of kinematic

water waves are usually observed (Di Pietro and

Lafolie, 1991; Di Pietro and Germann, 2001).

One factor contributing to wave attenuation is the

role of mesopore flow. These pores of intermediate

size may significantly contribute to channeling flow

with typical time-scales ranging from a few hours to

one or two days. Because in mesopores capillary

forces may be significant, the contribution of

mesopores to channeling flow is not exclusively

gravity driven. In the operational classification of

soil porosity proposed by Luxmoore (1981) into three

main pore classes (micro-, meso- and macroporosity)

mesopores (10 – 1000 mm) and macropores

(.1000 mm) are both draining pores that differ in

the time-scale for drainage and channeling flow.

However, a non-arbitrary distinction between meso-

and macropores is impossible to establish because the

dominance of capillary forces diminishes gradually

with the inverse of the equivalent pore radius while

gravity remains constant. In what follows, we shall

use the term ‘draining porosity’ to refer to the pores

that may potentially contribute to relevant channeling

flow. This functional criterion does not imply a

quantitative division in terms of void size but it

implies that some capillary dispersion must be

considered in mainly gravity driven flow.

Channeling flow is typically unsteady. In transient

flow regimes, the frictional and gravitational forces do

not balance instantaneously (Majda, 1984). For

rapidly varying transient flow regimes, as may occur

in the larger pores, non-negligible inertial time lag

forces develop to conserve total momentum. The local

inertia of the mass of fluid in motion tends to slow the

fluid down and is responsible for the attenuation of

water waves.

In addition to capillary and time inertial effects,

other forces, including spatial convective inertial

effects and resistance forces due to intricate pore

paths, may appear and produce water flow dispersion

within the draining porosity (Di Pietro, 1998).

The aggregation of all damping effects culmi-

nates in a large-scale process being characterized as

flow dispersion. The kinematic wave model is

strictly convective and thus it is not able to account

for dispersive effects whatever their origins, the

reason being that it is based on the assumption that

the flux is exclusively a function of the mobile

water content. The underlying physical assumptions

are the predominance of gravity driven flow over

capillary forces, and that gravity is instantaneously

counterbalanced by dissipative friction due to

viscosity. No other dissipative forces are considered

to act on the system. When non-conservative forces

that induce dispersion are present, the flux also

depends on the derivatives of the mobile water

content (Lighthill and Whitman, 1955; Whitham,

1974; Singh, 1996).

In this paper a kinematic–dispersive wave (KDW)

model is proposed to more accurately describe

channeling flow through the draining soil porosity.

In this case we assume that, among all the small-scale

effects inducing dispersion, the local inertia force is

prevalent in the greater pores and cannot be neglected.

A way to incorporate the large-scale effect of this

force without resolving the small-scale conservation

equations in detail is to assume that the flux is some

non-linear function of the mobile water content and of

its first time derivative. The combination of this

relation with the continuity equation leads to a

convective–dispersive equation that admits travel-

ing-dispersive wave solutions describing water infil-

tration into draining pores. We further present

numerical solutions for the signaling problem and a

direct method for estimating model parameters. The

model is validated with data obtained from laboratory

infiltration experiments on soil columns.
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2. Theory

2.1. Kinematic–dispersive wave model for channeling

flow through draining pores

Let w be the mobile volumetric water content

within a volume V of a soil profile (flowing in the

draining porosity), wt ; ›w=›t its first partial deriva-

tive with time, and u the volumetric flux of mobile

water normal to the external surface of V : We assume

that the microporosity is entirely saturated and thus no

water exchange exists between the two porosities.

The law of continuity for the flow of w may be

expressed as

›w

›t
þ 7·u ¼ 0 ð1Þ

If we further assume that the volumetric water flux u is

some non-linear function of w and of wt; that is

u ¼ uðw;wtÞ ð2Þ

then the spatial gradient of the flux results

7·u ¼ c7w þ nw7wt ð3Þ

where

c ¼
›u

›w

����
wt¼constant

and nw ¼
›u

›wt

����
w¼constant

By assuming that water flow is only relevant in the

vertical downward direction z; Eqs. (1) and (3),

respectively, become

›w

›t
þ

›u

›z
¼ 0 ð4Þ

and

›u

›z
¼ c

›w

›z
þ nw

›2w

›z›t
ð5Þ

Eqs. (4) and (5) can be combined to yield

›w

›t
þ c

›w

›z
¼ 2nw

›2w

›z›t
ð6Þ

Using ›2w=›z›t ¼ 2›2u=›z2 and multiplying by ›u=

›w; Eq. (6) is transformed into

›u

›t
þ c

›u

›z
¼ nu

›2u

›z2
ð7Þ

where nu ¼ cnw:

Both Eqs. (6) and (7) are non-linear convective–

dispersive equations, respectively, for w and u: Note

that the functional form of the flux–mobile water

content relation affects the hydrodynamic coefficients

c; nu; and nw; but it does not alter the form of the

obtained differential equations.

In this paper we shall concentrate on the solutions

and the physical implications of Eq. (7) (KDW model

in flux-mode) for channeling flow. The KDW model

may be viewed as a second-order correction of the

purely convective kinematic wave model that we

discuss in Section 2.2. As we show later, the KDW

model allows for a better macroscopic description for

channeling flow.

2.2. The kinematic approximation

The two terms of the left-hand side in Eq. (7)

represent the total time derivative of the flux uðz; tÞ

along any curve in the plane ðz; tÞ with slope c at any

point of it. These curves are called the characteristics

of the differential equation. These terms may be

written as

du

dt
¼

›u

›t
þ

dz

dt

›u

›z
ð8Þ

with c ¼ dz=dt: When nu ¼ 0; Eq. (7) reduces to

du

dt
¼

›u

›t
þ cðwÞ

›u

›z
¼ 0 ð9Þ

The latter is the kinematic wave model that has been

widely applied in water resources modeling (see, for

instance, the review by Singh (2001)).

Eq. (9) implies that uðz; tÞ remains constant along

the characteristic curves.

For the initial value problem

u ¼ f ðzÞ; t ¼ 0; 21 , z , 1 ð10Þ

the model admits continuous non-dispersive traveling

wave solutions which propagate with speed cðwÞ

along the characteristics. If f ðzÞ is a decreasing

function of z; discontinuities due to the overtaking

of slower waves by faster ones may develop, allowing

for the propagation of shock waves (Lax, 1972;

Whitham, 1974).

Germann (1985) solved Eq. (9) for the signaling

problem that corresponds to the following initial and
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boundary conditions

uðz; tÞ ¼ uinðtÞ; z ¼ 0; t . 0

uðz; tÞ ¼ u0; z . 0; t ¼ 0

(
ð11Þ

where uinðtÞ was a square input water pulse of

volumetric flux density us and duration ts applied at

a free boundary ðz ¼ 0Þ: He further assumed that the

flux–mobile water content relation was u ¼ bwa;

a and b [L T21] being two positive coefficients.

The obtained analytical solutions indicate that

the characteristics are straight lines corresponding to

two shock waves that evolve without spreading. One

originates from the applied flux at the surface us at

time t ¼ 0 (the wetting front) and the other one from

the reduction to zero flux at the surface when input

ceases at time t ¼ ts (draining front). Furthermore, the

draining front travels faster than the wetting front.

After the draining front intercepts the wetting front,

the solution uðz; tÞ results in a single-crested function

of time and the water content of the peak begins to

decrease. Predicted hydrographs at the bottom of a soil

Fig. 1. Hydrographs at the bottom of a soil column ðLÞ as predicted by the kinematic wave model (Germann, 1985) for an square water pulse

input. Dt1 and Dt2 are the time lags expected for the arrival of the wetting and draining fronts that travel, respectively, with cw and cd as signal

velocities.
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column are shown schematically in Fig. 1. The time

lag expected for the arrival of the wetting and draining

fronts at depth L are, respectively, given by

Dt1 ¼ L=cw and Dt2 ¼ L=cd: The velocities cw and cd

are the signal speeds that correspond to us and to u ¼

0; respectively.

In contrast to these predictions, experimental data

obtained from soil columns and field lysimeters show

that during the infiltration stage the hydrograph shows

dispersion. As the signal advances in the ðz; tÞ space,

this effect is amplified and the kinematic approxi-

mation generally worsens (Di Pietro and Germann,

2001).

2.3. Implications of the second-order correction and

numerical solutions for the signaling problem

When nu – 0; the second-order term of the right-

hand side of the Eq. (7) introduces dispersion. This

differential equation is usually called the heat

equation or the generalized Burges equation (Burges,

1948). By using Eq. (8), we may rewrite Eq. (7) to

give

du

dt
¼ nu

›2u

›z2
ð12Þ

Eq. (12) indicates that the flux u is no longer constant

on each characteristic and that the rate of change

depends on nu and on the spatial variation of the

gradient of the flux.

It has been proved (Vanaja and Sachdev, 1992;

Guilding and Kersner, 1996) that the occurrence of a

free boundary (front or interface) in solutions of this

type of non-linear convection-dispersion equation is

equivalent to the admission of traveling-dispersive

wave solutions.

We want to solve Eq. (7) and look for these

traveling wave solutions for the case of an arbitrary

infiltrating water signal applied to the surface of a

porous medium presenting a network of draining

pores (the microporosity is entirely saturated or it is

impervious).

We shall further assume that the functional relation

given in Eq. (2) is of the form

u ¼ f ðwÞ þ gðwtÞ ð13Þ

with f ðwÞ ¼ bwa; and gðwtÞ ¼ 2nwð›w=›tÞ; where a;

b [L T21], and nw [L] are positive real numbers.

Eq. (13) is proposed to model the experimental

results we obtained from infiltration – drainage

experiments in many soil columns. The observed

uðwÞ curves are hysteretic, the values of u for a fixed

value of w being smaller during infiltration than

during drainage. Our hypothesis is that an inertial

force develops during the transient stages of

infiltration and drainage, to counterbalance the

increase (respectively, the decrease) of linear

momentum. This force is proportional to the rate

of increase (respectively, the decrease) of the water

content, and is zero during steady state. The

corrective term gðwtÞ is proportional to the first

temporal derivative of the water content. This term

gðwtÞ is negative during infiltration (w increases),

zero during steady state (w remains constant) and

positive during drainage (w decreases). As discussed

by Lighthill and Whitman (1955), when a flux-

density relation like uðwÞ shows hysteresis, the area

between the rising and falling curves provides an

estimate to correct for dispersion.

From Eq. (13), the signal speed c results

cðwÞ ¼
›u

›w

����
wt¼cte

¼ mwn ð14Þ

with n ¼ a 2 1 and m ¼ ab:

Further

nu ¼ cnw ¼ mwnnw ð15Þ

Under the above assumptions, c reduces to the first-

order kinematic approximation of Germann (1985,

1990) who ignored gðwtÞ:

Using w ¼ ðu=bÞ1=a and by combining Eqs. (7), (13)

and (14), we obtain

›u

›t
þ puq ›u

›z
¼ nwpuq ›

2u

›z2
ð16Þ

where

p ¼ ab1=a and q ¼
a 2 1

a
ð17Þ

Thus the model depends on the three parameters p; q;

and nw: The first and the second are combinations of

the parameters a and b in Eq. (13) and are related with

the first-order kinematic signal speed.

We have solved Eq. (16) numerically for the initial

and boundary conditions given by Eq. (11) by

applying an explicit finite difference scheme.
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The numerical derivation is described in Appendix A.

The program was written in Mathematica language.

3. Comparison of numerical results with real

infiltration experiments in soil columns with

macropores

3.1. Experimental layout

Infiltration–drainage experiments were carried out

on uniformly packed soil columns inoculated with

earthworms. A PVC column (height ¼ 283 mm,

diameter ¼ 153.6 mm) was filled with 2– 4 mm

aggregates of a loamy soil. To insure a homogeneous

distribution, the aggregates were carefully packed in

successive layers following the procedure of Capo-

wiez et al. (2001). Each layer (600 g of soil) was

compacted with a hydraulic press by applying a

pressure of 270 kPa. The thickness of each layer was

about 2.5 cm. To increase cohesion between layers the

surface of each layer was gently scraped using a small

rake prior to adding a new layer. The total initial bulk

density and the total porosity of the soil column were,

respectively, 1.11 g cm23 and 0.57 m3 m23.

Four Aporrectodea chlorotica earthworms were

introduced into the soil, which was stored under

controlled humidity and temperature conditions for

three months. Columns were lined inside with sealing

varnish and sharp fine sand to prevent earthworms

crawling along the walls instead of burrowing in the

soil. The cores were placed in a dark room (at 12 8C) for

Fig. 2. 3D reconstruction of the burrow system for the soil column inoculated with 4 Ap. chlorotica earthworms. Light and dark grey,

respectively, represent the background and foreground planes.
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6 weeks. During this period the earthworms built

connected macropore networks within the soil column.

A semi-qualitative characterization of the form and

the connectivity of the macropore network was

obtained by X-ray tomography. The cores were

scanned with an X-ray scanner (Prospeed SX

Advantage, General Electric) to obtain a set of images

2 mm thick every 3 mm with a resolution of 0.4 mm

per pixel. The settings for the X-ray beam were

140 mA, 130 kV and a duration of 1 s. A three-

dimensional reconstruction of the macroporosity

within the column (Fig. 2) was obtained by the

method presented in Pierret et al. (2002).

Prior to the infiltration experiments, the column

was saturated from below for 72 h with distilled water

and allowed to drain freely to constant weight. Then

little water exchange between microporosity and

draining porosity is expected.

A funnel was then sealed on to the bottom of the

column and the whole device was placed on a

weighing scale (Sartorius FC34EDE, Sartorius AG,

Goettingen, Germany, maximum range ¼ 34 kg,

precision ¼ ^0.1 g) as shown in Fig. 3. This device

allowed for continuous monitoring of the mass

variation of the soil columns during the infiltration–

drainage experiment.

Water was provided at the top surface of the

column with a drip infiltrometer fed by a pulsing

pump connected to a reservoir tank of distilled water

(Bruckler et al., 2002). Infiltration intensity provided

by the drip infiltrometer can be adjusted between

4 mm h21 to more than 500 mm h21.

Drainage flow was continuously monitored with a

weighing scale (Mettler-Toledo PM2000, Viroflay,

France, maximum range ¼ 2 kg, precision ¼ 0.01 g).

We carried out three infiltration runs with simu-

lated constant rainfall intensities of 30.35, 56.07 and

101.66 mm h21 and durations 0.55, 0.30, and 0.33 h,

respectively.

3.2. Estimation of the parameters of the model

Parameters p; q and nw were estimated from the

experimental uðwÞ relation, with u measured at the

base of the column, and w estimated as an average for

the whole column.

The parameters p and q are related to parameters a

and b through Eq. (17). In the first-order kinematic

approximation uðwÞ is a single-valued function of w

and is equal to f ðwÞ ¼ bwa: We plotted u as a function

of w during the infiltration and drainage cycles for the

three experiments (Fig. 4). The uðwÞ relation is

Fig. 3. Experimental scheme of the infiltration – drainage

experiments.

Fig. 4. Relative flux ðu=usÞ vs. mobile water content for the three

input intensities ðusÞ: Symbols are for measured fluxes and lines for

fitted values (Eq. (13)): triangles and dashed line: 30.35 mm h21,

squares and full line: 56.07 mm h21, filled squares and long dashed

line: 101.66 mm h21.

L. Di Pietro et al. / Journal of Hydrology 278 (2003) 64–7570



hysteretic, the values of u for a fixed value of w being

smaller during infiltration than during drainage. This

shows that the first-order approximation that con-

siders uðwÞ ¼ f ðwÞ is not well adapted to describe the

complexity of the process. We assume that Eq. (13)

describes the observed experimental relation and the

hysteretic loop. In order to estimate the parameters

involved in Eq. (13), we minimize the root mean

square of the deviations between the experimental

data and the flux predicted by Eq. (13), as follows

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i

ui 2 bwa
i 2 nw

›w

›t

����
i

� �� �2

vuut

where N; ui; wi are, respectively, the number of

experimental observations, the observed fluxes at the

bottom of the column at time i and the mean of the

measured mobile water content at time i: The

derivatives ›w=›t were approximated by forward

finite differences from the experimental data. The

estimated parameters for each run are presented in

Table 1. For these experiments, the higher is the

rainfall intensity the higher is the value of parameter b

whereas nw remains nearly constant. Furthermore, the

values of parameter a are between 2 and 3 as predicted

by kinematic theory (Germann, 1985). Nevertheless

more experiments should be carried out to confirm

these trends. As seen in Fig. 4, relation (13) fits the

experimental data reasonably well.

3.3. Comparisons of model predictions with

experimental data

For all the infiltration runs, and irrespectively of the

rainfall intensity, the drainage hydrographs always

exhibit the same shape: a rapid increase changing into

a plateau when a steady state is reached followed by a

steep decrease when the input flux has ceased. The

falling stage is characterized by an abrupt initial drop

in outflow rate followed by a period of slow drainage

(Fig. 5). During the infiltration stage, the rising

hydrograph shows dispersion. We observe that

dispersion of the wetting front decreases when the

input rate increases. At higher intensities, some small-

scale dispersive effects like local water stagnation or

capillary effects within pores of intermediate size are

probably masked, and the coarser pores mostly con-

tribute to channeling flow involving higher velocities.

In the latter case, the hypothesis of non-dispersive

shock-wave propagation is probably more accurate.

The statistical model efficiency (EF) was used to

evaluate the performance of the model:

EF ¼ 1 2

XN

i¼1
ðPi 2 OiÞ

2XN

i¼1
ðO 2 OiÞ

2

Table 1

Estimated parameters for the three infiltration experiments

Rainfall intensity (mm h21) a (–) b (mm h21) nw (mm) RMS (mm h21) p q

30.35 2.15 83 079 71 0.88 417 0.535

56.07 2.15 131 682 73 1.52 517 0.535

101.66a 2.88 707 407 70 4.37 309 0.653

Parameters a; b and nw were estimated from the best fit of the experimental uðwÞ curves to the model (Eq. (13)). The values of p and q are

calculated from Eq. (17). RMS is the root mean square error.
a Convergence not reached.

Fig. 5. Comparison of the experimental drainage hydrographs at the

bottom of the soil column for three water input rates: 30.35 mm h21

(triangles), 56.07 mm h21 (squares) and 101.66 mm h21 (filled

squares).
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where Pi and Oi represent predicted and observed

fluxes, and O is the mean of the observed fluxes. The

ideal value of EF is 1. The lower is the value of EF

with respect to 1 the poorer is the fit. Table 2 shows

the EF values obtained for cross-simulations of

experiment j using the parameters estimated from

experiment k; respectively, with k ; j ¼ 1; 2; 3:

The best fit between predicted and observed data is

obtained with the parameters obtained from the

intermediate input rate uðwÞ curve (56.07 mm h21).

Nevertheless, the EF values obtained with the two

other set of parameters are very close to the optimal

values and model predictions do not significantly

differ as shown in Fig. 6. Numerical solutions are in

reasonable agreement with experimental data

although dispersion of the rising limb of the hydro-

graph for the highest input rate is somewhat over-

estimated. Model predictions worsen with the

increase of the input rate. This confirms the

hypothesis that dispersive effects progressively fade

out as input rates increase.

Fig. 7(a)–(c) shows the numerical solution of the

KDW model estimated with the optimal parameters,

the experimental data, and the analytical solution of

the first-order kinematic model of Germann (1985).

The arrival times of the wetting and drainage fronts at

the bottom of the column are well predicted by both

models and coincide. Dispersive effects do not change

the convective speed of the traveling wave but they

affect its shape, attenuating the rising stage and

sharpening the falling stage of the hydrograph.

To compare the accuracy of the KDW model with

respect to the kinematic model, we calculated the

squared deviations of the predicted and measured

values for both models. The cumulative squared

deviations as a function of time are shown in

Fig. 7(d)–(f). We observe that both models predict

better the falling than the rising stage of the

hydrograph. Still the KDW model substantially

improves the accuracy of the prediction in both stages

with respect to the kinematic wave model.

Table 2

Efficiency criterion for cross-simulation of experiment j (column)

using the optimal parameters obtained from experiment k (row)

Parameters Experiment

30.35

(mm h21)

56.07

(mm h21)

101.66

(mm h21)

30.35 (mm h21) 0.951 0.848 0.824

56.07 (mm h21) 0.960 0.942 0.823

101.66 (mm h21) 0.954 0.903 0.827

Fig. 6. Measured (dots) and predicted hydrograph by the KDW

model (lines) at the bottom of the column for the three input

intensities. (a) 30.35 mm h21; (b) 56.07 mm h21; (c)

101.66 mm h21. Dashed line: simulation with the parameters

estimated from the 56.07 mm h21 experiment (‘optimal par-

ameters’). Full line: simulation with the parameters estimated

from the experiment.
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3.4. Sensitivity analysis

We carried out numerical simulations to analyze

the influence of parameters a; b; and nw on the outflow

hydrographs predicted by the KDW model. Fig. 8

shows the calculated root mean square of

the deviations between the optimal solution and

those obtained by varying each parameter. The

RMS–nw; RMS–a; and RMS–b curves are, respect-

ively, asymmetrical. They increase more rapidly for

negative than for the positive variations of the

parameters. Within the range of variation analyzed,

Fig. 7. Experimental drainage hydrographs at the bottom of the soil column (dots), hydrographs simulated with KDW model (full lines), and

analytical solution given by the first-order kinematic wave model (dashed lines) of Germann (1985). Figures on the right represent the

cumulative square deviations between measured and predicted fluxes with model KDW (stars) and with the first-order kinematic model

(diamonds). (a) and (d) 30.35 mm h21; (b) and (e) 56.07 mm h21; (c) and (f) 101.66 mm h21.

L. Di Pietro et al. / Journal of Hydrology 278 (2003) 64–75 73



the RMS–nw curve seems to reach a plateau for

values of nw higher than 108 mm (50% of positive

variation with respect to the optimal value).

Small positive or negative variations of coefficient

a lead to significant variations on the outflow

hydrographs. The influence of variations of b and of

nw is less marked but still significant.

4. Conclusions

In this study we developed a new infiltration model

that describes channeling flow within soil macropores.

The KDW model is based on the kinematic-wave

theory and it incorporates dispersive effects. We

performed infiltration–drainage experiments on large

soil columns inoculated with Ap. chlorotica earth-

worms. At the time of the experiments structural

characteristics of the burrow systems were computed

from X-ray CAT scanning. The earthworms formed a

connected network of macropores that was recon-

structed with a 3D algorithm. These experiments were

used to estimate the relation between the volume

water flux and the mobile water content. This relation

has been shown to be hysteretic and it could be

modeled by a non-linear function of the water content

and its first derivative. Experimental data were also

used to test the model. We have shown that the KDW

model accurately predicts the drainage hydrographs

for various input rates. In this paper we did not

consider water exchange between the macro- and

microporosity. In the future we shall study the

influence of different initial water content values on

model parameters.

Appendix A. Numerical approximation

Eq. (16) is discretised using a fully explicit scheme

in time and space (Ganzha and Vorozhtsov, 1996).

The time derivative is approximated by a forward

difference and space derivatives are approximated by

central differences at the jth time step. Eq. (16)

becomes

u
jþ1
i ¼ u

j
i þ

tnw

h2
cðuÞðu

j
iþ1 2 2u

j
i þ u

j
i21Þ

2
t

2h
cðuÞðu

j
iþ1 2 u

j
i21Þ ðA1Þ

where subscript i is for space discretisation, super-

script j is for time discretisation, h is the space

interval, t is the time step, and cðuÞ is the convective

celerity which is a function of u:

h and t are automatically calculated by the

program in order to satisfy the following stability

condition:

t

h

� �
cðuÞ

� �2

# 2
tnw

h2
cðuÞ # 1 ðA2Þ

The stability condition is evaluated for u ¼ us:

By using Eq. (14) the relation between c and u is

expressed as:

c ¼
ab

bða21Þ=a
uða21Þ=a ðA3Þ

As u is time and space dependant, the celerity must be

evaluated at each time step and each space interval.

As the input signal is very discontinuous and as the

celerity vanishes for u ¼ 0; the choice of the time step

and the space interval at which c is evaluated is

critical for the good propagation of the input signal

through space. After several trials, we chose to

evaluate c at u
jþ0:5
i20:5 :

c ¼
ab

bða21Þ=a

u
j
i þ u

jþ1
i21

2

 !ða21Þ=a

ðA4Þ

Fig. 8. Sensitivity analysis performed on parameters a (full line), b

(dashed line) and nu (dotted line) for the 56.07 mm h21 experiment.

RMS: root mean square of the deviations with respect to the optimal

values.
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