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Abstract

A modified covariance function of log hydraulic conductivity, accounting for a finite field size, is derived to assess the impact

of finite flow domain size on the statistical properties of the flow system in heterogeneous porous media, such as the uncertainty

of a large-scale mean model (variation of head fluctuations) and the effective hydraulic conductivity. This development is

accomplished by applying a perturbation approximation and spectral representation to a steady three-dimensional flow field of

finite extent. Closed-form expressions in a statistically isotropic porous medium indicate that the finite flow domain size has a

direct effect on the head variance and the effective hydraulic conductivity. The comparison of the presented formulation for

effective hydraulic conductivity is made with existing results.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known that most of the existing stochastic

analyses of spatial variability in groundwater (e.g.

Gelhar, 1986; Dagan, 1989) rely on the ergodic

assumption. These analyses are valid only if the

overall scale of observation is much larger than the

correlation scale of the log hydraulic conductivity, i.e.

for an ‘infinite domain assumption’. In such cases, a

unique effective parameter (effective hydraulic con-

ductivity), defined as the ratio of the mean specific

discharge to the mean hydraulic gradient, prevails.

The effective flow parameter derived from stochastic

theory can then be used to simulate the mean behavior

of flow system. Furthermore, the variance of the

output processes is used to characterize the spatial

variability about the mean model, rather than the

uncertainty (or the reliability) of the mean model.

Consequently, the existing stochastic theories in

characterizing spatially variable flow do not reflect

the influence of the overall scale variability.

In many practical applications, the information

about mean behavior of flow system and variability of

the output processes are required to make good

management decision. However, in some cases, a

bounded flow system is involved or the model

parameters, such as the hydraulic conductivities or

fluxes, are observed at some finite scale. In addition,

some field studies (e.g. Hoeksema and Kitanidis, 1985;

Gelhar, 1993) have suggested that the correlation scale
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of hydraulic conductivity is on the order of overall

scale. Consequently, using theoretical results appro-

priate for ergodic conditions may result in significant

errors in the predicted statistical properties of the flow

system in finite domains. Therefore, there arises a need

to incorporate the effects offinite flow domain size into

a larger-scale mean model and into the reliability of the

mean model.

The purpose of this paper is to quantitatively assess

the impact of finite flow domain size on the statistical

properties of the flow system, such as the uncertainty

of a large-scale mean model (variation of head

fluctuations) and the effective hydraulic conductivity.

The analysis in this study uses the stochastic

methodology similar to that described by Ababou

and Gelhar (1990) for self-similar porous media, who

extended the spectral theory to include finite-size

effects by using a band-pass spectrum, with a low

wavenumber cut-off proportional to the inverse size of

the domain. However, in our analysis finite-size

effects are largely reflected in the evaluation of the

expected uncertainty of the mean hydraulic conduc-

tivity of the single realization.

2. Estimation of covariance function

of log-conductivity and corresponding spectrum

for a finite field size

Since the uncertainty in the resultant heads and

fluxes is caused by the uncertainty in the hydraulic

conductivity field, the stochastic derivation of var-

iances rely on the determination of the spatial structure

of the hydraulic conductivity variations. Therefore, the

key step in evaluating the variance of output processes

is to modify the covariance function of log-conduc-

tivity to account for the effects of finite field size.

Suppose that XðtÞ is a continuous second-order

stationary process over a finite interval of length T

with a covariance function RXXðtÞ which describes the

correlation between any pair of points t and t þ t:

An expression relating the ensemble average of

covariance function estimator to the covariance

function was presented in the work by Jenkins and

Watts (1968)

E½dRXXRXXðtÞ� ¼ 1 2
ltl
T

� �
{RXXðtÞ2 Var½X�} ð1Þ

where E½– � denotes the ensemble average, and dRXXRXXðtÞ

is the estimator of RXXðtÞ: The local average of the

observation over this interval takes the form

X ¼
1

T

ðT

0
XðtÞdt

and the variance of the averaged process is given by

Var½X� ¼
1

T

ðT

2T
ð1 2 ltl=TÞRXXðtÞdt ð2Þ

The reader is referred to Jenkins and Watts (1968) for

a detailed derivation of Eq. (1). dRXXRXXðtÞ is a random

process. Its ensemble average is the best estimate and

we shall adopt it as the definition of the covariance

function over a specific domain.

Our starting point is to extend Eq. (1) to the

multidimensional case as follows (Wen, 1993)

E½dRXXRXXðtÞ� ¼
1

;

ð
V

{E{½Xðt þ ltlÞ2 m�½XðtÞ

2 m�} 2 Var½X�}dV ð3Þ

where m ¼ E½XðtÞ�; ; is the sampling volume in

which the data is observed, and the domain of

integration is the intersection of ; with its translate

by the vector 2t; denoted V: Note that Var½X� is

function of RXXðtÞ; namely

Var½X� ¼
1

;2

ð
;

ð
;

RXXðt1 2 t2Þdt1 dt2 ð4Þ

In practice, a covariance function estimator is

evaluated from the data points of a single realization

over a bounded domain, rather than the ensemble

average across a large number of realizations.

However, we are only trying to characterize the

spatial correlations of a stochastic process and not

those of a particular realization. Therefore, we take

the ensemble average of the covariance function esti-

mator as the definition of the covariance function of a

random process over a specific domain size, which

can then be calculated by Eq. (3). From the math-

ematical point of view, the theoretical covariance

function, the first term inside the integrand of the

Eq. (3), may be interpreted as the covariance function

of a single realization of a random process over an

infinite domain. The second term inside the integrand

of the Eq. (3) is a measure of predictive uncertainty to

be anticipated in applying the single realization mean.
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2.1. Statistically anisotropic media

An ‘infinite domain’ exponential covariance func-

tion of log hydraulic conductivity for an anisotropic

random field as a function of the separation vector

j ¼ ðj1; j2; j3Þ is assumed to be given by

Rff ðjÞ ¼ s2
f exp½2ðj2

1=l
2
1 þ j2

2=l
2
2 þ j2

3=l
2
3Þ

0:5� ð5Þ

where the li are the correlation scales of log-

conductivity in the principal coordinate directions,

and s2
f is the total variance of the process. Here, the

integral domain of total volume is considered to be an

ellipsoid. Substituting Eq. (5) into Eqs. (3) and (4),

and applying the Cauchy algorithm (Dagan, 1989), we

obtain

E½cRffRff ðjÞ�¼ 12
3

2

j2
1

T2
1

þ
j2

2

T2
2

þ
j2

3

T2
3

 !0:5(

þ
1

2

j2
1

T2
1

þ
j2

2

T2
2

þ
j2

3

T2
3

 !1:5)
ðRff ðjÞ2Var½F�Þ

ð6Þ

where Ti are the length of axes of an ellipsoid, F is the

ensemble average of log-conductivity

Var½F�¼
6s2

f

p

ðp

f¼0

ð2p

u¼0

2

v2
2

9

v4
þ

60

v6



23 e2v 1

v3
þ

7

v4
þ

20

v5
þ

20

v6

� ��
sinfdfdu

ð7Þ

and

v¼½ðT1=l1Þ
2sin2 f sin2 uþðT2=l2Þ

2sin2 fcos2u

þðT3=l3Þ
2cos2 f�0:5

Applying the Wiener–Khintchine relation to Eq. (6),

the corresponding finite-size spectrum is then

cSffSff ðKÞ¼
s2

f T1T2T3

8p3

ðp

f¼0

ð2p

u¼0

�
e2v½G1 cosðKaYÞþG2KaY sinðKaYÞ�2G3

ðv2þK2
a Y2Þ6

�sinfdfduþVar½F�
3T1T2T3

2p2K6
a

�½4þK2
a þðK2

a 24ÞcosðKaÞ24Ka sinðKaÞ�

ð8Þ

where Y ¼ cosf; K2
a ¼ðK1T1Þ

2þðK2T2Þ
2þðK3T3Þ

2;

and

G1 ¼23v6ð20þ20vþ7v2 þv3Þ

þ12K2
a Y2v4ð75þ45vþ7v2Þ

þ6K4
a Y4v2ð2150þ50vþ35v2 þ3v3Þ

þ12K6
a Y6ð5225vþ7v2 þ2v3Þ

þ3K8
a Y8ð27þ3vÞ

G2 ¼ 3v5ð120þ100vþ28v2 þ3v3Þ

þ12K2
a Y2v3ð2100225vþ7v2 þ2v3Þ

þ6K4
a Y4vð60290v214v2 þ3v3Þþ12K6

a Y6ð5

27vÞ23K8
a Y8

G3 ¼v6ð260þ9v2 22v3Þþ12K2
a Y2v4ð7523v2Þ

þ6K4
a Y4v2ð2150215v2 þ2v3Þþ2K6

a Y6ð30

218v2 þ8v3Þþ3K8
a Y8ð3þ2vÞ

2.2. Statistically isotropic media

2.2.1. One-dimensional case

Consider an exponential form of the covariance

function of log hydraulic conductivity associated with

the infinite field size, namely

Rff ðjÞ ¼ s2
f exp½2ljl=l� ð9Þ

where l is the correlation scale of log-conductivity, j

is the separation lag, and s2
f is the total variance of the

process. Substituting Eq. (9) into Eq. (2) leads to

Var½F� ¼ 2
s2

f

r
1 þ

1

r
e2r 2

1

r

� 
ð10Þ

where F is the average log-conductivity, r ¼ T =l; and

T represents the finite field length over which the data

is collected. Fig. 1 shows the scale effect on the

variance of mean log-conductivity. It shows that as

the sampling domain increases, the variance of mean

log-conductivity decreases, and approaches zero for

infinite domain. The covariance function associated
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with the finite field size is obtained substituting

Eqs. (9) and (10) into Eq. (1)

E½cRffRff ðjÞ�

¼ 1 2
ljl
T

� �
{Rff ðjÞ2 Var½F�}

¼ s2
f 1 2

ljl
lr

� �
e2ljl=l

2
2

r
1 þ

1

r
e2r

2
1

r

� 
 �
ð11Þ

It is clear that Eq. (11) converges to Eq. (9) as r!1:

Applying the Wiener–Khintchine relation to Eq. (11),

the spectrum for a finite-length record can be derived

ascSffSff ðKÞ

¼
s2

f l

pð1þb2Þ
12e2rcosðrbÞ 12

1

r

b221

b2þ1
2r

 !" #(

þe2rsinðrbÞ b2
1

r
rbþ

2b

b2þ1

� �� 
þ

b221

rðb2þ1Þ

)

22s2
f

l

p

12cosðrbÞ

r2b2
1þ

e2r

r
2

1

r

� 
ð12Þ

where K is the wave number, and b¼Kl: As r!1;

the finite-size spectrum given by Eq. (12) converges

to

cSffSff ðKÞ¼
s2

f l

pð1þl2K2Þ
ð13Þ

Finite scale spectra for different values of T=l are

present in Fig. 2. It seems that the scale effect plays an

important role in filtering out the spectrum around the

origin.

2.2.2. Three-dimensional case

The estimation procedure for the three-dimen-

sional case is similar to that used for the one-

dimensional case, with the exception that Eqs. (1) and

(2) are replaced by Eqs. (3) and (4), respectively.

Since the covariance function of log-conductivity is

rotationally invariant (due to statistical isotropy

assumption), the integral domain of total volume is

considered to be a sphere of diameter T in space.

Again, we consider the exponential form of

covariance function for log-conductivity

(l1 ¼ l2 ¼ l3 ¼ l in Eq. (5))

Rff ðjÞ ¼ s2
f exp½2j=l� ð14Þ

Substituting Eq. (14) into Eq. (4) and applying the

Cauchy algorithm (Dagan, 1989), we obtain

Var½F� ¼s2
f

24

r3
2 2

9

r
þ

60

r3

� 

23 e2r 1 þ

7

r
þ

20

r2
þ

20

r3

� � ð15Þ

Fig. 3 depicts the normalized variance of observed

mean as a function of the field scale. Finally

E½cRffRff ðjÞ�¼ 12
3

2

ljl
T
þ

1

2

ljl3

T3

 !
{Rff ðjÞ2Var½F�} ð16Þ

The observed variance of log-conductivity within a

finite volume can be defined as

E cs2
fs
2
f

T

l

� �� 
¼ E½bRRð0Þ� ¼ s2

f 2 Var½F�

¼ s2
f 1 2

24

r3
2 2

9

r
þ

60

r3

� ��

23 e2r 1 þ

7

r
þ

20

r2
þ

20

r3

� �� ð17Þ

Fig. 2. Normalized spectrum as a function of dimensionless wave

number (one-dimensional case).
Fig. 1. Normalized variance of mean log hydraulic conductivity as a

function of dimensionless field size (one-dimensional case).
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It can be seen from Fig. 4 that the observed variance

of a finite volume process increases monotonically

from zero (for infinitesimal field size) to an asympto-

tic value (the total variance, s2
f ; for r!1). This

behavior is related to the fact that the inclusion of

larger heterogeneities results in an increased varia-

bility of hydraulic conductivity as the field scale

increases.

Finally, the spectrum of the log-conductivity for a

finite volume process is derived by applying the

Wiener–Khintchine theorem to Eq. (16)cSffSff ðKÞ

¼
s2

f l
3

p2

1

ð1þb2Þ2
þ

1:5

r

b2 23

ð1þb2Þ3

"(

þ
6

r3

b4 210b2 þ5

ð1þb2Þ5

#

þ
cosðrbÞ

er
1:5

r

b2 23

ð1þb2Þ3
þ

24

r2

b2 21

ð1þb2Þ4

"

2
6

r3

b4 210b2 þ5

ð1þb2Þ5

#

þ
sinðrbÞ

er rb

3

2

3b2 21

ð1þb2Þ3
2

6

r

b4 26b2 þ1

ð1þb2Þ4

"

2
6

r2

5b4 210b2 þ1

ð1þb2Þ5

#)

2
Var½F�

p2

3

2

l3r2

b

1

r3b3
þ

4

r5b5

�
þcosðrbÞ

1

r3b3
2

4

r5b5

� �
24

sinðrbÞ

r4b4


ð18Þ

The finite-size spectrum converges to

cSffSff ðKÞ ¼
s2

f l
3

p2ð1þl2K2Þ2
ð19Þ

when r¼ T=l!1: As can be inferred from Fig. 5, the

ergodic approach ðT =l!1Þ does not reproduce the

behavior of the finite-size spectrum in the low

wavenumber range. It actually misses it completely.

The normalized finite-size spectrum in Fig. 5 goes to

zero as the wavenumber approaches zero, while the

ergodic approach gives a normalized spectrum of 1.0

at zero wavenumber.

3. Effects of domain size in statistically isotropic

media

In order to focus on the impact of finite flow

domain size on statistical properties of the flow

system and take advantage of the closed-form

Fig. 3. Normalized variance of mean log hydraulic conductivity as a

function of dimensionless field size (three-dimensional case).

Fig. 4. Normalized observed variance of log hydraulic conductivity

as a function of dimensionless field size (three-dimensional case).

Fig. 5. Normalized spectrum as a function of dimensionless wave

number (three-dimensional case).
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expressions, a steady-state unidirectional mean flow

in a three-dimensional statistically isotropic aquifer

is considered. The mean hydraulic gradient is

assumed to exist in the direction X1 only. The

behavior of statistically anisotropic system can be

evaluated numerically. It is expected that this

behavior will be qualitatively similar to that of

isotropic ones.

Furthermore, we neglect the boundary effects on

the head covariances, i.e. the hydraulic head process

is assumed to be statistically homogeneous, or

stationary. It is recognized that imposed boundary

conditions destroy the stationarity of head process.

However, theoretical investigations of flow in

bounded domains by Naff and Vecchia (1986) and

Rubin and Dagan (1988, 1989) through the Green’s

function approach imply that the assumption of a

stationary head process in three-dimensional flow is

not restrictive. Naff and Vecchia (1986) studied the

impervious boundary effects on the head covariances

for a steady three-dimensional flow in a formation of

infinite horizontal extent, bounded above and below

by impervious horizontal boundaries, and demon-

strated that the boundary effect (namely the nonsta-

tionary effect) is largely limited to a zone near the

medium boundary. Similar results were obtained by

Rubin and Dagan (1988, 1989), who analyzed the

effects of constant head and impervious boundary

conditions on the head variation in semi-infinite

aquifers.

It is of interest to note that the type of boundary

conditions affects the nonstationarity of head process

differently. Effects of different boundary conditions

and spatially varying head gradients on both head and

velocity covariance function for a two-dimensional

bounded domain (rectangle) in heterogeneous media

were investigated by Bonilla and Cushman (2000)

using a recursive perturbation scheme. They found

that for a flow of constant mean head gradient,

under the Dirichlet boundary conditions (prescribed

head), the head covariance function is stationary at

distances larger than three to four integral scales from

the boundaries. However, under the same circum-

stances, effects of nonstationarity caused by the

Neumann boundary conditions (prescribed flux) may

persist as far as three to eight integral scales from the

boundary.

3.1. Variance of head fluctuations

The covariance function equation (28) of Bakr et al.

(1978) is the starting point to derive a scale-dependent

variance of head fluctuations.

Rhhðj;xÞ ¼
ð1

21

ð1

21

ð1

21
ei K·j J2K2

1

K4
cSffSff ðKÞdK ð20Þ

where x is the angle between the separation vector j

and the direction of mean flow, h¼H2E½H�; H is the

hydraulic head, K2 ¼K2
1 þK2

2 þK2
3 ; and J ¼2E½›H=

›X1�: Ababou and Gelhar (1990) have used the same

equation along with the band-pass self-similar

spectrum to demonstrate the effect of finite flow

domain size on the head variance. Substituting

Eq. (18) into Eq. (20), taking the limit of Eq. (20) as

j!0; and integrating using polar coordinates, gives

the following result for scale-dependent variance of

head fluctuations

s2
h

T

l

� �
¼

s2
f l

2J2

3
12

39

5

1

r
þ

108

5

1

r2
þ

12

r3
2

144

r4




þ
1

er
21

5

1

r
þ

192

5

1

r2
þ

132

r3
þ

144

r4

� �
ð21Þ

The asymptotic value of head variance ðr¼ T =l!1Þ

is

s2
hð1Þ ¼

s2
f l

2J2

3
ð22Þ

Eq. (22) is equivalent to that of Bakr et al. (1978).

It is important to recognize that the analysis leading

to Eq. (21) is restricted to relatively, in some sense,

small hydraulic conductivity variations so that

second terms in the flow perturbation equation can

be neglected. In addition, the validity of the

assumption of stationarity for the distribution of

flow properties requires that the standard deviation

of the random log hydraulic conductivity fluctu-

ations, sf ; should be small. Gutjahr and Gelhar

(1981) showed that if sf , 1; then the head field is

stationary in the case of the three-dimensional

isotropic log hydraulic conductivity fields but may

not be stationary as sf increases.

The increase in head variance (Fig. 6) with the flow

domain size is due to a wide range of heterogeneities
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that contribute to the flow processes as the flow

domain size increases (Fig. 4). It can be inferred from

Fig. 6 that applying the classical stochastic theories to

finite-size flow domains can result in inaccurate

representations of variability of flow properties

because the flow properties depend on the scale of

observation.

3.2. Effective hydraulic conductivity

In the following, the effective hydraulic conduc-

tivity, defined as the ratio of the mean specific

discharge to the mean hydraulic gradient, is estimated

from the mean specific discharge equation.

Taking the expected value of Darcy equation,

assuming small perturbations, and dropping the

products of the perturbed quantities leads to the

mean specific discharge equation (Eq. (12) of Gelhar,

1986)

q ¼ eF J 1 þ
1

2
E½cs2

fs
2
f �

� �
2 E f

›h

›X1

� 
 �
ð23Þ

where f is the perturbation of log-conductivity. Using

the spectral representation theorem, the last term in

Eq. (23) can be expressed by (Eq. (13) of Gelhar,

1986)

E f
›h

›X1

� 
¼
ð1

21

ð1

21

ð1

21

K2
1

K2
cSffSff ðKÞdK ð24Þ

Substituting Eq. (18) into Eqs. (23) and (24) gives the

mean specific discharge

q ¼ eF J 1þ
1

6
ðs2

f 2Var½F�Þ


 �
¼ eF J 1þ

1

6
E½cs2

fs
2
f �


 �
ð25Þ

Thus, the effective hydraulic conductivity can be

expressed as

KeðrÞ ¼
q

J
¼ eF 1þ

1

6
E½cs2

fs
2
f �


 �
¼ eF 1þ

1

6
s2

f 12
24

r3
22

9

r
þ

60

r3

� ��
�
23 e2r 1þ

7

r
þ

20

r2
þ

20

r3

� ��
ð26Þ

Recall from Eq. (17) that the observed variance of log-

conductivity cs2
fs
2
f is scale-dependent. The correspond-

ing asymptotic values as r¼ T =l!1 is

Keð1Þ ¼ eF 1þ
1

6
s2

f

� 
ð27Þ

Note that the total variance of log-conductivity s2
f

does not depend on the flow domain size.

The increase in the effective hydraulic conductivity

as a function of the flow domain size is displayed in

Fig. 7. Larger heterogeneities are included in the flow

processes as the flow domain size grows. A wide

range of heterogeneities in a three-dimensional flow

result in patches of higher conductivity, which can

contribute to increase the effective hydraulic conduc-

tivity. However, the rate of growth of the effective

hydraulic conductivity with the domain size is not

great, and therefore, the effective hydraulic conduc-

tivity is practically the same as its value in an

unbounded domain.

Fig. 6. Normalized head variance as a function of dimensionless

flow domain size.

Fig. 7. Normalized effective hydraulic conductivity as a function of

dimensionless flow domain size.
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4. Comparison of the effective hydraulic

conductivity with existing results

It is of interest to assess the validity of the

presented formulation for effective hydraulic conduc-

tivity by comparing with existing theoretical results.

Expressions for effective hydraulic conductivity in

bounded flow domains may alternatively be derived

by using the upscaling technique (e.g. Rubin and

Gomez-Hernandez, 1990; Desbarats, 1992; Indelman

and Dagan, 1993a,b). The process of transferring

information on scales smaller than those of interest to

the resultant larger scale system is known as

upscaling. There has been much effort expended in

finding theoretical expressions for the statistical

moments of the upscaled conductivity. For example,

Indelman and Dagan (1993a,b) used a methodology

based on preservation of the energy dissipation for

the upscaled conductivity field to develop theoretical

expressions, which relate the upscaled conductivity

statistical moments to the given moments of the

continuously distributed conductivity and to the size

of the numerical blocks. It is important to note that in

the work of Indelman and Dagan (1993a,b), the

various assumptions they used in solving the upscal-

ing problem are similar to those underlying the

derivation of the effective conductivity.

According to the work of Indelman and Dagan

(1993b), the explicit expressions for the upscaled

conductivity statistical moments for the case of a

statistically isotropic conductivity field with an

exponential covariance function are given by (their

Eqs. (37) and (44))

Ke ¼
1 þ

1

6
s2

f

1 þ
1

6
fs2

fs
2
f

eF ð28Þ

fs2
fs
2
f ¼

24

r3
s2

f 22
9

r
þ

60

r3
2 3þ

21

r
þ

60

r2
þ

60

r3

� �
e2r

� 
ð29Þ

The results of Eqs. (26) and (28) are compared

graphically in Fig. 8. It is evident that the presented

formulation for effective hydraulic conductivity is in

good agreement with the theoretical result of Indel-

man and Dagan (1993b).

We should note that under small perturbations, our

effective hydraulic conductivity in Eq. (26) has a form

similar to the Eq. (43) of Sanchez-Vila et al. (1995),

developed from the definition by Rubin and Gomez--

Hernandez (1990), and the Eq. (11) of Desbarats

(1992), developed from an empirical power-averaging

rule. Sanchez-Vila et al. (1995) analyzed three

different practical approaches (namely the approaches

of Rubin and Gomez-Hernandez (1990), Desbarats

(1992), and Sanchez-Vila et al. (1995)) for upscaling

of hydraulic conductivity numerically in isotropic

heterogeneous media and found that these approaches

yield very similar results in terms of actual computed

values.

The other comparison for effective hydraulic

conductivity is done with the results of Paleologos

et al. (1996). They developed linearized analytical

expressions for effective hydraulic conductivity of

three-dimensional, bounded, strongly heterogeneous

porous media based on the so-called Landau-Lifshitz

conjecture. It is worthwhile mentioning that the

boundary effects on steady state flow are included in

their derivation of the effective hydraulic conduc-

tivity. Upon applying to a statistically isotropic

conductivity field with an exponential covariance

function, they found that for a given variance of log-

conductivity, the effective conductivity decreases

rapidly from the arithmetic mean toward the asymp-

totic value ðKe ¼ eFð1 þ s2
f =6ÞÞ as the characteristic

length of the domain increases from zero toward about

eight integral scales of log-conductivity. This is in

contrast to our conclusion that for a given variance of

log-conductivity, the effective conductivity increases

with the domain size from the geometric mean toward

the asymptotic value ðKe ¼ eFð1 þ s2
f =6ÞÞ: The

decrease in effective hydraulic conductivity of

Fig. 8. Comparison of the effective hydraulic conductivity with the

result of Indelman and Dagan (1993b).
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Paleologos et al. (1996) with the domain size may be

explained by the fact that in their calculation, the first

two statistical moments of the log-conductivity are

assumed to remain fixed as the domain size changes.

In other words, the arithmetic mean of the log

hydraulic conductivity is kept fixed as the domain

size changes. In contrast to their assumptions, our log-

conductivity covariance function for a finite domain

size used in Eq. (26) essentially changes with the

domain size and is obtained based on calibration to

the ergodic case (a very large domain size), for which

the mean and covariance function are kept fixed. This

scale-dependent covariance function in Eq. (17) is

basically predicated on the observation that the

apparent statistical properties of parameters inferred

from field data are significantly affected by the scale

of the observation (e.g. Kemblowski, 1988).

The effective hydraulic conductivity in Eq. (26)

appears as a function of the domain size through

the term E½cs2
fs
2
f �; the observed variance of log-

conductivity. In the limit as the domain size is

reduced to a point, this term vanishes, and the

effective hydraulic conductivity tends to the geo-

metric mean. However, the effective hydraulic

conductivity of Paleologos et al. (1996) tends to its

maximal value, the arithmetic mean, as the domain

size is very small. This discrepancy is attributed to the

assumption of stationarity for the hydraulic head

process, which has been introduced through our

procedure of evaluating the effective hydraulic

conductivity. As mentioned earlier, this study

assumes that the boundary has negligible effect on

the head variation so that the nonstationarity restricted

to a thin layer near the boundary is eliminated.

Therefore, the analyses in this study are limited to a

finite-size domain away from the boundary. The

comparison with the expressions of Indelman (1993)

for effective hydraulic conductivity led Paleologos

et al. (1996) to make a similar comment on the

discrepancy that the effective hydraulic conductivity

obtained by Indelman (1993) tends to the geometric

mean, rather than to its arithmetic mean as required by

the theory of Neuman and Orr (1993), when the

domain size approaches zero. They stated that

“…their upscaling is carried out in a region suffi-

ciently far from the boundary” (Indelman and Dagan

(1993a), p. 920), so that its effect is not felt.

5. Summary

A stochastic approach was used to assess the

impact of finite flow domain size on the head variance

and the effective hydraulic conductivity. Closed-form

expressions are derived for the case of statistically

isotropic three-dimensional porous media. The major

findings from our analysis may be summarized as

follows:

1. The characteristic scale of the finite field space is

important in filtering out the spectrum of a finite

process around the origin. Fig. 5 showed that there

is an inaccurate representation of the spectrum in

the low wavenumber range for a finite volume

process by using the ergodic assumption.

2. A larger flow domain size means larger hetero-

geneities included in the flow process (Fig. 4),

which results in higher variability of head fluctu-

ations (Fig. 6).

3. The increase of effective hydraulic conductivity

with the domain size (Fig. 7) is related to the fact

that in the three-dimensional flow, a wider range

heterogeneities caused by an increased domain size

results in a easier flow-around process. However,

the rate of growth of the effective hydraulic

conductivity with the domain size is small, and,

therefore, the effective hydraulic conductivity can

be approximated by the infinite domain result. Our

presented formulation for effective hydraulic

conductivity compares well with the upscaling

solution obtained by Indelman and Dagan (1993b).
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