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Abstract

The procedure estimating hourly rainfalls by merging radar-derived rainfalls and gauge measurements is developed and

tested. It uses simple linear regression, which is complemented by the normalization and correction of distribution. The data

from radar Tulsa, Oklahoma, Weather Surveillance Radar-1988 Doppler version and rain gauge data from the radar domain are

used. The quality of estimates is evaluated against independent rain gauges by the root-mean-square-error, bias and correlation

coefficient in dependence on the density of a gauge network. The results indicate that even a sparse gauge network (about 50

gauges, i.e. 4000 km2 per one gauge) is sufficient to improve the radar-derived rainfalls. The improvement increases with the

number of gauges.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Weather radar provides high-resolution rainfall

fields. However, their quantitative use is restricted by

errors and uncertainty in derived precipitation esti-

mates. The sources of errors and their relative

influence are described at length in the literature

(e.g. Joss and Waldvogel, 1990; Collier, 1996;

Harrison et al., 2000). There are two basic approaches

to the correction of radar-derived rainfalls.

The first approach is based on the identification

and correction of vertical profiles of reflectivity

(VPR). The analytic methods use radar data from

several radar beam elevations to retrieve VPRs by

the application of the radar equation. Assuming

spatial uniformity of the VPR the data within few

tens of kilometres from the radar position are utilised

and the derived VPR is applied to correct data from

longer ranges (e.g. Andrieu and Creutin, 1995; Borga

et al., 1997). The original assumption of spatial

uniformity of VPR was later extended to the local

spatial uniformity of VPR (Vignal et al., 1999). Other

methods rely on physical-statistical models. They

utilise additional independent meteorological data and

consist of two steps: identification of the VPR and

correction of the identified VPR (Kitchen et al., 1994;

Joss and Lee, 1995; Kitchen, 1997).

The second approach is based on the adjustment of

radar-derived precipitation using gauge data. Most of

these methods stem from the gauge-to-radar (G/R)

statistical adjustment technique. The aim is to correct

radar-derived precipitation to the quantitative level of

gauge measurements. The methods differ in input
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data. They either use radar precipitation, and gauge

precipitation is utilised only to derive the parameters

of the statistical model (e.g. Gabella and Amitai,

2000; Kráčmar et al., 1998), or merge both types of

data at each application (e.g. Seo and Breindenbach,

2001; Harrison et al., 2000; Gibson, 2000; Michelson

and Koistinen, 2000). The latter approach allows to

modify model parameters continuously in relation to

recent data. The rain gauge adjustment method deals

with all sources of radar errors in a single process. The

limited representativeness of the gauge measurements

is the main disadvantage of this method (Groisman

and Legates, 1994; Collier, 1996).

In this study, a method merging gauge and radar-

derived precipitation is presented. The aim is to

estimate rainfalls in sites where the gauges are not

located. The method is based on the application of a

regression model, normalization and correction of

distribution. The regression model uses ground pre-

cipitation values instead of the ratio G/R as the

dependent variable (predictand). The root-mean-

square-error between the model results and the rain

gauge measurements, which are used as the ground

truth, is considered as the basic measure of the accuracy.

This paper is organized in the following way. In

Section 2 the input data are described. The rainfall

estimation procedure is presented in Section 3 and the

ways of its validation are described in Section 4.

Section 5 contains the results, and conclusions are

briefly summarised in Section 6.

2. Data

In this study, hourly radar rainfall data from radar

Tulsa, Oklahoma, Weather Surveillance Radar-1988

Doppler version and hourly rain gauge data under the

radar umbrella were used. The radar rainfall data

(RADX) were derived by using the algorithm that is

described by Fulton et al. (1998). The radar rainfalls

cover a square region of 131 £ 131 pixels. The size of

the pixel is 4 km £ 4 km and each rain gauge was

assigned to one pixel. There were no pixels containing

more than one gauge. For this study, only the pairs of

corresponding rain gauge and RADX hourly rainfalls

were available. The data covered the period from May

to September 1997 and contained only the terms with

at least one nonzero rain gauge measurement. There

were 1609 terms and more than 300 000 pairs in the

data set. It contained data from 211 gauges and only

7% of gauge measurements recorded nonzero rain-

falls. The number of rainfall values exceeding 30 and

50 mm was 153 and 23 respectively. The maximum

measured value was 83.3 mm.

The data pairs were checked to remove erroneous

or significantly anomalous values. The checking

procedure consisted of three steps, the parameters of

which were subjectively selected with the aim to

maintain as many data as possible. In the first step,

rain gauges with less than 500 measurements, which

represented 31% of the total number of available

terms, were excluded. It reduced the total number of

gauges from 211 to 197.

In the second step, the pair differences were

calculated. Twelve single pairs with the absolute

difference exceeding the threshold 50 mm were

removed from the data set. The threshold 50 mm

was subjectively selected.

In the third step, the measurements of individual

gauges Gi, i ¼ 1;…n; (index i denotes terms and n is

the number of terms) were compared with the

corresponding radar data RADXi. When the corre-

lation coefficient CC(RADX,G) , 0.35 or when

0.3 # RADXmean/Gmean # 3.0 was not true, where

RADXmean ¼
1

n

Xn

i¼1

RADXi;

Gmean ¼
1

n

Xn

i¼1

Gi;

ð1Þ

CCðRADX;GÞ

¼

Xn

i¼1
ðRADXi2RADXmeanÞðGi2GmeanÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðRADXi2RADXmeanÞ

2
Xn

i¼1
ðGi2GmeanÞ

2
q ;

ð2Þ

then the gauge was excluded from the data set. This

requirement reduced the number of rain gauges to 182.

The rain gauge data, which had passed through the

checking procedure, were considered sufficiently repre-

sentative for the radar adjustment procedure.

The estimations of small rainfall amounts are not

important and therefore the data set was reduced to

contain only the terms with at least one gauge

measurement $5 mm. Moreover, the terms that
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contained less than 150 gauge measurements were

excluded. The aim of this requirement was to have

enough data to study the influence of the rain gauge

density on the accuracy of rainfall estimates.

The resultant data set contained 527 terms with

85 092 pairs of gauge and radar rainfalls and 16% of

them contained nonzero gauge rainfalls. The scatter

plot of all pairs of radar and gauge data (Fig. 1) as well

as the mean values of radar and gauge rainfalls at

gauge positions (Fig. 2) indicate reasonable quality of

both radar and gauge data. The gauge positions are

depicted in Fig. 3 (subfigure 1N).

The checked data were divided into two subsets

with approximately the same size, which were

alternatively used as calibration and verification data

sets. The first set (1997a) contained data from May,

June, and July (264 terms); the second one (1997b)

contained data from July, August, and September (263

terms). The basic statistics of the data sets 1997a and

1997b, which are given in Table 1, were different for

both gauge measurements and radar-derived rainfalls.

A visible difference is in the ratio of radar and gauge

mean rainfalls, which is 0.93 for the first data set and

0.74 for the second one. It follows that the radar

underestimated differently gauge rainfalls for the

data sets.

3. Rainfall estimation procedure

The rainfall estimation procedure, which is pre-

sented in this study, consists of three steps. They are

applied successively one after the other: a) application

of a regression model, b) normalization, and c)

correction of distribution. The regression model

provides the first rainfall estimate, which is further

corrected by the normalization and by the correction

of distribution.

3.1. a) Linear regression model

A multiple linear regression model was applied to

describe the relationship between the dependent

variable (predictand) and predictors in arbitrary

pixel ði; jÞ and for each term. Two predictors

were used: (i) RADXði; jÞ and (ii) the rainfall estimate,

GINTði; jÞ; which was calculated as a weighted

average of gauge rainfalls

GINTði; jÞ ¼

XNS

k¼1
wkGkXNS

k¼1
wk

; ð3Þ

where NS ¼ 10 and Gk are rainfalls from the NS

nearest gauges to the pixel ði; jÞ: The weights wk

Fig. 1. The scatter plot of all pairs of data used in the study.
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depend on the Euclidian distance rkij (in pixels)

between the pixel ði; jÞ and the gauge position ðkÞ by

the formula

wk ¼ expð2arkijÞ ð4Þ

The value of a was determined by tests, which

compared the accuracy of the interpolation in Eq. (3)

for various values of a. For each pixel containing a

rain gauge, the interpolation was performed from

neighbouring gauge measurements. The interpolated

and measured values were compared by using the

root-mean-square-error. The parameter a ¼ 0:5

yielded the lowest error and therefore it was used in

the next calculations.

Besides the RADX and GINT, other predictors,

which described the position of the pixel (e.g. distance

from the radar, elevation), were also tested. However,

they did not appear representative and they were not

retained.

The linear regression model was in the form of

REG ¼ a0 þ a1RADX þ a2GINT; ð5Þ

where a0; a1 and a2 are regression coefficients.

Following the common concept of the ground truth,

rainfalls measured by rain gauges G; were used as

predictands REG in Eq. (5). The model coefficients

were determined to minimize

Qða0;a1;a2Þ ¼
XMc

s¼1

ða0 þa1RADXs þa2GINTs 2GsÞ
2
;

ð6Þ

where Gs; RADXs and GINTs, s¼ 1;…;Mc are all

available triplets of values (from the same pixel) from

the calibration data set. The GINTs was calculated

without using the gauge rainfall Gs: When the model

in Eq. (5) was applied, the negative values of the REG

were set to 0.

3.2. b) Normalization

The aim of the normalization step is to reduce the

multiplicative error of the REG. It appears when

the ratio of radar and gauge mean rainfalls is

different for calibration and verification data sets.

The normalization is performed separately for each

Fig. 2. The mean values of radar-derived rainfalls and related rain gauge measurements over all data used.
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term. It consists in the multiplication of the REG by a

factor q

q¼

XNT

k¼1
GkXNT

k¼1
REGk

if the number pairs with Gk . 0

and RADXk . 0 is greater than

NP ¼ 10

1 otherwise

8>>>><
>>>>:

ð7Þ

where NT is a number of gauge and radar pairs ðGk;

REGk; k¼ 1;…;NT) for the given term. The number

Np was subjectively determined by experiments. In

order to avoid extreme changes of the REG, the

values of q were restricted to the interval ,0.3,3 . .

The normalized rainfall estimates REGN¼ q*REG

were calculated for both the calibration and verifica-

tion data sets.

3.3. c) Correction of distribution

The REGN values overestimate low precipitation

and underestimate heavy precipitation, which results

in the difference between distribution functions of

actual and calculated rainfalls. The following algor-

ithm was applied to modify the distribution of REGN

rainfalls. All gauge rainfalls from the calibration data

set and corresponding REGN values were arranged

separately in ascending order. Let g1 # g2 # … #

gMc and e1 # e2 # … # eMc be the sequences of

gauge rainfalls and REGN values, respectively.

Further, let d1 , d2 , … , dM be the sequence of

given rainfall values. Then for each di; the corre-

sponding ri value is found to have the same order in

the sequence ei; i ¼ 1;…;Mc as di in the sequence gi;

i ¼ 1;…;Mc: This can be mathematically expressed

as follows ri ¼ eL; where index L ¼ maxs ðgs , diÞ

The rainfall estimate with the corrected distribution

(REGND) was obtained by using the following

relationships

REGN0 ¼ REGN; if REGN , r1; ð8aÞ

Fig. 3. Rain gauge distributions for 1N, 1/2N and 1/4N networks

(crosses) and the radar position (black circle).

Table 1

Mean gauge and radar-derived rainfalls (mm) for specified

categories of gauge rainfalls related to the data sets 1997a and

1997b

Category 1997a 1997b

All

data

.0 mm .20 mm All

data

.0 mm $20 mm

Mean–gauge 0.617 4.01 29.57 0.590 3.49 28.24

Mean–radar 0.573 3.44 19.65 0.439 2.40 18.37

N 41908 6454 218 43184 7292 174

N is the number of data pairs.
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REGN0 ¼ REGN þ dM 2 rM ;

if REGN . rMc
;

ð8bÞ

REGN0¼diþðdiþ12diÞðREGN2riÞ=ðriþ12riÞ;

if ri#REGN#riþ1;

ð8cÞ

REGND¼
XMc

s¼1

REGNs=
XMc

s¼1

REGN0
s

 !
REGN0

: ð8dÞ

The aim of the Eq. (8d) is to maintain the total sum of

corrected data. In this study five di values 0.1, 1, 5, 10

and 30 were used. In order to determine the di values

the procedure described by Eq. (8a)–(8d) was applied

to several subjectively selected sets of di values. The

resultant REGND values were compared with gauge

rainfalls at the verification data sets. The di values,

which yielded the lowest root-mean-square-error,

were further used. The transformation does not

change the order of values. Therefore, if the REGN

values well reflect the order of actual values, the

improvement of the distribution can also improve the

accuracy of the estimates.

4. Validation

The rainfall estimations were evaluated against the

independent rain gauges by using root-mean-square-

error (RMSE), CC(P,G) (see Eq. (2)) and bias (BIAS)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k¼1

ðPk 2 GkÞ
2

vuut ; ð9Þ

BIAS ¼
Xn

k¼1

Pk=
Xn

k¼1

Gk; ð10Þ

where Gk are gauge rainfalls, Pk are estimated rainfalls

(REG, REGN and REGND) and n is the number of

considered pairs ðGk; PkÞ: The RMSE, CC and BIAS

were calculated at the verification data sets for two

rainfall categories: (i) the pairs ðGk; PkÞ; where Gk .

0 mm; (ii) the pairs ðGk; PkÞ; where Gk . 20 mm: In

addition the BIAS was also calculated for all the data

(from the verification data sets) because it is an

important characteristic from the climatological view-

point. The aim of two rainfall categories was to

distinguish between non-zero and heavy rainfalls.

In order to study the influence of the gauge density

on the accuracy of the procedures a similar approach

was applied as in (Seo and Breindenbach, 2001). The

whole network (1N), one-half (1/2N) and one-fourth

networks (1/4N) were used in the tests. The 1/2N and

1/4N networks were randomly selected from the 1N

network (Fig. 3). The densities of gauges correspond-

ing to 1N, 1/2N and 1/4N networks are approximately

1000, 2000 and 4000 km2 per one gauge.

In the tests, the measurements from one gauge

were excluded from the data, and the corresponding

adjusted pixel estimate was compared with these

measurements. All gauges were gradually excluded

and that enabled the independent verification at each

gauge position, regardless of the network used.

5. Results

In this section, the accuracy of the procedure

described in Section 3 is addressed, and the effect of

the normalization and correction of distribution is

evaluated. The results are different for the single

verification data sets 1997a and 1997b. The estimates

for the 1997b set were slightly worse. However, in

order to simplify the comparison, the RMSE and CC

were averaged over the verification sets. The BIAS

was evaluated separately for both verification sets to

avoid the bias compensation by averaging. The RMSE

and CC were evaluated in dependence on the gauge

network (1N, 1/2N and 1/4N).

The RMSE and CC of the RADX, REG, REGN and

REGND are compared in Fig. 4. The REG decreases the

RMSE of RADX for non-zero precipitation. However,

for heavy precipitation the REG slightly improves the

RMSE of RADX only for the 1N network. The

normalization (i.e. REGN) yields lower RMSE than

both the REG and RADX for all the precipitation

categories and gauge networks. The correction of

distribution (i.e. REGND) improves estimates of

heavy precipitation, while for non-zero precipitation

the RMSE of the REGND is slightly worse than that of

the REGN. All the models yield higher CC than the

RADX with one exception (heavy precipitation and 1/

4N network). Although the REGN provides the highest

CC in most cases, the results of REGND are very similar.

The BIAS is displayed in Fig. 5 for three

categories of actual precipitation. The problem,
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Fig. 4. The comparison of the RMSE and CC of the RADX, REG, REGN and REGND for two precipitation categories in dependence on the rain

gauge network.

Fig. 5. The BIAS of the RADX, REG, REGN and REGND calculated at 1997b (left column) and 1997a (right column) verification data sets. The

BIAS is displayed for all data (upper figures) and two precipitation categories in dependence on the rain gauge network.
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which can occur by using the regression model, is

indicated in the upper subfigures related to the

evaluation of all data. The regression model

corrects the bias of radar rainfalls at the calibration

data. However, if the radar bias is different for the

calibration and verification data, which is this case,

the regression correction is wrong, as the upper

right subfigure of Fig. 5 shows. This is the reason

for the application of the normalization. The

comparison of the BIAS of the RADX, REG and

REGN for all data shows quite good reduction of

the bias by the normalization. The results of REGN

and REGND are identical for all data because of

(8d). For the categories with non-zero and heavy

precipitation, the results are different for 1997a and

1997b data sets. The correction of distribution

improves the BIAS of the REGN. However, for

heavy precipitation the best results are obtained by

the RADX.

The REG model coefficients, derived from the

1997a calibration data, are shown in Table 2. The ratio

between the coefficients of the RADX and GINT in

dependence on the gauge network well describes

decreasing reliability of the GINT with the decreasing

number of gauges.

6. Conclusions

In this study, the procedure estimating hourly

rainfalls in locations without rain gauges and covered

by the radar, was developed and tested. The procedure

merges radar and gauge data by using the regression

technique. The regression model outputs were modi-

fied by the normalization and correction of distri-

bution. The independent data were used to evaluate

the procedure as well as its single steps.

If the bias of the radar-derived precipitation

changes (e.g. it is different for calibration and

verification data sets), the regression model is not

able to remove it. However, the normalization, which

is used in each application, reduces the bias.

Consequently, it yields lower root-mean-square-error

of rainfall estimates than radar-derived precipitation.

When the normalization is complemented by the

correction of distribution, the accuracy of the rainfall

estimates slightly decreases. However, the accuracy

of estimates of heavy precipitation apparently

improves.

The root-mean-square-error of rainfall estimates

depends on the rain gauge density. For the density

1000 km2 per one gauge the procedure improves the

radar-derived estimates by more than 15%. For the

density 4000 km2 per one gauge the improvement is

about 10%.
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