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Abstract

Practical application of fault size scaling relationships usually involves extrapolation of a limited data set over a scale range beyond that

observed or into adjacent unstudied areas. Here we investigate the validity of such extrapolations by considering the variability in the size–

frequency distributions of fault populations that develop under identical tectonic conditions using a numerical model to generate conjugate,

normal fault populations in cross-section. The deforming material is modelled using a strain-softening, Von Mises rheology with Gaussian

heterogeneity in yield strength distributed randomly throughout the mesh. We present eight deformation experiments that differ only in the

random spatial pattern of yield strengths. We observe power law size–frequency scaling, i.e. N ¼ ax 2c (where N is the cumulative number

of faults and x is a measure of fault size) but with a range of values of c. The ensemble average value of c decreases with increasing percentage

extension. However, for individual model runs the dependence of c on total strain shows significant variability that we can relate to small but

important differences in fault growth and strain localisation. At any particular strain, the range of values of c is ,10 times greater than the

error estimate derived from least squares regression of the cumulative frequency data. Our results suggest therefore that large uncertainties

should be associated with extrapolating fault population data from one scale or region to another even if the lithology and tectonic history are

similar.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fault scaling relationships are used to describe the

relative number, the spatial distribution and the displace-

ment–length ratio of faults formed within the same tectonic

episode. There are several practical uses of these relation-

ships, for example calculating the total strain due to faulting

(Scholz and Cowie, 1990; Marrett and Allmendinger, 1991,

1992; Walsh et al., 1991; Westaway, 1994), modelling sea

floor topography (Malinverno and Cowie, 1993), and

assessing the impact of faults on hydrocarbon reservoir

quality (Yielding et al., 1992; Gauthier and Lake, 1993).

These applications often involve extrapolating the relation-

ships observed at one scale to another scale or region to

predict the full fault population (Yielding et al., 1996). How

can we assign confidence limits to such extrapolations? This

is a particularly pertinent question because fault size–

frequency distributions commonly exhibit power law

scaling, i.e. N ¼ ax 2c (where N is the cumulative number

of faults and x is a measure of fault size) (see for reviews

Cowie (1998) and Bonnet et al. (2001)). Thus a small

change in the value of the scaling exponent, c, can lead to an

order of magnitude difference in the number of faults that is

predicted, especially when small-scale fault populations are

predicted from larger-scale observations.

For a single data set the only available estimate of the

uncertainty is the error on the best-fitting power law

function, usually obtained by least squares regression of a

log–log plot of cumulative number versus fault length or

fault displacement. This is a statistical measure of the

uncertainty that does not embody any knowledge of how the

fault population developed. In this paper we present another

approach to evaluating uncertainty that involves investi-

gating the reproducibility of results in a numerical model of

fault growth. Numerical models can provide insights into

the natural variability in the exponent c because multiple
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data sets can be generated with known initial and boundary

conditions and the resulting variance in c quantified

explicitly. Previous work using analogue and numerical

models to simulate faulting, has provided considerable

understanding of the physical controls on the value of c.

However, these studies have reported values of c obtained

from (1) a suite of experiments in which some fundamental

control on fault population development was changed (e.g.

the thickness of the deforming layer: Finch, 1998;

Ackermann et al., 2001; Hardacre, 2000), or (2) ensemble

averaging of results, which gives a feel for ‘average’

behaviour, but not the inherent variability in the system

(Cox and Paterson, 1990; Spyropoulos et al., 1999). In this

paper we present a detailed analysis of size–frequency

distributions that arise amongst a suite of numerical

experiments that have statistically identical starting points.

The models only differ in the random distribution of the

strength heterogeneity. However, this is sufficient to result

in a different sequence of interactions between adjacent

faults as they grow and thus different patterns of strain

localisation. The detailed history of fault development

determines the size–frequency distribution, and thus the

value of c, that emerges. We compare the overall range of

observed c values with the uncertainties on c estimated for

individual data sets and discuss the implications for

extrapolating fault populations in practical applications.

2. Modelling approach

Many published studies of the controls on fault scaling

relationships are based on analogue models of faulting (e.g.

Sornette et al., 1993; Davy et al., 1995; Finch, 1998;

Spyropoulos et al., 1999; Ackermann et al., 2001; Mansfield

and Cartwright, 2001). However, in most analogue models

the fault pattern is viewed from above so that the population

statistics only reflect the behaviour of faults whose tip lines

cut the upper surface. It is also difficult to measure small

faults during these experiments. For example, Clifton et al.

(2000) note that, in their wet plaster models, the heaves on

the faults that they could resolve accounted for as little as

30% of the imposed regional extension. The early numerical

models used to investigate fault scaling were either limited

to very small percentage strains (Cowie et al., 1993) or had

periodic boundary conditions and simple homogeneous

material properties (Poliakov et al., 1994). Though these

problems can be addressed, computational limits on the size

and number of elements mean that numerical models

inevitably suffer from resolution problems as well. Despite

such limitations, a numerical modelling technique was used

in this study because it permits precise control of the initial

and boundary conditions and the resolution limit is easily

measured.

Numerical models of faulting form a spectrum between

two basic approaches. At one end of the spectrum a large

number of physical influences on faulting are included in a

simulation but only simple geometries are considered. For

example, the boundary element models of Martel (1997,

1999) give accurate solutions to the equations of linear

elastic fracture mechanics but usually only a few pre-

defined faults or fractures are modelled. At the opposite end

of the spectrum are models that capture only the bare

essentials of the physics of fracturing, but simulate large

numbers of interacting faults and permit structures to

growth and link over time. The cellular automaton model of

Wilson et al. (1996) and the modified resistor network

model of Cowie et al. (1993) represent this end member.

Between these extremes of approach lie finite difference

(Maillot et al., 1998; Spyropoulos, 1999; Spyropoulos et al.,

2002), discrete element (Homberg et al., 1997; Finch, 1998)

and finite element models (Dresden et al., 1991; Poliakov

and Hermann, 1994; Schultz-Ela and Jackson, 1996;

Gerbault et al., 1998; Huc et al., 1998; McKinnon and

Garrido de la Barra, 1998).

The 2D finite element code used here, ADELI (described

in full by Hassani (1994)), lies towards the ‘complexity of

space, simplicity of physics’ modelling end-member.

Unlike some other schemes, boundary conditions are

naturally incorporated in finite element models, rheologies

are defined explicitly and large strains can be simulated.

ADELI uses a Lagrangian description of the geological

medium and large strains are modelled under quasistatic

conditions. Faulting is simulated via the mechanism of

strain localisation (shear band formation) in a continuum

following a strain softening, elasto-plastic constitutive law.

Prior to fault initiation, the deforming material behaves as a

linear elastic solid obeying Hooke’s Law. The point of

failure is defined by the Von Mises yield criterion, which

provides a relationship between yield strength (s0) and

deviatoric stress (mean stress is not taken into consideration

in this criterion). After failure, the material loses a fixed

amount of strength (sdrop) whilst accumulating a certain

amount of strain (the critical plastic strain, kc) before

entering a plastic flow regime. The Von Mises constitutive

model is not ideal in that it predicts failure at 458 to the

principle stresses and does not incorporate yield strength

increase at higher mean stress levels. However, incorporat-

ing heterogeneity in material parameters, which is the

necessary for our study (see below), is easier within a simple

constitutive framework. The constitutive law does not

include healing: once an element has failed it remains

weak throughout the experiment. Alternative yield criteria

(Mohr–Coulomb, Van Eekelen and Drucker–Prager) were

considered but were rejected for the purposes of this study

for reasons discussed in Hardacre (2000) and Hardacre and

Cowie (2003).

Elasto-plastic deformation of solids shows many phe-

nomenological similarities with the deformation of rocks

seen in nature and in rock fracturing experiments (Poliakov

et al., 1994; McKinnon and Garrido de la Barra, 1998).

Firstly, deformation is permanent: when the deforming

stress is released, the material does not recover its
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undeformed state. Secondly, the stresses required to give

observed strains are reasonable tectonically. Thirdly,

deformation of rocks in the upper crust does seem to be a

yield point phenomenon. Finally, plasticity theory predicts

the localisation of strain into narrow zones akin to faults

(Rudnicki and Rice, 1975; Rudnicki, 1977).

In addition to overall rheology, heterogeneity has been

shown to be a key element in the development of fault

networks (Cowie et al., 1993). Variations in composition,

grain size and texture constitute heterogeneities in real

rocks. In analogue models, heterogeneity enters the system

via microscopic variations in the sand grains, clay or

gypsum used to represent the brittle crust. In some

numerical models (Poliakov and Hermann, 1994; Poliakov

et al., 1994; Barnichon and Charlier, 1996; Schultz-Ela and

Jackson, 1996; Gerbault et al., 1998), heterogeneity

emerges because of numerical ‘noise’ i.e. round-off errors

in floating point arithmetic. This source of heterogeneity

was rejected in our approach because the amplitude of the

noise can neither be measured nor controlled: it is entirely

dependent on machine architecture. In other models (Leroy

and Ortiz, 1989; Belytschko et al., 1994), a single

imperfection is introduced as a seed in an otherwise uniform

mesh. Non-uniform failure can also be induced by creating

geometrical instabilities in the mesh e.g. by fixing one node

to create a displacement discontinuity (Dresden et al., 1991)

or by cutting a notch in the mesh perimeter (Davis and

Fletcher, 1990). However, heterogeneity is most commonly

incorporated in numerical models by giving each mesh

element a strength value drawn from a probability

distribution (e.g. Cowie et al., 1993; Heimpel and Olson,

1996; Wilson et al., 1996; McKinnon and Garrido de la

Barra, 1998; Spyropoulos, 1999). In this study, the yield

strength was chosen as the heterogeneous material property.

The strength of each model element is drawn from a

Gaussian probability distribution and the spatial arrange-

ment is random.

2.1. Experimental design

The standard model measures 10 km across and 5 km

deep. The selected dimensions are large enough that the

forces of gravity and applied extension are comparable, but

small enough that complexities like thermally-induced

rheological variation with depth need not be considered.

The material is divided into quadrilateral elements com-

posed of two overlapping pairs of triangular elements. Each

of the 5000 elements in the standard model represents

100 m £ 100 m. The governing equations of stress equili-

brium are solved explicitly using the dynamic relaxation

technique (Board, 1989), as implemented in the code FLAC

(Cundall, 1989). This method damps out-of-balance forces

to arrive at the quasi-static equilibrium solution. A typical

run required 20,000 time steps to ensure the stability of the

solution whilst guaranteeing quasi-static conditions.

The boundary conditions on the sides of the model are

given in terms of velocities normal and tangential to the

surface (Fig. 1). One wall remains fixed whilst the other

moves with a constant normal velocity of

1.0 £ 10210 m s21, equivalent to an extensional strain rate

of 10214 s21. We do not vary the strain rate in this study.

Using a numerical model similar to that presented here,

Lavier et al. (2000) have shown that fault development may

be sensitive to the applied strain rate. The standard run time

is 4.0 £ 1012 s (approximately 127 thousand years), giving a

total extensional strain of 4%. With strains in excess of 4%,

grid cells near faults become so deformed that the stress

equilibrium equations cannot be solved accurately without

regridding, which is undesirable. The upper boundary is free

in all experiments and the model lies on an inviscid fluid,

resulting in an isostatic basal boundary condition. The

sidewalls are not allowed to rotate, so each model can be

thought of as one half of a symmetrical extensional basin

with the moving boundary at the mid-point of the basin. A

non-rigid, rotational boundary would apply to a model of

faulting driven by gravity collapse, which is not what we

consider in this paper.

The deforming material has its elastic parameters

(Poisson’s ratio 0.3, Young’s modulus 1.36 £ 1010 Pa),

mean yield strength (275 £ 106 Pa) and post-yield, plastic

parameters (strength loss, 75 £ 106 Pa; critical plastic strain

0.02) chosen to mimic those of a sample of Darley Dale

sandstone deformed in uniaxial compression at a confining

pressure of 50 MPa (parameter fitting by Niño (1997)). Four

Fig. 1. The geometry and boundary conditions of the standard model: 5000 quadrilateral elements comprise the mesh, which represents a Von Mises plastic

material. The left-hand wall is pinned, the right wall moves at a constant velocity. See Section 2.1 for details.
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heterogeneous meshes were created by using different seeds

(4067, 6007, 7177 and 7817) in the random number

generator used to sample the Gaussian distribution of

yield strengths. Each of these meshes (labelled n in figures)

was reflected about its centre along a vertical axis to

generate a further four, mirror-image meshes (labelled m in

figures). As the applied boundary conditions are asym-

metric, the deformation history of a mesh and its mirror

image are not identical (see below). In each mesh, the mean

strength was 275 MPa and the standard deviation 25 MPa.

Meshes with other standard deviations were also investi-

gated but those results are presented elsewhere (Hardacre,

2000; Hardacre and Cowie (2003)).

2.2. Map patterns

Fig. 2 illustrates the pattern of broken elements within

each simulation. Fault development is qualitatively similar

in all of the runs. Firstly, nucleation begins at the base of the

model and close to the moving wall. This is because we use

a Von Mises yield criterion that depends on deviatoric stress

alone: the deviatoric stress increases towards the base

because of the overburden and also increases towards the

moving wall because of the applied load. A nucleation front

then propagates upward and right-to-left across the model,

away from the moving wall. The elements with the lowest

strengths break first. As an element breaks it loses some of

its strength and loads those elements around it. Conse-

quently, local variations in yield strength determine whether

a single broken element will develop as a left-dipping or

right-dipping fault. Both synthetic (i.e. dipping towards the

moving wall) and antithetic structures develop, as predicted

by the modelling theory of Anderson (1951). The dip of the

model faults (458) is low compared with Andersonian faults

(typically ,608) as a consequence of modelling the

deforming material as a Von Mises solid.

In finite element simulations, shear zones may ‘reflect’ at

the boundaries of the deforming region (Davis and Fletcher,

Fig. 2. Broken elements maps at 1.0, 1.2, 1.4 and 1.8% strain for model runs in which different seeds (4067, 6007, 7177, 7817) are used in the random number

generator responsible for strength heterogeneity. The prefixes n and m denote, respectively, the normal and mirror image pair of the same mesh.
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1990; Hobbs et al., 1990; McKinnon and Garrido de la

Barra, 1998). This leads to V-shaped fault intersections and

simple grabens. In such fault pairs, one structure is

responsible for the formation of the other. However, they

can be considered to be independent, as the growth of one

structure does not necessitate the growth of its partner.

Structures that intersect with the upper and lower surfaces of

the model continue to accumulate displacement and the

resultant thinning is compensated isostatically. Faults grow

upwards by breaking the elements ahead of their tips or by

coalescing with pre-existing structures. Down-dip linkage

of synthetic faults of comparable size is rare but as

structures lengthen and thicken during growth they

commonly assimilate other smaller structures.

The largest faults have similar thicknesses and are spaced

at preferred distances through the mesh. Preferred spacing

of shear bands in finite element simulations of deformation

in homogeneous materials is governed by the ratio of

element height to model height, as described by Ord (1990).

Despite the fact that the materials in the eight models used

here are statistically identical, the precise location of major

through-going structures varies because the pattern of yield

strength heterogeneity is different in each model. Even the

deformation history of a mesh and its mirror image are not

identical, because the applied boundary conditions are

asymmetric. In other words, the imposed yield strength

heterogeneity largely suppresses the preferred spacing noted

by Ord (1990) for homogeneous models. With time, strain

localises into the area closest to the moving wall because

structures here have been active longer and so are weaker.

The eventual formation of a pair of conjugate faults forming

an ‘x’ pattern adjacent to the moving wall is a consequence of

making this a rigid, non-rotational, boundary and allowing

local isostatic compensation (see Section 2.1 above).

2.3. Processing model output

The raw output of the model is data concerning the

elements and nodes of the finite element mesh, not faults.

Previous studies (Cowie et al., 1993; Poliakov and

Hermann, 1994) used a two step algorithm for extracting

fault data: first identifying failed elements and then

clustering failed elements connected either at a node or

along an edge to make faults. Such an algorithm would

identify intersecting conjugate faults as a single structure.

To identify synthetic and antithetic structures separately, we

developed a three-step algorithm, illustrated by Fig. 3. First,

each element is tested against a failure criterion to assess

whether it is broken or unbroken (Fig. 3a). If an element has

experienced finite plastic strain (measured in principal strain

space as the length of the normal from the yield surface to

the point representing the strain state of the element), it is

considered to be broken. Then we examine the strain

gradients around each element. If the UL–LR (upper left–

lower right) gradients are smaller than the UR–LL

gradients, the element is flagged as belonging to a right-

dipping fault (Fig. 3b). If the opposite is the case, the

element is assigned a left-dipping flag. Adjacent elements

are then joined only if they are broken and share the same

flag (Fig. 3c).

2.4. An appropriate measure of fault size

Size frequency analysis of a fault population should

ideally meet the following criteria: (1) the range of size

measurements should exceed one order of magnitude, and

(2) the scale of measurements should be continuous to avoid

artefacts caused by binning (see Pickering et al. (1995) and

Main (2000) for a discussion of binning and finite range

effects in cumulative size frequency statistics). Previous

studies of faults in cross-section have measured their size

either as displacement (throw) or length (termed fault

‘height’ by Finch (1998) and Ortega and Marrett (2000)). In

finite element models, throw and length can only be

measured between grid nodes, which makes throw measure-

ments on structures containing just one or two elements of

questionable significance and causes both finite range and

binning problems for length data (discussed fully in

Hardacre (2000)). The precedent set by other numerical

modelling studies (Cowie et al., 1993; Poliakov and

Hermann, 1994) is to use the number of elements in each

structure as a measurement of size. Unlike length, the

number of elements continues to increase after the structure

spans the layer. However, because the number of elements

in a structure will be an integer, this is not a continuous scale

of measurement and the data are effectively binned.

In this study, we measure size as the sum of the plastic

strains in the elements that make up a structure: a measure

we term total plastic strain (TPS). Note that TPS is

equivalent to the magnitude of the geometric moment of

each fault, i.e. (displacement) £ (fault surface area). Fig. 4a

illustrates three different measures of fault size (number of

elements, tip-to-tip length, TPS) applied to a single fault

population. All three measures give distributions that are

essentially linear in log–log space. The TPS distribution

shows the same features as the length frequency distri-

bution, for example the break in slope at cumulative

frequency equals 10, but the ‘number of elements’

Fig. 3. The three-step clustering algorithm. (a) Elements with plastic strains

above the threshold value of 0.05 (shades of grey) meet the failure criterion

and are considered broken. Failed elements with low strains are shown in

light grey, higher strains in dark grey. (b) Strain gradients are used to

distinguish between elements with ‘right-dipping’ shear sense (light grey)

and ‘left-dipping’ shear sense (dark grey). White elements are not broken.

(c) Points belonging to the same cluster are shown in the same shade. Solid

white lines are the best fitting straight line through each cluster.
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distribution compares less favourably. TPS has a further

advantage over the other measures of size: far more data-

points define the total plastic strain distribution and so the

bias towards large faults during power law fitting by linear

regression is reduced. However, there is a disadvantage to

using TPS as a measure of fault size. Examining Fig. 4a, the

‘number of elements’ and ‘tip-to-tip length’ distributions

contain ,250 faults, spanning three orders of magnitude.

The TPS distribution contains the same number of faults but

spans four orders of magnitude. This means that the

‘number of elements’ and ‘tip-to-tip length’ distributions

will have similar power law exponents, but the exponent for

the TPS distribution will necessarily be lower.

Having established that TPS is a good proxy for fault

length, let us now examine the relationship between plastic

strain and throw. For a single structure, throw profiles can be

generated by examining the vertical offset along each row of

broken elements. Plastic strain can also be summed along

each row, across the finite width of each fault zone, to give a

plastic strain profile (Fig. 4b). The two profiles have very

similar shapes: plastic strain generally varies along a fault in

the same way as throw. This point is emphasised by Fig. 4c,

which shows a clear linear relationship between throw and

plastic strain calculated row-by-row on many faults.

2.5. Determining the exponent of the power law

In fault population studies it is most common to use the

cumulative size frequency distribution to calculate the

power law exponent c, i.e.

N ¼ ax2c

 

 

Fig. 4. (a) Cumulative size frequency distributions calculated for a snapshot of a single model, using three different measures of fault size: number of elements

(NOE), tip-to-tip length (T2T) and the total plastic strain (TPS). (b) Fault throw profile (bold line) and plastic strain profile (dotted line) across each row of

elements for a single fault. (c) Relationship between plastic strain and throw measured across rows of elements for a number of faults.
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where x is fault size, N the number of faults of size $ x, and

a is a constant. An alternative method is to use the discrete

frequency distribution of log(x) (hereafter referred to as the

log-interval distribution). In this case the number of faults

that have a size in the bin interval log(x) ^ dlog(x) is

calculated and a histogram plotted. This latter approach is

commonly used in the analysis of earthquake magnitude–

frequency distributions. The relative merits of the two

approaches are thoroughly described by Pickering et al.

(1995), who also showed that the power law exponents

calculated by either method are theoretically identical.

However, in practice the exponent calculated from a log-

interval distribution does depend on the choice of the bin

size, dlog(x). Consequently, the vast majority of geologists

studying fault populations use the cumulative distribution to

estimate the power law exponent. Cumulative frequency

plots are not without their problems, in particular, the

gradual roll-over in the distribution near the maximum

value and a systematic increase in the apparent regression

coefficient due to the smoothing effect inherent in using

cumulative data (Main, 2000).

The exponent c is usually estimated by taking logarithms

before fitting a straight line through the transformed data

using least squares regression. This method assumes that the

residuals of the dependent variable, log(N) in this case, are

independent and random. However, by definition N must be

an integer and on a cumulative frequency plot N is bound to

increase as one goes from the largest measurement to the

next largest and so on. Clarke et al. (1999) criticise least

squares regression of cumulative frequency data for this

very reason, proposing a maximum likelihood method

instead.

However, in order to compare our results with the

majority of published studies of fault size frequency

distributions, we calculate c via least squares regression of

cumulative frequency data. We analyse many data sets in

the same way and compare the values of c that are obtained.

By comparing values of c, rather than considering

individual results, our conclusions are valid in spite of the

criticisms raised by Clarke et al. (1999). The error on the

estimate of c is calculated using Student’s t-test. To avoid

problems of sampling bias (i.e. censoring and truncation;

see Pickering et al. (1995) for explanation), data from the

extremes of the distribution are removed before fitting the

power law. Although objective methods for doing this,

based on maximising the goodness of fit statistic, r 2, have

been suggested (Ortega and Marrett, 2000), the size

distributions produced by ADELI have very obvious breaks

in slope that define the limits to the regression (see Section

3.2).

The power law exponent derived from log-interval data

is also calculated to show how estimates of c (and their

associated errors) differ between the two methods. Although

the log-interval distribution contains the same information

as the cumulative distribution, Main (2000) argues that it

reveals the true nature of the distribution more clearly. For

example, Main (2000) has shown that noise can cause

apparent breaks in slope on the cumulative frequency

distribution but not the log-interval distribution. It is also

easier to justify the use of least squares regression with log-

interval data as the number of faults can either increase or

decrease as one goes from the largest fault size to the next

largest. A log-interval width of 0.1 is used here and data

were included in the regression from the smallest fault size

up to the first empty bin. In the absence of an empty bin, data

were included until two adjacent bins containing just one

measurement had been encountered.

3. Results

3.1. Fault activity

Structures are considered active if any of the elements

within them have accumulated plastic strain in the last time

step. During the early nucleation phase, most faults are

active and the number of faults increases (Fig. 5). Behind

the nucleation front, the strain softening rheology stimulates

the growth of larger, weaker faults. The localisation of strain

onto some structures causes others to switch off, increasing

the number of inactive structures through time (Fig. 5).

Fault growth by coalescence, which is a common phenom-

enon by 1.2% extension in all models, leads to a decrease in

the total number of faults (Fig. 5). After 1.6% model

extension, faults span the layer from top to bottom and only

the major structures are active. Consequently, there are

fewer linkage events after this point and the number of

structures decreases more slowly.

3.2. Cumulative size–frequency distributions

The cumulative size–frequency distributions and fitted

power law exponents c, resulting from the eight exper-

iments, are shown in Fig. 6. The error on the best fitting

Fig. 5. Number of faults that are active and inactive in one particular

experiment (mesh m4067) versus time (see Section 3.1). The pattern for the

total population is consistent with that observed in analogue (Ackermann

et al., 2001) and numerical (Cowie et al., 1995) studies of fault

development.
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value of c, estimated at the 95% confidence level, is less

than 0.02 in all cases. Note that the values of c are low

compared with many real fault data sets because we use TPS

to represent fault size (Fig. 4). Some features are common to

all runs. For example during the course of each run, the

cumulative size–frequency distribution shows a change

from a simple power law (i.e. a straight line on a bi-

logarithmic plot) to a more complex form with one or more

inflection points. The smaller faults in the population remain

power law while a breakdown in power law size scaling

occurs for the largest faults. The reason for this breakdown

in power law scaling is the localisation of strain onto the

largest faults in the model. Hardacre (2000) shows that the

large faults that penetrate the entire layer in this model are

better fit by an exponential distribution (see also Ackermann

et al., 2001; Spyropoulos et al., 2002; Walsh et al., 2003). In

most of the experiments there is a gradual decrease in the

value of cthrough time (Fig. 7). This is most clearly evident

 

 
Fig. 6. Fault size (TPS) versus cumulative frequency plots at 1.0–1.8% strain for the eight experiments. The normal mesh and its mirror image for each seed are

adjacent. Variation within the pairs are as large as variations between meshes with different seeds. All graphs have the same axes as the annotated plot at the

bottom right of the figure. Best-fitting power laws, with exponents, c, are shown over the interval used in the least squares regression calculation. Estimated

errors on c are typically less than 0.02.
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for the early stages of fault development prior to the

appearance of significant inflection points in the size

frequency distributions, i.e. for most experiments at strains

,1.6% (see Fig. 6). In some cases however (see for

example experiments m6007 and n4067) the c values

actually increase with time, towards the end of the

simulation.

Given the fact that all the experiments presented here are

identical in terms of mechanical properties, except in the

random seed used to generate the strength heterogeneity, it

is reasonable to expect that the resulting fault populations

should be very similar. However, in spite of the gross

similarities mentioned above, the striking feature of Fig. 6 is

the marked difference between experiments and in particu-

lar between mirror-image pairs (see also Fig. 2). The range

in the value of c between the experiments at one value of

strain is comparable with the range observed as a function of

strain for any one experiment. The positions of inflection

points also vary significantly. Note how the size frequency

distributions from mirror images (for example n4067 and

m4067) are as dissimilar as distributions from meshes

produced by different random seeds. Consequently, by

examining the distributions alone one could not identify

those belonging to mirror pairs.

In other numerical modelling studies (Cox and Paterson,

1990; Spyropoulos et al., 1999) the fault populations from

several runs are combined to investigate the ‘average

behaviour’ of the system. To look at the average behaviour,

we calculated the mean value of c for the eight experiments,

cmean, at each value of total strain. Fig. 7 shows c for the

individual data sets and also cmean, as a function of percentage

extension. Note that the change in cmean as total strain

increases is less than the range of c values produced by varying

the random distribution of the heterogeneity. The two curves

highlighted in Fig. 7 are for runs n4067 and m4067 in order to

show the difference in behaviour that is possible even between

mirror-image pairs. We investigate the reasons for this

difference in Section 4 below.

3.3. Log-interval size frequency distributions

Pickering et al. (1995) and Main (2000) argue that log-

interval distributions give a more robust indication of the true

power law scaling properties of a fault population. Thus, for

comparison, the log-interval distributions resulting from the

eight experiments are shown in Fig. 8, along with new

estimates of the power law exponent c. Plotting the log-

interval data demonstrates that the central portion of the

cumulative distributions, which appears to follow a power law

with a very low slope (e.g. experiment n4067 at 1.8% strain), is

exaggerated by plotting cumulative fault number. In reality,

this portion of the cumulative distributions is simply a

transition between the smaller-scale faults, which are

demonstrably power law distributed, and the largest faults in

the population that are better fit by an exponential distribution

(Hardacre, 2000; Hardacre and Cowie (2003)).

The error estimates on c are much larger for the log-interval

distributions (see Fig. 8, right hand panel); typically ^0.5,

compared with 0.02 for fits to the cumulative distribution.

Although the estimates of c from the log-interval distributions

are generally slightly higher than those from the cumulative

distributions, they do agree within 95% confidence limits.

However, there is now no statistically significant change in c

with increasing strain, in contrast to that observed for the

cumulative distributions (compare Fig. 8 with Figs. 6 and 7).

Although the dependence of c on total strain seen in the

cumulative distributions is statistically significant, this

relationship is an subtle feature that can be easily masked by

 

Fig. 7. Dependence of c (from Fig. 6) on total strain for the individual datasets. The mean value, cmean, at each % strain is also shown. The curves for

experiments n4067 and m4067 are highlighted (see text for discussion). Although c generally decreases with strain for individual runs, this signal is small

compared with the variability induced by changing the seed used to generate the random heterogeneity.
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(a) intrinsic variability in the fault development even for

mechanically identical systems (Fig. 7), and (b) uncertainty in

the estimate of the scaling exponent (Fig. 8).

4. The source of size scaling variability

To show how the differences in fault size distributions

arise from models with statistically identical material

properties, we focus on the development of the fault

populations in a pair of mirror-image experiments: n4067

and m4067. Examination of the size frequency distributions

at 1.8% strain shows that the small fault population in n4067

is best fit by a higher value of c than m4067 (Figs. 6 and 8).

Also, the breakdown in power law scaling occurs at a

smaller fault size in n4067 than in m4067. These differences

 

 

Fig. 8. Fault sized (TPS) binned in log-intervals versus discrete frequency for 1.0–1.8% strain for all eight experiments. All graphs have the same axes as the

annotated plot at the bottom right of the size–frequency distributions. Power law fits are shown only over the interval used in the linear regression calculation.

The right-hand column shows best fitting power law exponents, c, and 95% confidence limits determined for the log-interval (open circles) and cumulative

(black squares) frequency datasets. Error bars for the cumulative frequency datasets are smaller than the size of the square symbol.
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can be attributed to the spatial arrangement of large faults

that are in place after only 1.2% extension in each

experiment (Fig. 2). To illustrate this more clearly we

show in Fig. 9 the temporal evolution of fault activity in

experiments n4067 and m4067 by plotting in colour the

incremental plastic strain at eight different stages of the

extension history. In both experiments, in a gross sense,

the deformation proceeds first by localisation of strain onto

large through-going faults, followed by concentration of

fault activity next to the moving wall (Fig. 9). However, in

detail there are clear differences and it is these differences

that affect the relative number and location of smaller faults

that occur. Whereas some of the small faults that nucleate

early in the experiments may be assimilated into the large

through-going ‘block-bounding’ faults, particularly near to

the moving wall where strain becomes concentrated, many

are often preserved as inactive structures within ‘intra-fault’

blocks. Thus, any differences in the localisation history will

affect the resulting size–frequency distributions (Fig. 6).

For example, the relatively high value of c seen at the end of

experiment n4067 is a relict of a small fault population that

formed early on and was completely abandoned by 1.4%

strain within a large intra-fault block near the stationary wall

(compare 1.4% and 1.6% strain for experiment n4067). In

contrast, in experiment m4067 the largest intra-fault block

occurs near the moving wall and localisation of strain onto

the block-bounding faults is not complete until 1.8% strain.

Thus a more evolved small-fault population with a wider

range of sizes and a lower value of c is preserved.

The size frequency distributions of intermediate and

large faults also show differences between these two

experiments. A wider range of fault sizes defines the low-

gradient segment at the centre of the cumulative size

frequency distribution in n4067 than m4067 and fewer

faults define the distribution of the very largest faults. These

differences result from the different geometry of major

faults in the two experiments. Because the moving wall is

required to remain vertical in all experiments, the movement

on the active faults must be kinematically compatible with

this imposed boundary condition. Furthermore, the strain-

softening rheology used in these experiments concentrates

deformation onto the longer-lived, therefore softer, and

therefore larger structures adjacent to the moving wall. In

m4067, a pair of conjugate faults formed relatively early

adjacent to the moving wall (1.4–1.6% strain in Fig. 9).

This conjugate geometry is compatible with the imposed

non-rotation of the side wall. In contrast in n4067, a

synthetic fault array initially developed adjacent to the

moving wall and this is incompatible with a non-rotating

side-wall (Fig. 9). Consequently, between 1.6 and 4.0%

extension in experiment n4067 all available strain energy

was spent rearranging the existing large faults and

developing a new antithetic fault near to the moving wall.

No such rearrangement was necessary in m4067 and

structures with a range of sizes continued to grow.

In Fig. 10 the difference in the evolution of faulting in

experiment n4067 and m4067 is emphasised by separating

the fault populations into active and inactive structures. A

structure is considered to be active if its total plastic strain

has increased in the last increment of extension. Thus in Fig.

10 the cumulative size frequency distributions of active and

inactive fault populations are compared with the distribution

for the whole population at 12 successive stages of the

extension history. Overall these plots confirm the main

features of Fig. 9, i.e. that strain localises onto the largest

faults and that most of the small faults become inactive.

However, one important point to be noted in Fig. 10 is that

the size of the smallest fault that is active at any given

percentage strain differs between experiments n4067 and

Fig. 9. Cross-sectional views of fault activity as a function of % extension

for experiments n4067 and m4067. Each plot shows the increase in plastic

strain in the last 0.1% (top two plots) or 0.2% (other plots) extension. Areas

that experience no change in plastic strain (i.e. faults are inactive) are

shown in grey.
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m4067. In experiment m4067 a significant proportion of the

very smallest faults are still active at 1.8% strain, whereas in

n4067 all the smallest faults are inactive after 1.7% strain.

At 1.9% strain, a broad range of fault sizes in m4067 are still

active while at greater strains the deformation gradually

localises onto progressively larger faults. In contrast, in

experiment n4067 localisation is not such a gradual or

smooth process. The relatively rapid switch-off of small

faults in n4067 suggests that localisation is initially

proceeding rapidly (i.e. by 1.8% strain, localisation of

activity onto large faults is more pronounced in n4067 than

m4067; see Fig. 9). However, between 1.8 and 2.0% strain,

the active and inactive fault populations in experiment

n4067 do not change significantly, indicating that further

localisation was inhibited during this interval of time (Fig.

10). This delay in localisation is caused by re-arrangement

of the fault structures, described above, to produce a

conjugate fault geometry next to the moving wall that is

compatible with the non-rotational boundary condition.

The differences in localisation behaviour between m4067

and n4067 are also reflected in the bulk stress-strain history

of each system. For these two experiments, Fig. 11 presents

the average extensional stress s11, on the moving wall

minus the elastic component of this stress caused by the

overburden. As the material properties and boundary

conditions of these experiments are identical, differences

in the mechanical response of the system must be due to the

development of different patterns of faulting that result from

simply reflecting the finite element mesh. Their behaviour is

identical until 0.8% extension, at which point elements

begin to fail and the material is no longer elastic. Stress

continues to increase in both n4067 and m4067 as the

Fig. 10. Cumulative size–frequency distributions for active (squares), inactive (circles), and total (line) fault populations at 12 stages of extension from 1.05 to

4.0% strain in the mirror-image model runs: n4067 and m4067. All graphs are plotted on axes of the same scale. See Section 4 for discussion.
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nucleation front spreads across the material until, at 1%

extension, large faults begin to develop at the base of each

model (Figs. 9 and 11). In both experiments, the bulk stress

then decreases dramatically until 1.6% strain by which point

many (although not all) small faults are inactive, nucleation

of new faults has largely ceased and strain is being

accommodated primarily by the larger structures (Fig. 9).

Note that at 1.6% extension, the stress on the side wall in

n4067 is actually lower than that in m4067. This indicates

that it is easier to accumulate displacement on the synthetic

fault set that has developed in n4067 than the crossing

conjugate shear zones formed by the same stage in m4067.

However, after 1.6% extension, experiment n4067 shows a

marked increase in stress, i.e. overall strain hardening, even

though each individual element is strain softening (Fig. 11).

This strain hardening is due again to the development of the

new conjugate fault near to the moving wall in experiment

n4067. Thus, while localisation was initially favoured in

experiment n4067 due to the early formation of a synthetic

fault set, the boundary condition imposed by the vertical

moving wall causes the localisation process to be inhibited

at later stages in the simulation. In contrast, in experiment

m4067 after 1.6% strain there is only a small increase in

stress, due to shear zone thickening, followed by minor

stress fluctuations.

5. Discussion

Our modelling results show that, at the same strain,

materials with statistically identical material properties

contain fault populations with significantly different cumu-

lative size frequency distributions. This is because the

precise arrangement of spatial heterogeneity favours certain

fault growth processes over others in each of the different

models. Fault nucleation, propagation and coalescence are

all possible growth processes, but the process or processes

that dominate can subtly vary from model to model and

between different stages of the deformation in each model

run. Qualitatively all the runs are similar, but in detail small

changes in the relative importance of the difference growth

processes at each stage of fault development controls how

many faults of a given size are produced. This is not an

artefact of our modelling approach—it will occur in any

model (whether numerical or analogue) in which the

material has heterogeneous strength properties. We might

still have expected our eight experiments to generate

identical statistics because the only difference between

runs is a random redistribution of the strength heterogeneity.

Furthermore, the boundary conditions used here (local

isostasy at the base of the model) forced all the model runs

to develop the same stable geometry eventually (namely

two faults intersecting in an ‘x’ shape close to the moving

wall) at the end of the experiment. This convergence

towards a single active fault geometry does not occur for all

basal boundary conditions (Hardacre, 2000). In other

systems, which have more degrees of freedom, even greater

variability in the power law exponent arises. Obviously, in

nature we expect much greater complexity in rock strength

heterogeneity than random variability, in addition to more

complex boundary conditions that those shown here.

Multiple-layered sedimentary sequences with significant

contrasts in average strength between layers are common in

extensional basins. Local variations in the boundary

conditions are also likely, for example oblique re-activation

of a pre-existing basement structure beneath an extending

cover sequence.

Our results suggest therefore that extrapolating information

Fig. 11. Mean extensional stress on the moving side wall s11 (corrected for elastic stresses induced by overburden) versus % extension for experiments n4067

and m4067. Insets show the active elements at the stages indicated. A structure is considered to be active if its total plastic strain has increased in the last 0.05%

of regional extension. See Section 4 for discussion.
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about fault size scaling from one area to another—for

example from an area with high resolution 3D seismic

imaging to a poorly-imaged adjacent area—should incor-

porate large uncertainty even if the areas have the same

lithologies and tectonic histories. For example, the error

estimate derived from least squares regression of cumulat-

ive frequency data for any one of our experiments (,0.02)

is approximately 10 times smaller than the range in values

of c at any given value of strain (Fig. 7). Thus if we use the

results of regression through cumulative frequency data to

generate other model fault populations statistically, they

would not cover the full range of possible outcomes that we

observe even with a very simple geological model. In

contrast, the error estimate derived from least squares

regression of the log-interval data is much larger (,0.5) and

comparable with the range in c values. In other words, an

error estimate of 0.5 (as opposed to 0.02) provides a good

measure of the uncertainty involved in extrapolation for the

example we present. Note that this level of uncertainty can

be .50% of the value of c, and is sufficient to obscure any

dependence of c on total strain. Clearly, real geological

scenarios are likely to be associated with even greater

uncertainty.

6. Summary and conclusions

Using a 2D finite element model of extensional

deformation in cross-section, we simulate the development

of fault populations and analyse the resulting size–

frequency distributions as a function of total strain. Faulting

is simulated by a process of elasto-plastic yielding and post-

yield strain softening. Local isostatic compensation is

included. Strength heterogeneity in the model is introduced

by selecting randomly the yield strength of each element

from a Gaussian probability distribution. We explain how

individual faults are defined in the model and present a

clustering algorithm that allows the fault populations to be

extracted automatically (Section 2.3). The fault size–

frequency distributions for a suite of eight deformation

experiments are then compared quantitatively as a function

of the amount of extension up to 4% total strain. These eight

experiments are identical in a statistical sense; the only

difference between each run is that the spatial arrangement

of yield strengths is a different random realisation. The

boundary conditions and the average strength properties are

exactly the same in all the runs. The results of the eight

experiments were used to determine both the magnitude and

the cause of variability in the size–frequency scaling due to

random strength heterogeneity. The purpose of this study is

to provide more realistic constraints on the uncertainties

involved in extrapolating fault size–frequency distributions

in practical applications. The main conclusions of this

study are:

1. Faults in the model appear as narrow zones along which

finite plastic strain is accumulated. Fault size is defined

as the total plastic strain (TPS) within each zone (Fig. 4).

For this model TPS is shown to provide the most

sensitive measure of fault size and represents the

magnitude of the geometric moment of each structure.

2. The size–frequency distributions of all our model fault

populations are well-characterised by a power law

distribution, in most cases over several orders of

magnitude. Power law exponents were calculated for

both cumulative frequency and discrete frequency (i.e.

log-interval) distributions (Section 2.5). We use least

squares regression to calculate the power law exponent,

c, in order to compare our results with published studies

of natural fault populations.

3. We find that the value of c and the estimated error on that

value depend on the method used to analyse the data

(cumulative versus log-interval statistics). The standard

method of fitting power laws to fault size distributions

(least squares regression of log(size), log(cumulative

frequency) data) was found to give error estimates

(^0.02) on the value of c that were at least 10 times

smaller than the variability in c observed amongst the

eight experiments (typically ^0.5), regardless of the

strain accommodated. In contrast, using the log-interval

method the estimated errors (^0.5) were comparable

with the inter-model variability.

4. In the cumulative frequency data, the value of the

exponent c decreases with increasing strain in most of

the model runs. This observation is consistent with the

results of previous physical (Sornette et al., 1993),

geometrical (Cladouhos and Marrett, 1996) and numeri-

cal (Sornette and Davy, 1991; Cowie et al., 1995)

models. The decrease in the value of c is partly due to

fault coalescence but also arises because larger faults

grow faster than smaller ones in our model. However, the

dependence of c on total strain is subtle compared with

the inter-model variability. In other words, the variation

in c between experiments at one value of strain is

comparable with the range observed as a function of

strain for any one experiment. If natural fault population

development is similarly sensitive to the spatial arrange-

ment of rock strengths, it is unsurprising that attempts to

relate the power law exponent of real fault populations to

total strain have had little success (Cladouhos and

Marrett, 1996).

5. By comparing two experiments in detail (Figs. 9–11), we

show that the variability in size–frequency distributions

between models arises as a consequence of small

differences in the fault growth history. Depending on

the spatial distribution of strength relative to the imposed

boundary conditions, faults initiate in different locations

and thus interact in subtly different ways and to differing

degrees with neighbouring faults. These differences are

sufficient to result in significantly different power law

exponents on cumulative frequency plots even though all

the fault patterns are qualitatively very similar.
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6. The range in power law exponents that we observe in

these experiments is clearly controlled to a significant

degree by a geologically simplistic (i.e. random)

variation in material properties. Furthermore, the local

isostatic basal boundary condition used here tends to

suppress the potential variability by limiting the range of

possible fault geometries that can form. Realistic

strength variations and boundary conditions in exten-

sional provinces are likely to be much more complex and

thus are expected to produce even greater variability

amongst the resulting fault populations.

7. In extrapolating fault population data to smaller scales or

modelling fault populations in poorly imaged areas, our

results suggest that the level of uncertainty associated

with such ‘predictions’ should be much larger than the

error estimate derived from least squares regression of

cumulative frequency data.

Acknowledgements

We thank Fernando Niño for all his help with ADELI.

We also thank Ian Main for useful discussions regarding

size frequency statistics and microscopic versus macro-

scopic rheologies. Kathryn Hardacre was supported by

NERC PhD studentship grant GT4/96/88/E. Patience Cowie

is supported by a University Research Fellowship from The

Royal Society of London. Nancye Dawers, Zoe Shipton,

Ben Brooks and Alexei Poliakov provided useful reviews of

the manuscript. GMT (Wessel and Smith, 1998) was used to

display most of our results.

References

Ackermann, R., Withjack, M., Schlische, R., 2001. The geometric and

statistical evolution of normal fault systems: an experimental study of

the effects of mechanical layer thickness on scaling laws. Journal of

Structural Geology 23, 1803–1819.

Anderson, E., 1951. The Dynamics of Faulting, Oliver and Boyd, London.

Barnichon, J.D., Charlier, R., 1996. Finite element modelling of the

competition between shear bands in the early stages of thrusting: strain

localization and constitutive law influence. In: Buchanan, P.G.,

Niewland, D.A. (Eds.), Modern Developments in Structural Interpret-

ation, Validation and Modelling. Geological Society Special Publi-

cation 99, pp. 235–250.

Belytschko, T., Chiang, H.-Y., Plaskacz, E., 1994. High resolution two-

dimensional shear band computations: imperfections and mesh

dependence. Computer Methods in Applied Mechanics and Engineer-

ing 119, 1–15.

Board, M., 1989. FLAC (Fast Lagrangian Analysis of Continua) Version

2.20: Software Summary. Itasca Consulting Group, Inc., Minnesota.

Bonnet, E., Bour, O., Odling, N., Davy, P., Main, I., Cowie, P., Berkowitz,

B., 2001. Scaling of fracture systems in geological media. Reviews of

Geophysics 39, 347–383.

Cladouhos, T., Marrett, R., 1996. Are fault growth and linkage models

consistent with power-law distributions of fault length? Journal of

Structural Geology 22, 983–997.

Clarke, R., Cox, S., Laslett, G., 1999. Generalizations of power-law

distributions applicable to sampled fault trace lengths: model choice,

parameter estimation and caveats. Geophysical Journal International

136, 357–372.

Clifton, A., Schlische, R., Withjack, M., Ackermann, R., 2000. Influence of

rift obliquity on fault population systematics: results of experimental

clay models. Journal of Structural Geology 22, 1491–1509.

Cowie, P.A., 1998. The growth of normal faults in three dimensions in

continental and oceanic crust. In: Buck, W.R. Delaney, P.T., Karson,

J.A., Lagabrielle, Y. (Eds.), Faulting and Magmatism at Mid-Ocean

Ridges. American Geophysical Union Monograph Series 106, pp. 325–

348.

Cowie, P., Vanneste, C., Sornette, D., 1993. Statistical physics model for

the spatiotemporal evolution of faults. Journal of Geophysical Research

98, 21809–21821.

Cowie, P.A., Sornette, D., Vanneste, C., 1995. Multifractal scaling

properties of a growing fault population. Geophysical Journal

International 122, 457–469.

Cox, S., Paterson, L., 1990. Damage development during rupture of

heterogeneous brittle materials: a numerical study. In: Knipe, R.J.,

Rutter, E.H. (Eds.), Deformation Mechanisms, Rheology and Tec-

tonics. Geological Society Special Publication 54, pp. 57–62.

Cundall, P., 1989. Numerical experiments on localization in frictional

materials. Ingenieur Archives 58, 148–159.

Davis, R., Fletcher, R., 1990. Shear bands in a plastic layer at yield under

combined shortening and shear: a model for the fault array in a duplex.

In: Knipe, R.J., Rutter, E.H. (Eds.), Deformation Mechanisms,

Rheology and Tectonics. Geological Society Special Publication 54,

pp. 123–131.

Davy, P., Hansen, A., Bonnet, E., Zhang, S.-H., 1995. Localization and

fault growth in layered brittle–ductile systems: implications for

deformations of the lithosphere. Journal of Geophysical Research

100, 6281–6294.

Dresden, G., Gwildis, U., Kluegel, T., 1991. Numerical and analogue

modelling of normal fault geometry. In: Roberts, A., Yielding, G.,

Freeman, B. (Eds.), The Geometry of Normal Faults. Geological

Society Special Publication 56, pp. 207–217.

Finch, E., 1998. A crustal lattice solid model: the evolution, geometry and

scaling of tectonic extension. PhD thesis, University of Ulster.

Gauthier, B., Lake, S., 1993. Probabilistic modelling of faults below the

limit of seismic resolution in Pelican Field, North Sea, offshore United

Kingdom. The American Association of Petroleum Geologists Bulletin

77, 761–777.

Gerbault, M., Poliakov, A., Daignieres, M., 1998. Prediction of faulting

from the theories of elasticity and plasticity: what are the limits? Journal

of Structural Geology 20, 301–320.

Hardacre, K., 2000. Controls on fault network evolution and population

statistics—insights from field studies and numerical modelling. PhD

thesis, Edinburgh University.

Hardacre, K.H., Cowie, P.A., 2003. Controls on strain localisation in a 2D

elasto-plastic layer: Insights into size-frequency scaling of extensional

fault populations. J. Geophys. Res., in press.

Hassani, R., 1994. Modélisation numérique de la déformation des systèmes
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