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The Linear Coregionalization Model and the
Product–Sum Space–Time Variogram1

S. De Iaco,2 D. E. Myers,3 and D. Posa2,4

The product covariance model, the product–sum covariance model, and the integrated product and
integrated product–sum models have the advantage of being easily fitted by the use of “marginal”
variograms. These models and the use of the marginals are described in a series of papers by De
Iaco, Myers, and Posa. Such models allow not only estimating values at nondata locations but also
prediction in future times, hence, they are useful for analyzing air pollution data, meteorological
data, or ground water data. These three kinds of data are nearly always multivariate and because the
processes determining the deposition or dynamics will affect all variates, a multivariate approach is
desirable. It is shown that the use of marginal variograms for space–time modeling can be extended
to the multivariate case and in particular to the use of the Linear Coregionalization Model (LCM) for
cokriging in space–time. An application to an environmental data set is given.

KEY WORDS: space–time, coregionalization, marginal variograms, product–sum models, integrated
models.

INTRODUCTION

Modeling of spatiotemporal distributions resulting from dynamic processes evolv-
ing in both space and time is important in different scientific and engineering fields,
such as meteorology, environmental sciences, and hydrology.

Three conceptual viewpoints were identified in Kyriakidis and Journel (1999):
(1) approaches involving a single random function model integrating both space
and time components (Bilonick, 1985; Christakos, 1992); (2) approaches involving
vectors of space random functions (Goovaerts and Sonnet, 1993); (3) approaches
involving vectors of time series (Rouhani and Wackernagel, 1990).
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However, none of these three incorporates multivariate spatiotemporal distri-
butions. For example, several variables could be measured at given spatial locations
and for different times, resulting in multivariate space–time information. Although
many authors have used the Linear Coregionalization Model (LCM) for multivari-
ate geostatistical analysis in a spatial context (Goovaerts, 1993), this model has
not been used for spatial–temporal processes.

The aim of this paper is to show how marginal variograms for space–time
modeling can be extended to the multivariate case. In particular the LCM is ex-
tended to space–time applications, where the spatial–temporal basic variograms
are modeled as product–sums (De Iaco, Myers, and Posa, 2001a). In this case, each
of the variograms in the LCM is written in terms of the space and time marginals
and the marginals for the LCM can be easily obtained. However, more general
space–time models with the LCM, such as the integrated product and integrated
product–sum models (De Iaco, Myers, and Posa, 2002) can be used.

To illustrate the technique, the LCM using a product–sum space–time vari-
ogram model has been applied to an environmental data set, involving hourly aver-
ages for CO and NO2, measured in Milan district during February 1999. Practical
aspects related to determining its parameters are also discussed.

SPACE–TIME LCM

Let

Z(s, t) = [Z1(s, t), . . . , Zm(s, t)]T

be a vector valued second-order stationary random function defined onRn × T .
Let

Y(s, t) = [Y1(s, t), . . . ,YP(s, t)]T

be a vector of uncorrelated second order stationary random functions andD a
m× P matrix such that

Z(s, t) = DY(s, t).

Let

gkl(hs, ht ) = 0.5 Cov (Zk(s+ hs, t + ht )− Zk(s, t), Zl (s+ hs, t + ht)− Zl (s, t))

i.e., the auto and cross-variograms of the components ofZ, and G(hs, ht )
the m×m matrix whose entries aregkl(hs, ht ), k, l = 1, . . . ,m. Let ° j (hs, ht ),
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j = 1, . . . , P, be the variograms of theYj (s, t), j = 1, . . . , P. In the literature,
the structures° j (hs, ht ), j = 1, . . . , P, are known to be the variogram models
related to the uncorrelated random functions which defineZ and they do not nec-
essarely have unitsill. As shown in Journel and Huijbregts (1981), the matrix
variogramG(hs, ht ) for Z(s, t) can be written as an LCM:

G(hs, ht ) =
P∑

j=1

° j (hs, ht ) B j (1)

where theB j ’s are positive definitem×m matrices obtained as products of
columns ofD with the transposes of columns. If each basic variogram° j (hs, ht ) is
modeled as a product–sum (De Cesare, Myers, and Posa, 2001a,b, 2002; De Iaco,
Myers, and Posa, 2001a,b)

° j (hs, ht ) = ° j (hs, 0)+ ° j (0, ht )− K j ° j (hs, 0)° j (0, ht ) (2)

then each of the variogramsgkl(hs, ht ) in the LCM are linear combinations of the
space and time marginals. Note that° j (hs, 0) and° j (0, ht ) are valid spatial and
temporal variograms and from (2) the parameterK j is given by

K j = (sill° j (hs, 0)+ sill° j (0, ht )− sill° j (hs, ht ))

(sill° j (hs, 0)sill° j (0, ht ))
, j = 1, . . . , P. (3)

More generally a necessary and sufficient condition for the admissibility of
° j (hs, ht ) is (De Iaco, Myers, and Posa, 2001a)

0< K j ≤ 1/max{sill(° j (hs, 0);sill(° j (0, ht )}. (4)

In the application to the LCM theK j ’s are selected in such a way so as to ensure
that the global sills are related to the sills for the different scales.

From (1) it follows that the spatial and temporal marginal matrix variograms
for the LCM can be written, respectively, as

G(hs, 0) =
P∑

j=1

° j (hs, 0)B j (5)

G(0, ht ) =
P∑

j=1

° j (0, ht ) B j . (6)
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Thus the space–time LCM is determined by two LCM’s, one is the space marginal
and the other is the time marginal. This is analogous to the univariate case except
that the coefficients are matrices.

THE FITTING PROCESS

Initially the process of fitting is the same as in the usual process of fitting a
LCM, the variation is that it must be done twice, once for the marginal time LCM
and once for the marginal space LCM and with the constraint that the positive
definite coefficient matrices are the same for both. For a spatial LCM it is necessary
to determine the variograms of the uncorrelated components (and their number)
and the coefficient matrices. For the extension to space–time using product–sum
models, it is necessary to determine the marginals for each of the uncorrelated
components, the coefficient matrices, and also the weightsK j , j = 1, . . . , P. Note
that the diagonal elements of the matrices defined in (5) and (6) are, respectively,

gii (hs, 0) =
P∑

j=1

bj
i i ° j (hs, 0), i = 1, . . . ,m, (7)

gii (0, ht ) =
P∑

j=1

bj
i i ° j (0, ht ), i = 1, . . . ,m, (8)

while the off-diagonal elements of the matrices defined in (5) and (6) are,
respectively,

gik(hs, 0) =
P∑

j=1

bj
ik° j (hs, 0), i, j = 1, . . . ,m, i 6= k, (9)

gik(0, ht ) =
P∑

j=1

bj
ik° j (0, ht ), i, j = 1, . . . ,m, i 6= k. (10)

The fitting process uses some of the same techniques as in the purely spatial case.

• The first step is to compute the sample marginal space and marginal time
variograms separately for each choice ofi = 1, . . . ,m. For eachi , Ai

denotes the set of data locations in space–time for variableZi , then

ĝi i (r si , 0) = 1

2|Ni (r si )|
∑

Ni (r si )

[Zi (s+ hs, t)− Zi (s, t)]2, i = 1, . . . ,m

(11)
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ĝi i (0, rti ) =
1

2|Mi (rti )|
∑

Mi (rti )

[Zi (s, t + ht )− Zi (s, t)]2, i = 1, . . . ,m

(12)

where r si and rti are, respectively, the vector lag with spatial tolerance
±si and the lag with temporal tolerance±ti . |Ni (r si )| and |Mi (rti )| are the
cardinalities of the following sets:

Ni (r si ) = {(s+ hs, t) ∈ Ai , (s, t) ∈ Ai : ||r si − hs|| < ±si }, i = 1, . . . ,m

Mi (rti ) = {(s, t + ht ) ∈ Ai , (s, t) ∈ Ai : ||rti − ht || < ±ti }, i = 1, . . . ,m.

• Fit nested variogram modelsgii (hs, 0) andgii (0, ht ), i = 1, . . . ,m to the
sample variograms defined in (11) and (12). The model types and range
parameters for all the marginal space variograms must be the same. The
model types and the range parameters for all the marginal time vari-
ograms must be the same (but not necessarily the same as for the marginal
space variograms). Moreover, the number of model types must be the
same for the marginal space and marginal time variograms. Thus the
gii (hs, 0), i = 1, . . . ,m and thegii (0, ht ), i = 1, . . . ,m, are determined.
Note that although modeled separately, for fixedj the coefficientsbj

i i are
common to the marginal space and time variograms for eachi .
• It is important to remember that the number of structures used in the LCM,

i.e.,P, is the same for alli = 1, . . . ,mand also the same for both the space
marginals and the time marginals.
• In order to modelgii (hs, ht ), i = 1, . . . ,m, it is first necessary to com-

plete the modeling of the° j (hs, ht ), j = 1, . . . , P, that is, theK j ’s for
j = 1, . . . , P must be determined. By considering the sample variogram
surfaceŝgii (r si , rti ), i = 1, . . . ,m,

ĝi i (r si , rti ) =
1

2|Vii (r si , rti )|
∑

Vii (r si ,rti )

[Zi (s+ hs, t + ht )− Zi (s, t)]2 (13)

where|Vii (r si , rti )| is the cardinality of the setVii (r si , rti ), that is,

Vii (r si , rti ) = {(s+ hs, t + ht ) ∈ Ai , (s, t) ∈ Ai : ||r si − hs||
< ±si , ||rti − ht || < ±ti },

each constant,K j , can be evaluated graphically or by estimating the global
sill Cj (0, 0)= sill (° j (hs, ht )).
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• To complete the LCM product–sum space–time model it is only necessary
to determine the coefficientsbj

ik, i 6= k, i.e., the off-diagonal entries in
theB j ’s, j = 1, . . . , P. These will then determine the space–time cross-
variograms since all other terms in the marginal space cross-variograms
and the marginal time cross-variograms (9) and (10) have already been
determined. Moreover theK j ’s have already been computed. The off-
diagonal entries must be chosen to ensure that eachB j is positive definite
or at least nonnegative definite.
• Compute the sample marginal spatial and temporal cross-variograms

corresponding togik(hs, 0) and gik(0, ht ), defined in (9) and (10),
respectively:

ĝik(r sik , 0) = 1

2|Qik(r sik )|
∑

Qik (r sik )

[Zi (s+ hs, t)

− Zi (s, t)][ Zk(s+ hs, t)− Zk(s, t)], (14)

ĝik(0, rtik ) =
1

2|Tik(rtik )|
∑

Tik (rtik )

[Zi (s, t + ht )

− Zi (s, t)][ Zk(s, t + ht )− Zk(s, t)], (15)

wherer sik andrtik are, respectively, the vector lag with spatial tolerance±sik

and the lag with temporal tolerance±tik . |Qik(r sik )| and |Tik(rtik )| are the
cardinalities of the following sets:

Qik(r sik ) = {(s+ hs, t) ∈ Ai ∩ Ak, (s, t) ∈ Ai ∩ Ak: ||r sik − hs|| < ±sik },
Tik(rtik ) = {(s, t + ht ) ∈ Ai ∩ Ak, (s, t) ∈ Ai ∩ Ak: ||rtik − ht || < ±tik }.

Evaluating the Model Fit

The ultimate objective is to fit the space–time LCM, given in Eq. (1). The
simplest approach is to evaluate the fit of the space and time marginals, but there
are at least two more ways to evaluate the fit.

1. Apply cross-validation with cokriging in space–time. There are several
difficulties and drawbacks to this. One problem is that one obtains not
one “error” (the difference between the observed data value and the es-
timated value) but rather one for each variable. Thus, there is a set of
cross-validation statistics for each variable or one must construct a com-
posite statistic. The former may result in too much information and make
it difficult to discern where any problem occurs. The latter may cover up
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inadequate modeling of variograms and cross-variograms for only some
of the variables.

2. Compute a mean square metric corresponding to the difference between the
sample matrix variogram and the fitted model. For each lag this difference
will be a matrix and hence one must use a metric, e.g., the usual matrix
norm. This might be written in the following form:

∑
(hs,ht )

||Ĝ(hs, ht )− G(hs, ht )||2
||G(hs, ht )||2 .

A CASE STUDY

The spatiotemporal data set used for illustrating the proposed methodology
consists of hourly averages values of NO2 and CO measured over Milan district
at 54 and 31 monitoring stations, respectively, during February 1999.

Let

Z(s, t) = [Z1(s, t), Z2(s, t)],T

whereZ1 andZ2 are the hourly average values of CO and NO2, respectively. The
monitoring station locations are shown in Figure 1. Note from Figure 1 that the
set of the monitoring data locations for CO is a subset of the set of the monitoring
data locations for NO2.

Figure 1. Posting map of the survey stations for CO and NO2 in the Milan district.
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Modeling the Marginal Variograms

The set of data locations in space–time for CO (i = 1) and NO2 (i = 2),
respectively, are:

Ai = ((sk, t j ), k = 1, 2 . . . ,ni , j = 1, 2, . . . ,672), i = 1, 2,

where the monitoring stations aren1 = 31 CO andn2 = 54, for NO2, and a time
series of 672 hourly average values (corresponding to 28 days of February) is
available at each spatial location.

Figures 2(a) and (b) show the sample marginal variograms for space and time
of both variables, where the continuous curves represent the fitted models. For
simplicity, the model types are given in abbreviated form as follows:

1. sph(r/a) is an isotropic spherical unitsill model with rangea;
2. exp(r/a) is an isotropic exponential unitsill model witheffectiverangea,

i.e., the distance needed to reach 95% of thesill value;
3. cos(r/a) is an isotropic cosine model with perioda. Although the cosine

model would be only semidefinite, when nested with a (conditionally
negative) definite model the result is a valid variogram model. This model
is only used with the temporal marginal variograms.

The analytic forms of the fitted models for CO hourly averages, are

g11(hs, 0)= 0.75°1(hs, 0)+ 0.31°2(hs, 0)+ 0.33°3(hs, 0) (16)

where

°1(hs, 0) =
{

0 ‖hs‖ = 0
1 ‖hs‖ > 0

(17)

°2(hs, 0) = sph

(‖hs‖
7

)
(18)

°3(hs, 0) = exp

(‖hs‖
15

)
(19)

where the spatial distances in (18) and in (19) are given in kilometers, and

g11(0, ht ) = 0.75°1(0, ht )+ 0.31°2(0, ht )+ 0.33°3(0, ht ) (20)

where

°1(0, ht ) =
{

0 ht = 0
0.01 ht > 0

(21)
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Figure 2. Sample marginal variograms for space and time of (a) CO and their models and (b) NO2

and their models.

°2(0, ht ) = 2.92 exp

(
ht

12

)
+ 1.86 cos

(
ht

12

)
+ 1.62 cos

(
ht

24

)
(22)

°3(0, ht ) = 2.1 sph

(
ht

72

)
. (23)

Likewise for NO2 hourly averages, the marginal variograms are

g22(hs, 0)= 90°1(hs, 0)+ 75.38°2(hs, 0)+ 350°3(hs, 0) (24)



P1: FMU

Mathematical Geology [mg] pp741-matg-460235 February 7, 2003 0:21 Style file version June 25th, 2002

34 De Iaco, Myers, and Posa

where°i (hs, 0), i = 1, . . . ,3 were defined in (17), (18), and (19), and

g22(0, ht ) = 90°1(0, ht )+ 75.38°2(0, ht )+ 350°3(0, ht ), (25)

where°i (0, ht ), i = 1, . . . ,3 were defined in (21), (22), and (23).
Note that the number of basic components in the marginal space and time

variograms is the same for both variables. Moreover both marginal variograms are
represented in terms of the same basic components.

As regards the interpretation of the above variogram models, it can be said that
they recall the experimental variogram features, such as nugget effect, periodicitiy,
and range. Particularly, the two temporal periodicities at 12 and 24 h might be linked
to the cycle of factors which influence pollution, such as human activities, sunlight
effects, and photochemical reactions.

Estimation of K j ’s of the Product–Sum Nested Models

The structural analysis is completed by estimating the coefficientsK j , j =
1, 2, 3 of the space–time nested models. They have been estimated graphically by
comparing the sample variogram surfaces with the product–sum models (Fig. 3).
The best fits are obtained withK1 = 0.45, K2 = 0.02, andK3 = 0.33.

Marginal Cross-Variogram Models

In this case study, since there are only two variables, to complete the space–
time LCM it is necessary to determine only one off diagonal entry in eachBj , j =
1, 2, 3 (each coefficient matrix is symmetric). These off diagonal entries must be
chosen so that eachBj , j = 1, 2, 3 is positive definite (or at least semidefinite).
Obviously the resulting cross-variogram models should “fit” the data. Since there
are only three unknown entries to be determined, this was done partly by trial and
error using the sample marginal space and time cross-variograms (Fig. 4). More
general methods would have to be used ifP is larger and/or there are more than
two variables. The fitted models are shown in Figure 4 and the analytic forms are

g12(hs, 0)= 0°1(hs, 0)+ 3.08°2(hs, 0)+ 11.67°3(hs, 0) (26)

where°i (hs, 0), i = 1, . . . ,3 were defined in (17), (18), and (19), and

g12(0, ht ) = 0°1(0, ht )+ 3.08°2(0, ht )+ 11.67°3(0, ht ) (27)

where°i (0, ht ), i = 1, . . . ,3 were defined in (21), (22), and (23).
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Figure
3. (a) Sample variogram surfaces of CO and NO2; (b) their space–time models withK1 = 0.45,

K2 = 0.02, andK3 = 0.33.

The Fitted Space–Time LCM

The space–time LCM can be determined using (1):

G(hs, ht ) = °1(hs, ht ) B1+ °2(hs, ht ) B2+ °3(hs, ht ) B3. (28)

From the previous sections, the matricesBj , j = 1, . . . ,3 are

B1 =
[

0.75 0

0 90

]
, B2 =

[
0.31 3.08

3.08 75.38

]
, B3 =

[
0.33 11.67

11.67 350

]
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Figure 4. Sample marginal cross-variograms between CO and NO2 for space and time and their
models.

To complete the space–time LCM (1) it is necessary to construct, for eachj =
1, . . . ,3, the° j (hs, ht )’s using the respective marginals° j (hs, 0), ° j (0, ht ) and
the value ofK j using (2):

°1(hs, ht ) = °1(hs, 0)+ °1(0, ht )− 0.45°1(hs, 0)°1(0, ht )

where°1(hs, 0) is given in Eq. (17) and°1(0, ht ) is given in Eq. (21);

°2(hs, ht ) = °2(hs, 0)+ °2(0, ht )− 0.02°2(hs, 0)°2(0, ht )

where°2(hs, 0) is given in Eq. (18) and°2(0, ht ) is given in Eq. (22);

°3(hs, ht ) = °3(hs, 0)+ °3(0, ht )− 0.33°3(hs, 0)°3(0, ht )

where°3(hs, 0) is given in Eq. (19) and°3(0, ht ) is given in Eq. (23).

FURTHER RESULTS ON FITTING SPACE–TIME LCMs

As noted in the Introduction section, the LCM corresponds to the assumption
that the matrix variogram can be diagonalized. In fact, (1) can be written as

G(hs, ht ) = D diag(°1(hs, ht ), . . . , °P(hs, ht ))DT .

If the basic structures°1(hs, ht ), . . . , °P(hs, ht ) are known, then fitting the model
corresponds to finding the matrixD which will “diagonalize” the model. The
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columns ofD will determine all theBj ’s, D will generally not be square and
does not have to satisfy a positive definiteness condition. The entries inD might
be determined by a least squares fit to the sample spatial–temporal variogram
matrix. This is similar to the approach proposed by Goulard and Voltz (1992).
Alternatively, if the marginal basic structures are known, i.e., have already been
determined, then the diagonalized form of these could be simultaneously fit to the
sample marginal variogram matrices. Xie and Myers (1995) and Xie, Myers, and
Long (1995) propose a slightly different approach that could be extended to the
space–time problem.

SUMMARY

The LCM for a matrix variogram can be generalized to incorporate space–
time modeling. It has been shown that by using the product–sum variogram, the
space and time marginals can be adopted to fit the space–time variogram in the
LCM.

More general models can be constructed by assuming integrated product or
integrated product–sum models as basic structures, instead of product–sum models.
The method utilized in De Iaco, Myers, and Posa (2002) might then be used to fit
the probability distribution. The simplest form would be to assume that the same
distribution is used in all the integrated models.

An application to an air pollution data set is given.
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